Letteratura scientifica selezionata sul tema "CXCR2 receptors"
Cita una fonte nei formati APA, MLA, Chicago, Harvard e in molti altri stili
Consulta la lista di attuali articoli, libri, tesi, atti di convegni e altre fonti scientifiche attinenti al tema "CXCR2 receptors".
Accanto a ogni fonte nell'elenco di riferimenti c'è un pulsante "Aggiungi alla bibliografia". Premilo e genereremo automaticamente la citazione bibliografica dell'opera scelta nello stile citazionale di cui hai bisogno: APA, MLA, Harvard, Chicago, Vancouver ecc.
Puoi anche scaricare il testo completo della pubblicazione scientifica nel formato .pdf e leggere online l'abstract (il sommario) dell'opera se è presente nei metadati.
Articoli di riviste sul tema "CXCR2 receptors"
Hou, Zhi-Shuai, Hong-Kui Zhao, Pedro Perdiguero, Meng-Qun Liu, Kai-Wen Xiang, Chu Zeng, Zhao Li et al. "Pleiotropic Role of Rainbow Trout CXCRs in Response to Disease and Environment: Insights from Transcriptional Signatures and Structure Analysis". Biomolecules 14, n. 3 (12 marzo 2024): 337. http://dx.doi.org/10.3390/biom14030337.
Testo completoKorbecki, Jan, Klaudyna Kojder, Patrycja Kapczuk, Patrycja Kupnicka, Barbara Gawrońska-Szklarz, Izabela Gutowska, Dariusz Chlubek e Irena Baranowska-Bosiacka. "The Effect of Hypoxia on the Expression of CXC Chemokines and CXC Chemokine Receptors—A Review of Literature". International Journal of Molecular Sciences 22, n. 2 (15 gennaio 2021): 843. http://dx.doi.org/10.3390/ijms22020843.
Testo completoDoroshenko, Tatyana, Yuri Chaly, Valery Savitskiy, Olga Maslakova, Anna Portyanko, Irina Gorudko e Nikolai N. Voitenok. "Phagocytosing neutrophils down-regulate the expression of chemokine receptors CXCR1 and CXCR2". Blood 100, n. 7 (1 ottobre 2002): 2668–71. http://dx.doi.org/10.1182/blood.100.7.2668.
Testo completoLepsenyi, Mattias, Nader Algethami, Amr A. Al-Haidari, Anwar Algaber, Ingvar Syk, Milladur Rahman e Henrik Thorlacius. "CXCL2-CXCR2 axis mediates αV integrin-dependent peritoneal metastasis of colon cancer cells". Clinical & Experimental Metastasis 38, n. 4 (11 giugno 2021): 401–10. http://dx.doi.org/10.1007/s10585-021-10103-0.
Testo completoKonrad, F. M., e J. Reutershan. "CXCR2 in Acute Lung Injury". Mediators of Inflammation 2012 (2012): 1–8. http://dx.doi.org/10.1155/2012/740987.
Testo completoUhl, Barbara, Katharina T. Prochazka, Katrin Pansy, Kerstin Wenzl, Johanna Strobl, Claudia Baumgartner, Marta M. Szmyra et al. "Distinct Chemokine Receptor Expression Profiles in De Novo DLBCL, Transformed Follicular Lymphoma, Richter’s Trans-Formed DLBCL and Germinal Center B-Cells". International Journal of Molecular Sciences 23, n. 14 (17 luglio 2022): 7874. http://dx.doi.org/10.3390/ijms23147874.
Testo completoCoperchini, Francesca, Laura Croce, Michele Marinò, Luca Chiovato e Mario Rotondi. "Role of chemokine receptors in thyroid cancer and immunotherapy". Endocrine-Related Cancer 26, n. 8 (agosto 2019): R465—R478. http://dx.doi.org/10.1530/erc-19-0163.
Testo completoDaniele, Simona, Simona Saporiti, Stefano Capaldi, Deborah Pietrobono, Lara Russo, Uliano Guerrini, Tommaso Laurenzi et al. "Functional Heterodimerization between the G Protein-Coupled Receptor GPR17 and the Chemokine Receptors 2 and 4: New Evidence". International Journal of Molecular Sciences 24, n. 1 (23 dicembre 2022): 261. http://dx.doi.org/10.3390/ijms24010261.
Testo completoZhang, Jing, Shouguo Huang, Lini Quan, Qiu Meng, Haiyan Wang, Jie Wang e Jin Chen. "Determination of Potential Therapeutic Targets and Prognostic Markers of Ovarian Cancer by Bioinformatics Analysis". BioMed Research International 2021 (19 marzo 2021): 1–13. http://dx.doi.org/10.1155/2021/8883800.
Testo completoInngjerdingen, Marit, Bassam Damaj e Azzam A. Maghazachi. "Expression and regulation of chemokine receptors in human natural killer cells". Blood 97, n. 2 (15 gennaio 2001): 367–75. http://dx.doi.org/10.1182/blood.v97.2.367.
Testo completoTesi sul tema "CXCR2 receptors"
Wilson, Shirley Risk. "Oligomerisation of chemokine receptors CXCR1 and CXCR2". Thesis, University of Glasgow, 2005. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.418346.
Testo completoKhurram, Syed Ali. "The chemokine receptors XCR1, CXCR1 and CXCR2 regulate oral epithelial cell behaviour". Thesis, University of Sheffield, 2008. http://etheses.whiterose.ac.uk/10311/.
Testo completoFilho, Décio Abdo. ""Avaliação da expressão dos receptores de interleucina-8, CXCR1 e CXCR2, e da atividade proliferativa em fibroblastos de quelóide e de pele normal"". Universidade de São Paulo, 2006. http://www.teses.usp.br/teses/disponiveis/5/5132/tde-16102006-171640/.
Testo completoA keloid is a benign fibrous tumor that occurs during wound healing in genetically predisposed individuals. Healing is a complex biological process and depends on the interaction of different tissue structures and a great number of resident and infiltrative cell types. The interleukin-8 (IL-8), a proinflammatory chemokine, showed higher expression in fibroblasts during the development of the granulation tissue, promoting more rapid tissue maturation. Since keloids result from abnormal wound healing, the objective of the present study was to determine the expression of CXCR1 and CXCR2, IL-8 receptors, and the proliferation capacity, throughout the cell cycle, of the keloid fibroblasts extracted ex vivo and those submitted to in vitro cultivation. Normal skin and keloid scar fibroblasts were obtained from 21 African-Brazilian patients, aged from 10 to 40 years, whose lesions had evolved for no longer than 2 years. Expression of receptors and the cell cycle was assessed by flow cytometry. We showed lower expression of the CXCR1 (35,7% ± 11,2) and CXCR2 (27,8%±11,3) in keloid fibroblasts, when compared with normal skin (44,1 ± 16,2 e 46,3 ± 27,1 respectively), but the difference was not significant for the CXCR1 receptor. This lower expression of IL-8 receptors in keloid fibroblasts could be due to the action of metalloproteinases, which regulate the surface protein enzymatically, or fibroblastic cytoskeleton conditions, which influence receptor internalization and recycling. The distribution assessment of cell cycle phases of fibroblasts cultivated from keloid scars and normal skin did not show significant difference in replication capacity and apoptosis. The keloid fibroblasts presented a significantly higher proportion of cells in the G2/M phase, suggesting higher rate of cell division. To confirm these results we studied the cell cycle of fibroblasts extracted ex vivo, now separated by central and peripheral portions of keloid and normal skin. The peripheral fibroblasts showed significant high cell proportions in phase S (22,9% ± 11,6), compared with the central portion (4,7% ± 2,9) and normal skin (6,8% ± 4,9), and higher cells in division phase G2/M (18,6% ± 12,0), compared with the central portion (35,6% ± 7,0) and normal skin (32,3% ± 6,9). The central portion showed higher proportion of apoptosis (7,0% ± 2,1), compared with the peripheral portion (4,9% ± 1,9) and normal skin (2,0% ± 0,86). These results suggest that the keloid peripheral cells could be responsible for the proliferation rate, justifying the expansive keloid growth at the borders of the keloid scar, in a similar fashion to tumor development and the central portion being responsible for fibrosis, with quiescent and apoptotic cells. These results suggest a differentiated modulation of cell reactions by signal pathways for programmed cellular proliferation or death. In this sense, the low expression of the IL-8 receptors CXCR1 and CXCR2 in keloid fibroblasts suggests a diminished capacity of IL-8 to promote accelerated healing. This low expression of IL-8 receptors in keloid fibroblasts could promote the dysregulation of the inflammatory response and thus attract more inflammatory cells to the site, producing different signals, such as a high production of the TGFβ cytokine. This dysregulation of the healing process, with changed cytokine and extracellular matrix expression, could be responsible for two different cell populations of fibroblasts, one proliferation at the periphery and the other fibrotic at the center of the lesion, with apoptotic and quiescent cells. Finally, we conclude that our results correspond to the histological and clinical changes of keloids that grow beyond the wound boundaries.
Le, Du Julie. "Développement d'antagonistes des récepteurs CXCR2 contre les pathologies angiogéniques oculaires et le cancer". Electronic Thesis or Diss., Université Côte d'Azur, 2024. http://www.theses.fr/2024COAZ5067.
Testo completoAngiogenesis, the process of forming new blood vessels, plays a crucial role in the progression of various cancers and ocular diseases. CXCR2 chemokine receptors are implicated in these processes by mediating cell proliferation, inflammation, and the formation of new blood vessels. This thesis aims to develop CXCR2 receptor antagonists to inhibit these pathological mechanisms, particularly pathological tumor and ocular angiogenesis. Based on previous research, we investigated new N,N'-diarylurea analogues as inhibitors of the ELR+CXCL-CXCR2 pathway for cancer treatment. Two series of analogues were synthesized to study the structure-activity relationship and to optimize a lead compound. Evaluations on renal, head and neck cancer, and uveal melanoma cell lines, as well as on 3D spheroid cultures, identified an optimized lead compound showing significant inhibition of invasion, migration, and neo-angiogenesis. Additionally, pharmacology, pharmacodynamics, and polymorphism studies were conducted.In the context of ocular angiogenic diseases, the development of a second family of compounds was pursued, including the study of new synthetic routes for scaling up for future industrial production and formulation studies to create active ingredient preparations in the form of eye drops.Finally, a new series of anticancer compounds was designed, and a synthetic route was developed to obtain a first series of analogues. The evaluation of the biological activities of these compounds allowed the establishment of a preliminary structure-activity relationship
Desurmont, Thibault. "Etude de l'implication des chimiokines et de leurs récepteurs dans la survenue d'une rechute métastatique chez des patients atteints d'un cancer du côlon métastatique et traités par chirurgie hépatique avec ou sans chimiothérapie néoadjuvante". Thesis, Lille 2, 2015. http://www.theses.fr/2015LIL2S042/document.
Testo completoOur aim was to analyze the potential role of chemokine receptors CXCR2 and CXCR4 signalling pathways in liver metastatic colorectal cancer (CRC) relapse. Expression levels of CXCR2, CXCR4, and their chemokine ligands were evaluated in liver metastases of colorectal cancer in order to study their correlation with overall and disease-free survival of patients having received, or not received, a neoadjuvant chemotherapy regimen.Quantitative RT-PCR and CXCR2 immunohistochemical staining were carried out using human CRC liver metastasis samples. Expression levels of CXCR2, CXCR4, and their ligands were statistically analyzed according to treatment with neoadjuvant chemotherapy and patients ' outcome. Murine models of subcutaneous and orthotopic intracaecal xenografts have been developed and used to study the expression of CXCR2, CXCR4 and CXCL7 in connection with the treatment of mice with chemotherapy.We showed that CXCR2 and CXCL7 overexpression are correlated to patient’s shorter overall and disease-free survival. By multivariate analysis, CXCR2 and CXCL7 expressions are independent factors of overall and disease-free survival. Neoadjuvant chemotherapy increases significantly the expression of CXCR2 and CXCL7 was overexpressed close to significance. Results of our mouse models have shown a trend over-expression of our interest genes in tumor tissues of the treated mice.In conclusion, we show the involvement of CXCL7/CXCR2 signalling pathways as a predictive factor of poor outcome in metastatic CRC. 5-Fluorouracil-based chemotherapy regimens increase the expression of these genes in liver metastasis, providing one explanation for aggressiveness of relapsed drug-resistant tumors. Selective blockage of CXCR2/CXCL7 signalling pathways could provide new potential therapeutic opportunities
Franz, Juliana Pires Marafon. "Estudo de polimorfismos dos genes CXCR2 e IL-8 em pacientes com câncer de próstata e grupo controle". reponame:Biblioteca Digital de Teses e Dissertações da UFRGS, 2015. http://hdl.handle.net/10183/139982.
Testo completoInterleukin-8 (IL-8) is an angiogenic CXC chemokine that plays an important role in both the development and progression of several human malignancies including prostate cancer (PC). A single nucleotide polymorphism (SNP) at -251 upstream of the transcriptional start site of the IL-8 gene has been shown to influence its production. The effects of IL-8 are mediated by two highly related chemokine receptors, CXCR1 and CXCR2. The present study investigated the influence of the IL-8 and CXCR2 gene variation on susceptibility and clinicopathological characteristics of PC in a group of Brazilian subjects. Two hundred and one patients and 185 healthy controls were enrolled in a case-control study. Blood was collected for DNA extraction; typing of IL-8 -251 T/A and CXCR2 +1208 C/T genes was performed by polymerase chain reaction with sequence-specific primers (PCR-SSP), followed by agarose gel electrophoresis. Risk association between the genotypes, PC susceptibility and tumor characteristics was estimated by odds ratio (OR) and 95% confidence intervals (95% CI) using logistic regression analysis, after adjusting for age at diagnosis. A significant association was found between the heterozygous CXCR2 +1208 CT genotype and PC. The CXCR2 +1208 CT genotype was significantly less frequent in patients with clinical stage T3-T4 compared to T1-T2 (56.7 versus 80.5%). Our findings suggest that carriers of the CXCR2 +1208 CT genotype had a protective effect for advanced PC (CT versus CC: adjusted OR = 0.25; P = 0.02). No association was observed between the SNP for IL-8 -251 T/A and clinicopathological parameters of PC. These results indicated that the CXCR2 +1208 CT genotype is less frequent in advanced stages of PC, suggesting that this chemokine receptor plays a role in the pathogenesis of this disease.
Kiss, Debra Lois. "Regulation of the Chemokine Receptors CXCR4, CXCR7 , and the Androgen Receptor in Prostate Cancer". Thesis, Griffith University, 2013. http://hdl.handle.net/10072/367690.
Testo completoThesis (PhD Doctorate)
Doctor of Philosophy (PhD)
Eskitis Institute for Cell and Molecular Therapies
Science, Environment, Engineering and Technology
Full Text
McDonagh, Ellen Mary. "The molecular mechanisms governing the regulation of chemokine receptors CXCR3 and CXCR6". Thesis, Imperial College London, 2010. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.523747.
Testo completoMelo, Rita de Cássia Carvalho 1988. "Expressão e função de CXCR7 em sídromes mielodisplásicas e leucemias". [s.n.], 2012. http://repositorio.unicamp.br/jspui/handle/REPOSIP/311982.
Testo completoDissertação (mestrado) - Universidade Estadual de Campinas, Faculdade de Ciências Médicas
Made available in DSpace on 2018-08-19T22:43:13Z (GMT). No. of bitstreams: 1 Melo_RitadeCassiaCarvalho_M.pdf: 3664788 bytes, checksum: 419eef7eff318d29e3e09f23e8b10461 (MD5) Previous issue date: 2012
Resumo: A medula óssea é constituída por microambientes específicos denominados "nichos". O fator SDF-1 (Stromal derived factor-1) foi identificado como um importante fator quimioatrativo produzido por células estromais da medula óssea. Sua ação sobre seu receptor CXCR4 desempenha função primordial na migração, retenção e desenvolvimento dos progenitores hematopoiéticos na medula óssea. Células leucêmicas mielóides e linfóides expressam CXCR4 e aproveitam-se disso para acessar nichos medulares normalmente restritos ás células progenitoras, passando a residir em microambientes que propiciam sobrevivência e proliferação. Recentemente foi descoberto que o receptor CXCR7 é capaz de se ligar ao SDF-1. Ele é expresso em várias linhagens tumorais, mas em células hematopoiéticas seu papel é ainda pouco explorado. Em vista da escassez de dados na literatura o objetivo deste trabalho foi investigar a expressão e função de CXCR7 em síndromes mielodisplásicas e leucemias agudas. Neste estudo, foi mostrado que a expressão gênica de CXCR7 foi significativamente maior em leucemia linfoblástica aguda (LLA) em comparação com sindrome mielodisplásica (SMD), leucemia mielóide aguda (LMA) e indivíduos controles (p<0.0001, Mann-Whitney). A proteína CXCR7 também foi mais expressa em linhagens celulares linfoblástica T (Molt-4 e Jurkat) em comparação com linhagens mielóides. Em células linfoblásticas T, a localização subcelular de CXCR7 e CXCR4 por microscopia confocal e citometria de fluxo evidenciou CXCR7 mais próximo à membrana das células Molt-4 e mais frequentemente no citoplasma de células Jurkat enquanto CXCR4 está na membrana de ambas as linhas celulares. Curiosamente, notamos também que, depois da indução de SDF-1, células Molt-4 têm maior capacidade migratória comparada com Jurkat (mediana Molt 4 = 52,0 ± 5 vs Jurkat = 24,1 ± 3, p = 0,0079, teste de Mann-Whitney), que pode estar relacionado com a disponibilidade de membrana de CXCR7. Além disso, a inibição da CXCR7 ou CXCR4 resultou em mudanças significativas na resposta migratória de Molt4 e Jurkat (p<0,05 Mann-Whitney), no entanto, a inibição de ambos, CXCR7 e CXCR4 resultou em uma redução mais significativa na migração celular (p = 0.0079/Molt-4; p = 0.0043/Jurkat, Mann-Whitney). Uma vez que é bem estabelecido que células CD34+ de pacientes com SMD não são atraídas pelo gradiente de SDF-1, apesar de terem expressão normal de CXCR4, nos interessou investigar qual a localização de CXCR4 nas células SMD e se esta irresponsividade estava associada a CXCR7. Linhagens mielóides P39 e U937 foram usadas como modelo de SMD e LMA, respectivamente. Foram encontrados níveis similares de expressão de CXCR4 e CXCR7 em ambas as linhagens celulares, no entanto encontramos que CXCR4 está localizado no citoplasma de células P39 enquanto ele está na membrana das células U937. Uma vez que a proteína quinase C isotipo zeta (PKC'dzeta' está relacionada com a sinalização SDF-1/CXCR4 aumentando a expressão de CXCR4 e sua disponibilidade na membrana, resolvemos trabalhar também com células P39 hiperexpressando PKC'dzeta' (PKC'dzeta'wt). Este procedimento resultou na translocação de CXCR4 para a membrana de células P39, mas não alterou a localização subcelular de CXCR7. Ensaios de migração por tranwell mostraram que células P39 PKC'dzeta'wt apresentam maior capacidade de migração em relação a SDF-1 em comparação com células P39 controle (aumento de 35 vezes pcDNA3 PKC-'dzeta'-HA vs pcDNA3 transfectadas células P39, p = 0,0032, Mann-Whitney), sugerindo que a PKC'dzeta' restaura a capacidade quimiotática de células P39. Aumento da expressão de CXCR7, como aqui observado em células leucemicas linfoblásticas, é um fenômeno já descrito em uma variedade de linhagens de células tumorais sólidas, tais como cérebro, próstata e pulmão. Em tumores sólidos, CXCR7 principalmente aumenta a proliferação de células malignas. Estes resultados sugerem que a função biológica de CXCR7 depende tecido e órgãos que ele está localizado e que, na leucemia linfoblástica aguda pode ter um papel na migração de células, potencializando a resposta de CXCR4 a SDF-1 e, portanto, poderia contribuir para o recrutamente de células leucêmicas para nichos uma vez já ocupados por células-tronco hematopoéticas normais. Além disso, nossos resultados levam a crer que um defeito na via PKC'dzeta'/CXCR4 está envolvido com a irresponsividade de células SMD a SDF-1, gerando uma hematopoese ineficaz. E confirma dados que sugerem que PKC'dzeta' é uma proteína central na via de sinalização SDF-1/CXCR4, muito importante para a migração de células hematopoéticas malignas
Abstract: Bone marrow is constituted of specific microenvironments called "niches". The factor SDF-1 (stromal derived factor-1) was identified as an important chemoattractant factor produced by bone marrow cells. SDF-1 acts on its receptor CXCR4 and plays primordial function in migration, retention and development of hematopoietic progenitors in bone marrow. CXCR4 is expressed in leukemic cells and enables them to access marrow niches that normally are restricted to quiescent stem cells, thereby ensuring its protection from cell death resulting in a worse prognosis. Recently, CXCR7 was identified as another SDF-1-binding receptor, but its contribution to SDF-1 - mediated effects in hematopoietic cells is still poorly explored, even though the CXCR7 relationship with tumor progression in non-hematopoietic malignancies is well established. Given that there is little information regarding CXCR7 we investigated its function and expression in MDS and acute leukemias. This work, was showed that CXCR7 is significantly higher expressed in ALL compared to MDS, AML and control subjects (p<0.0001, Mann-Whitney test). CXCR7 protein is also higher expressed in lymphoblastic cell lines (Molt-4 and Jurkat) compared with myeloid cells. In lymphoblastic cell lines, the subcellular location of CXCR7 and CXCR4 by confocal microscopy and flow cytometry evidenced CXCR7 closer in the membrane of Molt-4 cells and more frequently in the cytoplasm of Jurkat cells whereas CXCR4 was in the membrane of both cell lines. Interestingly, we also noticed that, after SDF-1 induction, Molt-4 cells have higher chemotactic ability compared with Jurkat (median Molt 4=52.0 ± 5 vs Jurkat=24.1 ± 3, p=0.0079, Mann-Whitney test) which may be related with the membrane availability of CXCR7. In addition, the inhibition of CXCR7 or CXCR4 resulted in significant changes in Molt4 and Jurkat chemotactic response (p<0,05, Mann-Whitney test), however, the inhibition of both CXCR7 and CXCR4 resulted in a more significant reduction in cell migration (p=0.0079/Molt-4; p=0.0043/Jurkat, Mann-Whitney test). Since it is well established that CD34 + progenitor cells from patients with myelodysplastic syndromes (MDS) are not attracted by gradient of SDF-1 despite of having CXCR4 normal expression, we addressed if MDS cells have an abnormal localization of CXCR4 or association with CXCR7. P39 and U937 cell line were used as a model of MDS and AML, respectively. Similar expression levels of CXCR4 and CXCR7 in both cell lines however we found, by confocal microscopy and flow cytometry, that CXCR4 was localized in the cytoplasm of P39 cells while it was in the membrane of U937 cells. Since the protein quinase C (PKC'dzeta') is related to the SDF-1/CXCR4 signaling by increasing CXCR4 expression and its membrane availability, we decided to work with cells P39 overexpressing PKC'dzeta' (PKC'dzeta'wt). This procedure resulted in translocation of CXCR4 to the membrane of P39 cells but did not change the CXCR7 subcellular localization. Transwell chemotaxis assay showed that P39 cells overexpressing PKC'dzeta' displayed higher chemotactic ability upon SDF-1 treatment compared with control P39 (35 fold increase pcDNA3-PKC'dzeta'-HA vs pcDNA3-HA transfected P39 cells, p=0.0032; Mann-Whitney), suggesting that PKC'dzeta' restored the chemotactic capacity of P39 cells. Increased expression of CXCR7, as here observed in lymphoblastic leukemia cells, is a phenomenon already described in a variety of solid tumor cell lines such as brain, prostate and lung. In solid tumors, CXCR7 mainly increases the proliferation of malignant cells. These results suggest that the biological function of CXCR7 depends on its tissue and organ localization and that, in acute lymphoblastic leukemia may have a role in cell chemotaxis, potentiating CXCR4 response to SDF-1 and thus, could contribute for leukemia initiating cell recruitment to niches once occupied by normal hematopoietic stem cells. Furthermore, our results lead us to believe that a defect in the PKC'dzeta'/CXCR4 pathway is involved with the unresponsiveness of MDS cells to SDF-1, generating an ineffective hematopoiesis. It confirms data that suggest that PKC'dzeta' is a central protein in the SDF-1/CXCR4 signaling pathway, important for the migration of malignant hematoietic cells
Mestrado
Fisiopatologia Médica
Mestre em Ciências
Danilucci, Taís Marolato [UNESP]. "CXCL12 estimula fibroblastos pulmonares a produzir CCL3, CXCL2, LTB4 e LTC4 via p38, MEK1/2, PI-3K e JNK". Universidade Estadual Paulista (UNESP), 2013. http://hdl.handle.net/11449/108908.
Testo completoFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
A quimiocina C-X-X motif ligand 12 (CXCL12) e seu receptor de quimiocina 4 (CXCR4) desenvolvem um papel crítico na inflamação das vias aéreas. No entanto, os efeitos da ativação da via CXCL12/CXCR4 sobre fibroblastos pulmonares ainda são desconhecidos. Neste estudo, investigamos o efeito da via CXCL12/CXCR4 sobre a quimiocina (C-C motif) ligante 3 (CCL3) e (C-X-C motif) ligante 2 (CXCL2) e sobre os mediadores lipídicos leucotrienos B4 (LTB4) e C4 (LTC4) por fibroblastos pulmonares e a sinalização intracelular envolvida neste processo. CXCL12 foi capaz de induzir a produção de CCL3, CXCL2, LTB4 e LTC4; a produção de CCL3 não é dependente da produção de CXCL2, mas a produção de CXCL2 é dependente da produção de CCL3. A produção de LTB4 pode ser parcialmente regulada por CXCL2 e CCL3 e a produção de LTC4 é dependente da produção de CCL3 e CXCL2. Fibroblastos pulmonares constitutivamente expressam CXCR4 e a estimulação com CXCL12 induz sua expressão. Análises de Western blot mostraram que CXCL12 aumenta a expressão proteica de CXCR4 e induz a fosforilação da S339 do CXCR4. A expressão gênica constitutiva e induzida de CXCR4 foram inibidas pelo anticorpo anti-CXCL2. No entanto, o anticorpo anti-CCL3 e o inibidor farmacológico MK886 foram capazes de diminuir a expressão gênica induzida de CXCR4. Os fibroblastos pulmonares foram pré-tratados com MK886, dexametasona (Dexa) e/ou loratadina (Lor). MK886 e Lor promoveram a diminuição da produção de LTC4 e LTB4, mas não a de CCL3 e CXCL2. Dexa diminuiu níveis de CCL3, CXCL2, LTB4 e LTC4, e quando associado com Lor esta diminuição foi mais eficaz. Identificamos...
C-X-X motif ligand 12 (CXCL12) and its specific receptor Chemokine receptor 4 (CXCR4) play a critical role in airway inflammation. However, the effects of CXCL12/CXCR4 axis on pulmonary fibroblast activation are unknown. In this study, we investigated the effect of CXCL12/CXCR4 axis on chemokine (C-C motif) ligand 3 (CCL3), chemokine (C-X-C motif) ligand 2 (CXCL2), leukotrienes B4 (LTB4) and C4 (LTC4) production by pulmonary fibroblasts and the intracellular signaling involved in the process. CXCL12 induced CCL3, CXCL2, LTB4 and LTC4 production, and CCL3 production is not dependent on CXCL2; but CXCL2 production is dependent on CCL3 production. LTB4 production can be partially down-regulated by CXCL2 and CCL3 production and LTC4 production is dependent on CCL3 and CXCL2 production. Pulmonary fibroblasts constitutively expressed CXCR4, and CXCL12 stimulation up-regulated its expression. Western blot analysis showed that CXCL12 increased protein expression of CXCR4 and induced phosphorylation at S339 of CXCR4. Constitutive CXCR4 expression was decreased by anti-CCL3 antibody or MK 886. Inducible CXCR4 was inhibited by anti-CXCL2 antibody. Indeed pulmonary fibroblasts were pretreated with MK886, dexamethasone (Dexa) and loratadine (Lor). MK886 and loratadine was able to reduced LTB4 and LTC4 production but not CCL3 and CXCL2. Dexa decreased CCL3, CXCL2, LTB4 and LTC4 production, and when associated with Lor this decrease was more effective. We found that PI-3K and JNK intracellular signaling play a role in CCL3 production; p38, MEK1/2, PI-3K and JNK are involved in CXCL2 production and p38 and MEK1/2 pathways are involved in LTB4 production by...
Libri sul tema "CXCR2 receptors"
Livingston, Schuyler, Benjamin Young, Martin Markowitz, Poonam Mathur e Bruce L. Gilliam. HIV Virology. Oxford University Press, 2017. http://dx.doi.org/10.1093/med/9780190493097.003.0017.
Testo completoFruehauf, Stefan, W. Jens Zeller e Gary Calandra. Novel Developments in Stem Cell Mobilization: Focus on CXCR4. Springer, 2014.
Cerca il testo completoFruehauf, Stefan, W. Jens Zeller e Gary Calandra. Novel Developments in Stem Cell Mobilization: Focus on CXCR4. Springer, 2012.
Cerca il testo completoNoels, Heidi, e Jürgen Bernhagen, a cura di. The CXCR4 Ligand/Receptor Family and the DPP4 Protease in High-Risk Cardiovascular Patients. Frontiers Media SA, 2016. http://dx.doi.org/10.3389/978-2-88919-858-0.
Testo completoNovel Developments In Stem Cell Mobilization Focus On Cxcr4. Springer, 2012.
Cerca il testo completoCapitoli di libri sul tema "CXCR2 receptors"
Furusato, Bungo, e Johng S. Rhim. "CXCR4 and Cancer". In Chemokine Receptors in Cancer, 31–45. Totowa, NJ: Humana Press, 2009. http://dx.doi.org/10.1007/978-1-60327-267-4_2.
Testo completoBlay, Jonathan. "Chemokine Receptor CXCR4". In Encyclopedia of Cancer, 1–5. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-642-27841-9_1067-3.
Testo completoBlay, Jonathan. "Chemokine Receptor CXCR4". In Encyclopedia of Cancer, 932–36. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-662-46875-3_1067.
Testo completoBaljinder, Singh, Watts Ankit, Amit Singh Shekhawat, Singh Ashwin, Pankaj Malhotra, Abdul Waheed, Kaur Harneet et al. "CXCR4 Theranostics: A Potential Game Changer in Solid Tumors and Hematological Malignancies". In Beyond Becquerel and Biology to Precision Radiomolecular Oncology: Festschrift in Honor of Richard P. Baum, 309–20. Cham: Springer International Publishing, 2024. http://dx.doi.org/10.1007/978-3-031-33533-4_31.
Testo completoSarau, Henry M., Katherine L. Widdowson, Michael R. Palovich, John R. White, David C. Underwood/surname e Don E. Griswold. "Interleukin-8 Receptor (CXCR2) Antagonists". In New Drugs for Asthma, Allergy and COPD, 293–96. Basel: KARGER, 2001. http://dx.doi.org/10.1159/000062157.
Testo completoLi, Yanchun, e Amy M. Fulton. "The CXCR3/CXCL3 Axis in Cancer". In Chemokine Receptors in Cancer, 79–91. Totowa, NJ: Humana Press, 2009. http://dx.doi.org/10.1007/978-1-60327-267-4_5.
Testo completoWijtmans, Maikel, Iwan J. P. de Esch e Rob Leurs. "Therapeutic Targeting of the CXCR3 Receptor". In Methods and Principles in Medicinal Chemistry, 301–22. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2011. http://dx.doi.org/10.1002/9783527631995.ch13.
Testo completoCalì, Corrado, Julie Marchaland, Osvaldo Mirante e Paola Bezzi. "Chemokines as Neuromodulators: Regulation of Glutamatergic Transmission by CXCR4-Mediated Glutamate Release From Astrocytes". In Chemokine Receptors and NeuroAIDS, 271–300. New York, NY: Springer New York, 2009. http://dx.doi.org/10.1007/978-1-4419-0793-6_12.
Testo completoLam, Clarissa, Mahmud Arif Pavel, Parul Kashyap, Zahra Salehi-Najafabadi, Victoria Valentino e Yong Yu. "Detection of CXCR2 Cytokine Receptor Surface Expression Using Immunofluorescence". In Cytokine Bioassays, 193–200. New York, NY: Springer New York, 2014. http://dx.doi.org/10.1007/978-1-4939-0928-5_17.
Testo completoSengupta, Rajarshi, e Olimpia Meucci. "Regulation of Neuronal Chemokine Receptor CXCR4 by μ-Opioid Agonists and Its Involvement in NeuroAIDS". In Chemokine Receptors and NeuroAIDS, 379–97. New York, NY: Springer New York, 2009. http://dx.doi.org/10.1007/978-1-4419-0793-6_17.
Testo completoAtti di convegni sul tema "CXCR2 receptors"
Adekoya, Timothy O., Nikia Smith, Parag Kothari e Ricardo M. Richardson. "Abstract PO-134: Differential effects of CXCR1 and CXCR2 receptors on prostate tumorigenesis". In Abstracts: AACR Virtual Conference: 14th AACR Conference on the Science of Cancer Health Disparities in Racial/Ethnic Minorities and the Medically Underserved; October 6-8, 2021. American Association for Cancer Research, 2022. http://dx.doi.org/10.1158/1538-7755.disp21-po-134.
Testo completoPham, Kien, Che Liu, Defang Luo, Brent A. Reynolds e Jeffrey K. Harrison. "Abstract 5194: Heterogenous expression of chemokine receptors in primary patient-derived GBM lines; association of CXCR3, CXCR4, and CXCR7 with a slow cycling sub-population". In Proceedings: AACR 103rd Annual Meeting 2012‐‐ Mar 31‐Apr 4, 2012; Chicago, IL. American Association for Cancer Research, 2012. http://dx.doi.org/10.1158/1538-7445.am2012-5194.
Testo completoSilva, Mariane Ricciardi da, Nádia Calvo Martins Okuyama e Karen Brajão De Oliveira. "PAPEL DAS VARIANTES GENÉTICAS DE CXCL12 (RS1801157) E DE CXCR4 (RS2228014) NA EXPRESSÃO PROTEICA DO RECEPTOR E EM PARÂMETROS CLINICOPATOLÓGICOS DO CÂNCER DE COLO DE ÚTERO". In II Congresso Brasileiro de Saúde On-line. Revista Multidisciplinar em Saúde, 2021. http://dx.doi.org/10.51161/rems/1519.
Testo completoMiekus, Katarzyna, Danuta Jarocha, Elzbieta Trzyna e Marcin Majka. "Abstract B113: Role of I‐TAC‐binding receptors CXCR3 and CXCR7 in biology of various tumor cell lines". In Abstracts: AACR-NCI-EORTC International Conference: Molecular Targets and Cancer Therapeutics--Nov 15-19, 2009; Boston, MA. American Association for Cancer Research, 2009. http://dx.doi.org/10.1158/1535-7163.targ-09-b113.
Testo completoCosta, Leonardo, Jürgen Haas, Henriette Rudolph, Saskia Libicher, Sven Jarius, Tobias Tenenbaum, Horst Schroten e Brigitte Brigitte Wildemann. "The Choroid Plexus Is Permissive for a Preactivated Antigen-Experienced Memory B Cell Subset in Multiple Sclerosis". In Building Bridges in Medical Science 2021. Cambridge Medicine Journal, 2021. http://dx.doi.org/10.7244/cmj.2021.03.001.2.
Testo completoMiller, Eric J., Petra Gregorova, Carrie Q. Sun, Leon Jacobs, Zafer Sahin, Yesim Altas Tahirovic, Samantha L. Burton et al. "Tetrahydroisoquinoline-Based Small Molecule Inhibitors of the Chemokine Receptor CXCR4". In ASPET 2024 Annual Meeting Abstract. American Society for Pharmacology and Experimental Therapeutics, 2024. http://dx.doi.org/10.1124/jpet.291.127096.
Testo completoSharma, Bhawna, Dhananjay M. Nawandar, Michelle L. Varney e Rakesh K. Singh. "Abstract 693: Evaluating the role of CXCR2 receptor and its ligand in breast cancer therapy resistance". In Proceedings: AACR 102nd Annual Meeting 2011‐‐ Apr 2‐6, 2011; Orlando, FL. American Association for Cancer Research, 2011. http://dx.doi.org/10.1158/1538-7445.am2011-693.
Testo completoWade, R. C., D. Xing, V. Lin, Y. Wu, C. Song, X. Xu, N. Harris, J. M. Wells e G. A. Payne. "Inflammatory Ligands of CXC Chemokine Receptor 2 (CXCR2) Are Associated with Coronary Artery Calcification in COPD". In American Thoracic Society 2022 International Conference, May 13-18, 2022 - San Francisco, CA. American Thoracic Society, 2022. http://dx.doi.org/10.1164/ajrccm-conference.2022.205.1_meetingabstracts.a2401.
Testo completoWei, Xiao-Lan, Jing Zhang e Zhi-Hong Mo. "Regulation of chemokine receptor CXCR4 in HepG2 cell adhesion sensing by QCM". In 2011 International Conference on Human Health and Biomedical Engineering (HHBE). IEEE, 2011. http://dx.doi.org/10.1109/hhbe.2011.6029075.
Testo completoMona, Christine, Marilou Lefrançois, Philip E. Boulais, Élie Besserer-Offroy, Richard Leduc, Nikolaus Heveker, Éric Marsault e Emanuel Escher. "Synthetic Agonists for the CXCR4 Receptor: SAR, Signaling Pathways and Peptidomimetic Transition". In The Twenty-Third American and the Sixth International Peptide Symposium. Prompt Scientific Publishing, 2013. http://dx.doi.org/10.17952/23aps.2013.198.
Testo completo