Articoli di riviste sul tema "Creep mechanism"
Cita una fonte nei formati APA, MLA, Chicago, Harvard e in molti altri stili
Vedi i top-50 articoli di riviste per l'attività di ricerca sul tema "Creep mechanism".
Accanto a ogni fonte nell'elenco di riferimenti c'è un pulsante "Aggiungi alla bibliografia". Premilo e genereremo automaticamente la citazione bibliografica dell'opera scelta nello stile citazionale di cui hai bisogno: APA, MLA, Harvard, Chicago, Vancouver ecc.
Puoi anche scaricare il testo completo della pubblicazione scientifica nel formato .pdf e leggere online l'abstract (il sommario) dell'opera se è presente nei metadati.
Vedi gli articoli di riviste di molte aree scientifiche e compila una bibliografia corretta.
Shinya, Norio. "Creep fracture mechanism map." Bulletin of the Japan Institute of Metals 26, n. 8 (1987): 801–8. http://dx.doi.org/10.2320/materia1962.26.801.
Testo completoLi, J., e A. Dasgupta. "Failure-mechanism models for creep and creep rupture". IEEE Transactions on Reliability 42, n. 3 (1993): 339–53. http://dx.doi.org/10.1109/24.257816.
Testo completoHou, Qing Yu, e Jing Tao Wang. "Deformation Mechanism in the Mg-Gd-Y Alloys Predicted by Deformation Mechanism Maps". Advanced Materials Research 146-147 (ottobre 2010): 225–32. http://dx.doi.org/10.4028/www.scientific.net/amr.146-147.225.
Testo completoSun, Zhihui, Baoshu Liu, Chenwei He, Lu Xie e Qing Peng. "Shift of Creep Mechanism in Nanocrystalline NiAl Alloy". Materials 12, n. 16 (7 agosto 2019): 2508. http://dx.doi.org/10.3390/ma12162508.
Testo completoLiu, Guo Jun. "Research on Mechanism of Concrete Creep". Applied Mechanics and Materials 670-671 (ottobre 2014): 441–44. http://dx.doi.org/10.4028/www.scientific.net/amm.670-671.441.
Testo completoSun, Qiang, Hong Fei Duan, Lei Xue e Li Qin. "The Micro-Mechanism Analysis on Rock Creep Damage". Advanced Materials Research 194-196 (febbraio 2011): 2031–34. http://dx.doi.org/10.4028/www.scientific.net/amr.194-196.2031.
Testo completoZhao, Fei, Jie Zhang, Chenwei He, Yong Zhang, Xiaolei Gao e Lu Xie. "Molecular Dynamics Simulation on Creep Behavior of Nanocrystalline TiAl Alloy". Nanomaterials 10, n. 9 (28 agosto 2020): 1693. http://dx.doi.org/10.3390/nano10091693.
Testo completoKasum, Kasum, Fajar Mulyana, Mohamad Zaenudin, Adhes Gamayel e M. N. Mohammed. "Molecular Dynamics Simulation on Creep Mechanism of Nanocrystalline Cu-Ni Alloy". Jurnal Fisika Flux: Jurnal Ilmiah Fisika FMIPA Universitas Lambung Mangkurat 18, n. 1 (26 febbraio 2021): 67. http://dx.doi.org/10.20527/flux.v18i1.8548.
Testo completoOsborne, J. W. "Creep as a Mechanism for Sealing Amalgams". Operative Dentistry 31, n. 2 (1 febbraio 2006): 161–64. http://dx.doi.org/10.2341/05-18.
Testo completoNabarro, F. R. N. "The mechanism of Harper-Dorn creep". Acta Metallurgica 37, n. 8 (agosto 1989): 2217–22. http://dx.doi.org/10.1016/0001-6160(89)90147-8.
Testo completoТукмакова, А. С., Н. И. Хахилев, Д. Б. Щеглова, В. Д. Насонов, А. П. Новицкий, И. А. Сергиенко e А. В. Новотельнова. "Анализ механизмов уплотнения термоэлектрических порошков скуттерудитов и сплавов Гейслера в процессе активированного полем спекания". Физика и техника полупроводников 55, n. 12 (2021): 1132. http://dx.doi.org/10.21883/ftp.2021.12.51695.10.
Testo completoCamin, Bettina, e Lennart Hansen. "In Situ 3D-µ-Tomography on Particle-Reinforced Light Metal Matrix Composite Materials under Creep Conditions". Metals 10, n. 8 (1 agosto 2020): 1034. http://dx.doi.org/10.3390/met10081034.
Testo completoKawasaki, Megumi, e Terence G. Langdon. "Characteristics of High Temperature Creep in Pure Aluminum Processed by Equal-Channel Angular Pressing". Materials Science Forum 638-642 (gennaio 2010): 1965–70. http://dx.doi.org/10.4028/www.scientific.net/msf.638-642.1965.
Testo completoAsada, Yasuhide, e Masatsugu Yaguchi. "Mechanistic Approach for Creep-Fatigue Evaluation of 9Cr-1Mo-V-Nb Steel". Journal of Engineering Materials and Technology 117, n. 4 (1 ottobre 1995): 356–60. http://dx.doi.org/10.1115/1.2804725.
Testo completoYamamoto, Masato, e Takashi Ogata. "Microscopic Damage Mechanism of Nickel-Based Superalloy Inconel 738LC Under Creep-Fatigue Conditions". Journal of Engineering Materials and Technology 122, n. 3 (1 marzo 2000): 315–20. http://dx.doi.org/10.1115/1.482803.
Testo completoTian, Su Gui, Xin Wang, Chen Liu e Wen Ru Sun. "Influence of Phosphorus and Boron on Creep Behavior and Fracture Mechanism of GH4169 Superalloy". Materials Science Forum 747-748 (febbraio 2013): 672–77. http://dx.doi.org/10.4028/www.scientific.net/msf.747-748.672.
Testo completoShibutani, Tadahiro, Qiang Yu e Masaki Shiratori. "A Study of Deformation Mechanism During Nanoindentation Creep in Tin-Based Solder Balls". Journal of Electronic Packaging 129, n. 1 (12 maggio 2006): 71–75. http://dx.doi.org/10.1115/1.2429712.
Testo completoChiu, Huai Yi, Chen Ming Kuo e Huei Sen Wang. "Creep Behavior of 409L and 436 Ferritic Stainless Steels Applied for Automotive Exhaust System". Applied Mechanics and Materials 302 (febbraio 2013): 252–57. http://dx.doi.org/10.4028/www.scientific.net/amm.302.252.
Testo completoXu, Xiang, Peter Binkele, Wolfgang Verestek e Siegfried Schmauder. "Molecular Dynamics Simulation of High-Temperature Creep Behavior of Nickel Polycrystalline Nanopillars". Molecules 26, n. 9 (29 aprile 2021): 2606. http://dx.doi.org/10.3390/molecules26092606.
Testo completoDragatogiannis, Dimitrios A., Elias P. Koumoulos, Ioannis A. Kartsonakis e Costas A. Charitidis. "Deformation mechanism during nanoindentation creep and corrosion resistance of Zn". International Journal of Structural Integrity 7, n. 1 (1 febbraio 2016): 47–69. http://dx.doi.org/10.1108/ijsi-07-2014-0034.
Testo completoNanko, Makoto, Manabu Sato, Koji Matsumaru e Kozo Ishizaki. "Densification Mechanism of Fine Ni-20Cr Powder during Pulsed Electric Current Sintering". Materials Science Forum 510-511 (marzo 2006): 818–21. http://dx.doi.org/10.4028/www.scientific.net/msf.510-511.818.
Testo completoKvapilová, Marie, Květa Kuchařová, Karel Hrbáček e Vàclav Sklenička. "Creep Processes in MAR-M247 Nickel-Base Superalloy". Solid State Phenomena 258 (dicembre 2016): 603–6. http://dx.doi.org/10.4028/www.scientific.net/ssp.258.603.
Testo completoLiu, Dezheng, Yan Li, Xiangdong Xie, Guijie Liang e Jing Zhao. "Estimating the Influences of Prior Residual Stress on the Creep Rupture Mechanism for P92 Steel". Metals 9, n. 6 (2 giugno 2019): 639. http://dx.doi.org/10.3390/met9060639.
Testo completoMeng, Dejian, Lijun Zhang, Xiaotian Xu, Yousef Sardahi e Gang S. Chen. "Sensing and Quantifying a New Mechanism for Vehicle Brake Creep Groan". Shock and Vibration 2019 (26 febbraio 2019): 1–10. http://dx.doi.org/10.1155/2019/1843205.
Testo completoYAN, Ming. "Mechanical Mechanism of Creep-thermal Fatigue Interaction". Chinese Journal of Mechanical Engineering 45, n. 01 (2009): 111. http://dx.doi.org/10.3901/jme.2009.01.111.
Testo completoWatanabe, Hiroshi, e Tadashi Inoue. "Creep Behavior for Combined Rouse-Reptation Mechanism". Nihon Reoroji Gakkaishi 32, n. 3 (2004): 113–16. http://dx.doi.org/10.1678/rheology.32.113.
Testo completoZhou, Q., G. Itoh e T. Yamashita. "Creep mechanism of aluminum alloy thin foils". Thin Solid Films 375, n. 1-2 (ottobre 2000): 104–8. http://dx.doi.org/10.1016/s0040-6090(00)01234-7.
Testo completoParthasarathy, Triplicane A., Tai-Il Mah e Kristen Keller. "Creep Mechanism of Polycrystalline Yttrium Aluminum Garnet". Journal of the American Ceramic Society 75, n. 7 (luglio 1992): 1756–59. http://dx.doi.org/10.1111/j.1151-2916.1992.tb07193.x.
Testo completoIrfan, T. Y. "Mechanism of creep in a volcanic saprolite". Quarterly Journal of Engineering Geology and Hydrogeology 27, n. 3 (agosto 1994): 211–30. http://dx.doi.org/10.1144/gsl.qjegh.1994.027.p3.03.
Testo completoYan, Jingli, Yangshan Sun, Feng Xue, Jing Bai, Shan Xue e Weijian Tao. "Creep deformation mechanism of magnesium-based alloys". Journal of Materials Science 43, n. 21 (novembre 2008): 6952–59. http://dx.doi.org/10.1007/s10853-008-2968-4.
Testo completoEkaputra, I. M. W., e Gunawan Dwi Haryadi. "Karakteristik Laju Regangan Melar pada Baja Tahan Karat Austenitic 316L". ROTASI 19, n. 4 (3 ottobre 2017): 201. http://dx.doi.org/10.14710/rotasi.19.4.201-205.
Testo completoLin, Sheng, Xian Fen Xu, Cheng Wang e Jian Xin Ye. "Analysis of Creep and Shrinkage Mechanism of Bridge Considering the Effect of Shrinkage on Creep Stress Reduction". Advanced Materials Research 255-260 (maggio 2011): 781–85. http://dx.doi.org/10.4028/www.scientific.net/amr.255-260.781.
Testo completoLi, Jiachun, Ning Tian, Ping Zhang, Fang Yu, Guoqi Zhao e Ping Zhang. "Creep Damage and Deformation Mechanism of a Directionally Solidified Alloy during Moderate-Temperature Creep". Crystals 11, n. 6 (7 giugno 2021): 646. http://dx.doi.org/10.3390/cryst11060646.
Testo completoShi, X. Q., Z. P. Wang, Q. J. Yang e H. L. J. Pang. "Creep Behavior and Deformation Mechanism Map of Sn-Pb Eutectic Solder Alloy". Journal of Engineering Materials and Technology 125, n. 1 (31 dicembre 2002): 81–88. http://dx.doi.org/10.1115/1.1525254.
Testo completoJiang, Li Wu, Shu Suo Li e Mei Ling Wu. "Investigation on Creep Mechanism of a Ni3Al-Based Single Crystal Superalloy IC6SX under 760°C/540MPa". Materials Science Forum 747-748 (febbraio 2013): 804–9. http://dx.doi.org/10.4028/www.scientific.net/msf.747-748.804.
Testo completoNaveena, P. Parameswaran, K. Laha e M. D. Mathew. "Study on creep deformation mechanism of 316LN stainless steel from impression creep tests". Materials at High Temperatures 31, n. 2 (maggio 2014): 180–84. http://dx.doi.org/10.1179/1878641314y.0000000012.
Testo completoLI, Han, Wen-bo DU, Jian-hui LI, Shu-bo LI e Zhao-hui WANG. "Creep properties and controlled creep mechanism of as-cast Mg-5Zn-2.5Er alloy". Transactions of Nonferrous Metals Society of China 20, n. 7 (luglio 2010): 1212–16. http://dx.doi.org/10.1016/s1003-6326(09)60280-6.
Testo completoSHINYA, Norio, Junro KYONO e Hideaki KUSHIMA. "Creep Fracture Mechanism Map and Creep Damage of Cr-Mo-V Rotor Steel". Tetsu-to-Hagane 92, n. 5 (2006): 327–33. http://dx.doi.org/10.2355/tetsutohagane1955.92.5_327.
Testo completoCieśla, M., F. Binczyk, M. Mańka e R. Findziński. "The Influence of Macrostructure of Nickelbased Superalloys IN713C and MAR 247 on the Characteristics of High-temperature Creep". Archives of Foundry Engineering 14, n. 4 (1 dicembre 2014): 11–16. http://dx.doi.org/10.2478/afe-2014-0077.
Testo completoChatzidakis, Stylianos, Miltiadis Alamaniotis e Lefteri H. Tsoukalas. "Creep Rupture Forecasting". International Journal of Monitoring and Surveillance Technologies Research 2, n. 2 (aprile 2014): 1–25. http://dx.doi.org/10.4018/ijmstr.2014040101.
Testo completoXiao, Lai Rong, Xi Min Zhang, Yan Wang, Wei Li, Quan Sheng Sun e Zhan Ji Geng. "High Temperature Creep Behavior of Zn-1.0Cu-0.2Ti Alloy". Advanced Materials Research 287-290 (luglio 2011): 769–76. http://dx.doi.org/10.4028/www.scientific.net/amr.287-290.769.
Testo completoIshikawa, H. "Relation Between Cyclic Creep and Pure Creep on Copper". Journal of Engineering Materials and Technology 109, n. 3 (1 luglio 1987): 221–25. http://dx.doi.org/10.1115/1.3225967.
Testo completoRobles-Arellano, Karen D., e Lukas Bichler. "Creep Deformation of 10 mol% La2O3 + YSZ Ceramic Composite Prepared by Spark Plasma Sintering". Materials Science Forum 783-786 (maggio 2014): 1087–92. http://dx.doi.org/10.4028/www.scientific.net/msf.783-786.1087.
Testo completoKvapilová, Marie, Vaclav Sklenička, Jiří Dvořák e Petr Král. "An Evaluation of Creep Mechanisms in Ultrafine-Grained Metals". Key Engineering Materials 465 (gennaio 2011): 382–85. http://dx.doi.org/10.4028/www.scientific.net/kem.465.382.
Testo completoLiu, Dan, e Dirk J. Pons. "Development of a stress-based creep-fatigue equation: Accommodating pure-fatigue to pure-creep for the high-cycle loading regime". International Journal of Damage Mechanics 27, n. 9 (9 ottobre 2017): 1397–415. http://dx.doi.org/10.1177/1056789517735678.
Testo completoGareh, Salim, e Zakaria Boumerzoug. "HEAT TREATMENT EFFECT ON THE CREEP OF INDUSTRIAL COPPER WIRE". Acta Metallurgica Slovaca 22, n. 3 (27 settembre 2016): 181. http://dx.doi.org/10.12776/ams.v22i3.725.
Testo completoWang, Minqing, Jinhui Du e Qun Deng. "The Mechanism of Creep during Crack Propagation of a Superalloy under Fatigue–Creep–Environment Interactions". Materials 13, n. 19 (4 ottobre 2020): 4418. http://dx.doi.org/10.3390/ma13194418.
Testo completoLi, Zhenrong, Chunlei Ma, Sugui Tian, Liqing Chen e Xianghua Liu. "Deformation Mechanisms of Tandem Hot Rolled GH4169 Superalloy during Creep". High Temperature Materials and Processes 33, n. 1 (1 febbraio 2014): 71–75. http://dx.doi.org/10.1515/htmp-2013-0024.
Testo completoBaskin, Don, Jeff Wolfenstine e Enrique J. Lavernia. "Elevated temperature mechanical behavior of CoSi and particulate reinforced CoSi produced by spray atomization and co-deposition". Journal of Materials Research 9, n. 2 (febbraio 1994): 362–71. http://dx.doi.org/10.1557/jmr.1994.0362.
Testo completoDan, Zhenhua, Jiafei Lu, Hui Chang, Ping Qu, Aifeng Zhang, Zhigang Fang, Yuecheng Dong, Ying Wang e Lian Zhou. "High-Stress Compressive Creep Behavior of Ti-6Al-4V ELI Alloys with Different Microstructures". MATEC Web of Conferences 321 (2020): 11007. http://dx.doi.org/10.1051/matecconf/202032111007.
Testo completo