Letteratura scientifica selezionata sul tema "Cosmology"
Cita una fonte nei formati APA, MLA, Chicago, Harvard e in molti altri stili
Consulta la lista di attuali articoli, libri, tesi, atti di convegni e altre fonti scientifiche attinenti al tema "Cosmology".
Accanto a ogni fonte nell'elenco di riferimenti c'è un pulsante "Aggiungi alla bibliografia". Premilo e genereremo automaticamente la citazione bibliografica dell'opera scelta nello stile citazionale di cui hai bisogno: APA, MLA, Harvard, Chicago, Vancouver ecc.
Puoi anche scaricare il testo completo della pubblicazione scientifica nel formato .pdf e leggere online l'abstract (il sommario) dell'opera se è presente nei metadati.
Articoli di riviste sul tema "Cosmology"
Szalay, Alexander, John Peacock, Y. Chu L. da Costa, J. Einasto, G. Ellis, D. Koo, S. Lilly et al. "Commission 47: Cosmology: (Cosmologie)". Transactions of the International Astronomical Union 24, n. 1 (2000): 311–14. http://dx.doi.org/10.1017/s0251107x00003242.
Testo completoSetti, G., K. Satco, J. Audouze, G. de Vaucouleurs, J. E. Gunn, S. Hayakawa, L. Zhi Fang et al. "Commission 47: Cosmology (Cosmologie)". Transactions of the International Astronomical Union 20, n. 1 (1988): 653–55. http://dx.doi.org/10.1017/s0251107x00007483.
Testo completoPartridge, R. B., V. Trimble, Bernard Fort, Matthew Colless, G. F. Smoot, J. C. Mather e Bernard Sadoulet. "Commission 47: Cosmology (Cosmologie)". Transactions of the International Astronomical Union 22, n. 1 (1994): 539–64. http://dx.doi.org/10.1017/s0251107x00008312.
Testo completoPeacock, J. A., S. J. Lilly, G. Bruzual, L. Campusano, Y. Chu, L. DaCosta, J. Einasto et al. "Commission 47: Cosmology: (Cosmologie)". Transactions of the International Astronomical Union 25, n. 1 (2002): 317–20. http://dx.doi.org/10.1017/s0251107x00001632.
Testo completoDesmet, Ronny. "La cosmologie de Whitehead [Whitehead’s Cosmology]". Process Studies 37, n. 2 (2008): 200–210. http://dx.doi.org/10.5840/process200837234.
Testo completoVerde, Licia. "Precision cosmology, Accuracy cosmology and Statistical cosmology". Proceedings of the International Astronomical Union 10, S306 (maggio 2014): 223–34. http://dx.doi.org/10.1017/s1743921314013593.
Testo completoSteele, Craig. "Cosmology". Journal of Humanistic Mathematics 9, n. 1 (gennaio 2019): 368. http://dx.doi.org/10.5642/jhummath.201901.26.
Testo completoSilk, Joseph. "Cosmology". Classical and Quantum Gravity 25, n. 22 (4 novembre 2008): 229003. http://dx.doi.org/10.1088/0264-9381/25/22/229003.
Testo completoBörner, G. "Cosmology". European Physical Journal Special Topics 152, n. 1 (dicembre 2007): 139–81. http://dx.doi.org/10.1140/epjst/e2007-00380-7.
Testo completoSpyridon, Melas. "A Selection of Gemstones: Elements of Akbarian Cosmology". Islamovedenie 14, n. 1 (1 giugno 2023): 86–98. http://dx.doi.org/10.21779/2077-8155-2023-14-1-86-98.
Testo completoTesi sul tema "Cosmology"
Pocino, Yuste Andrea. "Cosmology with photometric redshift". Doctoral thesis, Universitat Autònoma de Barcelona, 2020. http://hdl.handle.net/10803/671733.
Testo completoLos cartografiados de galaxias fotométricos actuales y futuros observarán un gran volumen del universo que nos permitirá acotar con precisión el modelo cosmológico. Aun así, la capacidad de los cartografiados para delimitar el modelo a través de las sondas cosmológicas depende de la precisión y certeza con las que se determina el redshift de las galaxias. Por lo tanto, la determinación del redshift fotométrico y sus efectos en los análisis cosmológicos deben ser tratados y estudiados cuidadosamente. En la primera parte de la tesis, transformamos la fotometría de simulaciones que ya existen para imitar las mediciones fotométricas del Dark Energy Survey (DES). De esta forma, esperamos recuperar la distribución real del redshift fotométrico en simulaciones, y así crear una base aún más realista para comprobar los resultados de los análisis cosmológicos de DES que usan redshifts fotométricos. Para transformar las simulaciones utilizamos diversos métodos que transfieren las propiedades estadísticas de la fotometría de observaciones reales a las simulaciones. En la segunda parte de la tesis, utilizamos la técnica del Self-Organizing Map para seleccionar galaxias para ser observadas con espectroscopia, contribuyendo así al proyecto C3R2 que quiere establecer un mapa correlacional entre el espacio de colores y redshift y llenarlo con información espectroscópica. En esta parte también exploramos el espacio de colores definido por la fotometría del Physics of the Accelerating Universe Survey (PAUS) con tal de estudiar la cobertura del redshift espectroscópico de su espacio de colores. Queremos determinar la cantidad del espacio de color sin cobertura espectroscópica porque la falta de representación espectroscópica puede originar un sesgo cuando la precisión del redshift fotométrico se evalúa comparándolo con el redshift espectroscópico o cuando el redshift espectroscópico se utiliza como muestra de entrenamiento para determinar el redshift fotométrico con algoritmos de entrenamiento. Finalmente, exploramos como la variación en la profundidad de las observaciones desde tierra combinadas con las de Euclid afecta la precisión de los redshifts fotométricos y, por lo tanto, la capacidad de Euclid para determinar los parámetros cosmológicos sobre todo cuando se utilizan galaxy clustering y galaxy-galaxy lensing como sondas cosmológicas. También estudiamos como la densidad de las muestras de galaxias afecta la capacidad de acotar los parámetros cosmológicos y cuál es la configuración de bines tomográficos de redshift que permiten extraer la máxima información para delimitar los parámetros cosmológicos. Para llevar a cabo este análisis, creamos diversas distribuciones realistas de redshift fotométrico basadas en la simulación Flagship de Euclid y utilizamos el formalismo de Fisher para hacer una estimación de la capacidad de acotar los parámetros cosmológicos de las diferentes configuraciones de las muestras de galaxias.
Current and future photometric surveys will observe a large volume of the universe that will allow us to accurately constrain the cosmological model. However, the constraining power from cosmological probes of photometric surveys highly relies on the accuracy and precision with which we can determine the galaxies redshifts. Therefore, the determination of photometric redshifts (photo-zs) and their effect in cosmological analysis should be treated and studied carefully. In the first part of this thesis, we transform the photometry of existing simulations to mimic the photometric measurements of the Dark Energy Survey (DES). With this exercise, we expect to recover the real photo-z distribution in simulations, thus creating a more realistic environment to crosscheck the performance of DES in cosmological analyses that use photo-z. We transform the simulations using several method to transfer the statistical properties from the real observations photometry to the simulations. In the second part of the thesis, we use the Self-Organizing Map technique to select spectroscopic targets for the C3R2 program aimed at establishing the mapping between color and redshift space. We also explore the color space defined by the photometry of galaxies from the Physics of the Accelerating Universe Survey (PAUS) in order to study the spectroscopic redshift coverage of its color space. We want to quantify the regions of color space without spectroscopic redshifts because the lack of spectroscopic representation can be a source of bias when the accuracy of photo-zs is evaluated by comparing it to spectroscopic redshifts and when the spectroscopic redshifts are used to determine the photo- z with training-based algorithms. Lastly, we explore how the variation of the depth of ground-based observations combined with Euclid observations affects the accuracy and precision of the photo-z and thus the cosmological constraining power of Euclid focusing on photometric galaxy clustering and galaxy-galaxy lensing analyses. We also study how the number density of photometric galaxy samples affects the constraining power and which tomographic redshift binning configuration returns the maximum information to constrain the cosmological parameters. To perform such analyses, we create several realistic photo-z distributions based on the Euclid Flagship simulation and we use the Fisher forecast and the cosmological inference code, CosmoSIS, over the different configurations of the galaxy samples to determine the cosmological constraining power.
Universitat Autònoma de Barcelona. Programa de Doctorat en Física
Manera, Miret Marc. "Cosmologia i Formació d'Estructures / Cosmology and Structures Formation". Doctoral thesis, Universitat de Barcelona, 2007. http://hdl.handle.net/10803/1790.
Testo completoCATALÀ:
En aquesta tesi estudiem la formació d'estructures a gran escala de l'univers apoximant-nos-hi des de la teoria, les observacions i les simulacions. Respecte la teoria estudiem el creixement d'estructures en quatre models no estàndards: el model DGP, el model Cardassian, el model de gas de Chaplygin i el model de Quintessècia acoplada.
De les observacions estudiem la formació d'estructura a partir de correlacions entre mapes de galàxies amb mapes del CMB, les quals mesuren l'efecte ISW. A partir d'una compilació que d'aquestes mesures restringim els paràmetres cosmològics i mostrem nova evidència de l'energia fosca. També introduim un nou mètode per a calcular els errors de les correlacions en l'espai de configuració. Comparem aquest mètode amb d'altres i mostrem que estima bé els errors a angles grans, doncs tenim en compte l'area del cel observada. Finalment utilitzem simulacions de matéria fosca per estudiar el clustering i el model de bias local.
RESUMEN CASTELLANO:
En esta tesis estudiamos la formación de estructura en el universo en las vertientes teórica, observacional y con simulaciones. Respeto a la teoria estudiamos el crecimiento de estructuras en cuatro modelos no estándares: el modelo DGP, el modelo Cardassian, el modelo de gas de Chaplygin y el modelo de Quintessencia acoplado. Respecto a las observaciones estudiamos la formación de estructura a partir de las correlaciones entre el CMB y mapas de galaxias, las cuales miden el efecto ISW. A partir de una compilación de estas medidas restringimos los parámetros cosmológicos dando nueva evidencia de la energía oscura. También introducimos un nuevo método para el cálculo de errores en espacio de configuración y mostramos, al compararlo con otros, que estima bien los errores a grandes ángulos puesto que tenemos en cuenta la geometria de área observada. Finalmente, utilizando simulaciones de materia oscura, estudiamos el clustering y el modelo de bias local. PALABRAS CLAVE: Estructura a gran escala, energia oscura, bias en halos, formación de estructura.
Gatti, Marco. "Weak lensing in DES Y3: redshift distributions, shape catalogue, and mass mapping". Doctoral thesis, Universitat Autònoma de Barcelona, 2020. http://hdl.handle.net/10803/670527.
Testo completoEn esta tesis hemos estudiado algunos aspectos clave de la lente gravitacional débil en el contexto de los estudios fotométricos. En particular, utilizamos simulaciones y datos tomados durante los primeros tres años de observaciones de la Dark Energy Survey (DES Y3). DES está programado para lanzar su análisis cosmológico principal DES Y3 más adelante este año, y esta tesis cubre algunas partes del análisis. En la Parte II de esta tesis, nos hemos centrado en la técnica de “clustering redshift’’ y su parte en la estrategia principal de calibración del desplazamiento al rojo de DES Y3. El clustering redshift es un método para obtener (o calibrar) distribuciones de desplazamiento al rojo que se basa en correlaciones cruzadas con muestras pequeñas con desplazamiento al rojo seguro. La Parte III se dedicó a la prueba del catálogo oficial de formas de lente gravitacionales de DES Y3, que abarca ~ 4143 $ deg ^ 2 del hemisferio sur y comprende ~ 100 millones de galaxias, lo que lo convierte en el catálogo de formas más grande jamás creado. En la última parte de la tesis (Capítulo 6 y 7), presentamos los mapas oficiales de masa de lentes débiles de DES Y3, y discutimos una posible aplicación cosmológica de los mapas. En particular, introdujimos en el Capítulo 6 cuatro técnicas diferentes de reconstrucción de mapas de masas, cada una de las cuales asumió diferentes antecedentes en el campo de convergencia recuperado. El Capítulo 7 presentó un análisis de cosmología simulada utilizando el segundo y el tercer momento de los mapas de masas de lentes débiles, dirigidos a los datos DES Y3.
In this thesis we have addressed some key aspects of gravitational weak lensing in the context of photometric surveys. In particular, we used simulations and data taken during the first three years of observations of the Dark Energy Survey (DES Y3). DES is scheduled to release their main DES Y3 cosmological analysis later this year, and this thesis covers some parts of the analysis. In Part II of this thesis, we have focused on the “clustering-redshift’’ technique and its role in the main DES Y3 redshift calibration strategy. Clustering-redshift is a method to obtain (or calibrate) redshift distributions which is based on cross-correlations with small samples with secure redshifts. Part III was devoted to the testing of the official DES Y3 shape catalogue, covering ~ 4143$ deg^2 of the southern hemisphere and comprising ~100 million galaxies, which effectively makes it the largest shape catalogue ever created. In the last part of the thesis (Chapter 6 & 7), we presented the official DES Y3 weak lensing mass maps, and discussed a potential cosmological application of the maps. In particular, we introduced in Chapter 6 four different mass map reconstruction techniques, each of those assuming different priors on the recovered convergence field. Chapter 7 presented a simulated cosmology analysis using the second and third moments of the weak lensing mass maps, targeted at the DES Y3 data.
Hasselfield, Matthew. "Galaxy cluster cosmology with the Atacama Cosmology Telescope". Thesis, University of British Columbia, 2013. http://hdl.handle.net/2429/45602.
Testo completoLeta, Carlos Pereira. "Formação de estruturas em cosmologia no regime não-linear: uma aproximação por sistemas dinâmicos". Universidade do Estado do Rio de Janeiro, 2006. http://www.bdtd.uerj.br/tde_busca/arquivo.php?codArquivo=560.
Testo completoFormação de estruturas em larga escala é um problema em aberto em Cosmologia. Há um consenso de que a variedade de estruturas observadas tais como galáxias e aglomerados de galáxias tiveram origem a partir de pequenas flutuações do fluido cósmico possivelmente geradas durante a época inflacionária na era dominada pela matéria. Os estágios iniciais da evolução destas flutuações são descritas pela teoria de Jeans resultante da aproximação linear das equações hidrodinâmicas. Basicamente, a instabilidade devido à ação do campo gravitacional induz à existência de dois tipos de modos perturbativos: os modos instáveis que crescem, e os estáveis que oscilam como ondas sonoras. A distinção entre estes modos depende se o comprimento de onda de um determinado modo perturbativo é maior ou menor que um comprimento de onda típico conhecido como o comprimento de Jeans. Eventualmente, o crescimento dos modos instáveis quebra a aproximação e efeitos não-lineares tornam-se cruciais para a formação de estruturas. Neste sentido, nosso objetivo é estudar o problema não-linear de formação de estruturas em um Universo em expansão dominado pela matéria considerando uma extensão consistente da teoria linear de Jeans. Uma aproximação por sistema dinâmico é fornecida pelo método de Galerkin usado para integrar as equações dinâmicas do fluido auto-graviante. Conseqüentemente é exibido o comportamento dos modos perturbativos instáveis e estáveis do fluido cósmico além do regime linear anterior à formação de estruturas. Nós também consideramos consistentemente a influência da viscosidade ao invés de introduzi-la de um modo artificial como no modelo de Adesão.
The formation of large scale structure is an outstanding problem in Cosmology. It is a consensus that the observed variety of structures such as galaxies and clusters of galaxies have originated from small fluctuations of the cosmic fluid possibly generated during the inflationary epoch-in the matter dominated era. The early stages of evolution of these fluctuations are described by the Jeans theory resulting from the linear approximation of the hydrodynamical equations. Basically, the instabilities due the action of the gravitational field induce the existence of two types of perturbativo modes: the unstable modes that grow, and the stable one that oscillate as sound waves. The distinction between these modes depend son whether the wave length of a given perturbativo mode is greater or smaller than atypical wave-length known as the Jeans length. Eventually, the growth of the unstable modes breaks the linear approximation and nonlinear effects turn out to be crucial for the formation of structures. In this vein, our objective here is to study the problem of nonlinear structure formation in a matter dominated expanding universe considering a consistent extension of the linear Jeans theory. A dynamical system approach is provided by the Galerkin method used to integrate the self-gravitating fluid dynamical equations. Therefore, the behavior of the unstable and stable perturbative modes of the cosmic fluid are exhibited beyond the linear regime prior the formation of structures. We have also considered the influence of viscosity consistently rather than introducing it in an artificial way as in the Adhesion Model.
Bonilla, Tobar Maria del Pilar. "Reaquecimento em um modelo de inflação quintessencial /". São Paulo, 2009. http://hdl.handle.net/11449/132544.
Testo completoBanca: Bruto Max Pimentel Escobar
Banca: Rudnei de Oliveira Ramos
Resumo: O modelo cosmológico inflacionário postula uma rápida expansão do universo primordial, denominada inflação, que pode resolver certas diflculdades da cosmologia padrão. Em modelos inflacionários mais simples a expansão acelerada é causada pela densidade de energia armazenada em um campo escalar denominado inflaton. Após a fase inflacionária, o universo encontra-se em um estado frio e sem partículas. Deve haver um mecanismo responsável pelo reaquecimento do universo. Nesta dissertação, primeiramente fazemos uma revisão simples da cosmologia padrão e inflacionária. Posterior mente, realizamos um estudo detalhado de três diferentes processos de reaquecimento: ressonância paramétrica, instabilidades taquiônicas e reaquecimento perturbativo. Finalmente, fazemos uma análise deste processo para um modelo de inflação quintessencial usando o programa LATTICEEASY
Abstract: The inflationary cosmological model postulates a fast expansion of the eaxly universe, called inflation, which can solve some issues of the standard cosmological model. In simple inflationary models the accelerated expansion is caused by the energy density stored in a scalar field called inflaton. After the inflationary phase, the universe is in a cold state and without particles. There must be a mechanism responsable for its reheating. In this dissertation we flrstly review the standard and inflationary cosmologies. We then perform a detailed study of three different reheating processes: parametric ressonance, tachyonic instabilities and perturbative reheating. Finally, we mahe an analysis of this process for a quintessencial inflation model using the program LATTICEEASY
Mestre
Knebe, Alexander. "Computational cosmology". Thesis, Universität Potsdam, 2008. http://opus.kobv.de/ubp/volltexte/2010/4114/.
Testo completoDie Kosmologie ist heutzutage eines der spannendsten Arbeitsgebiete in der Astronomie und Astrophysik. Das vorherrschende (Urknall-)Modell in Verbindung mit den neuesten und präzisesten Beobachtungsdaten deutet darauf hin, daß wir in einem Universum leben, welches zu knapp 24% aus Dunkler Materie und zu 72% aus Dunkler Energie besteht; die sichtbare Materie macht gerade einmal 4% aus. Und auch wenn uns derzeit eindeutige bzw. direkte Beweise für die Existenz dieser beiden exotischen Bestandteile des Universums fehlen, so ist es uns dennoch möglich, die Entstehung von Galaxien, Galaxienhaufen und der großräumigen Struktur in solch einem Universum zu modellieren. Dabei bedienen sich Wissenschaftler Computersimulationen, welche die Strukturbildung in einem expandierenden Universum mittels Großrechner nachstellen; dieses Arbeitsgebiet wird Numerische Kosmologie bzw. “Computational Cosmology” bezeichnet und ist Inhalt der vorliegenden Habilitationsschrift. Nach einer kurzen Einleitung in das Themengebiet werden die Techniken zur Durchführung solcher numerischen Simulationen vorgestellt. Die Techniken zur Lösung der relevanten (Differential-)Gleichungen zur Modellierung des “Universums im Computer” unterscheiden sich dabei teilweise drastisch voneinander (Teilchen- vs. Gitterverfahren), und es werden die verfahrenstechnischen Unterschiede herausgearbeitet. Und obwohl unterschiedliche Programme auf unterschiedlichen Methoden basieren, so sind die Unterschiede in den Endergebnissen doch (glücklicherweise) vernachlässigbar gering. Wir stellen desweiteren einen komplett neuen Code – basierend auf dem Gitterverfahren – vor, welcher einen Hauptbestandteil der vorliegenden Habilitation darstellt. Im weiteren Verlauf der Arbeit werden diverse kosmologische Simulationen vorgestellt und ausgewertet. Dabei werden zum einen die Entstehung und Entwicklung von Satellitengalaxien – den (kleinen) Begleitern von Galaxien wie unserer Milchstraße und der Andromedagalaxie – als auch Alternativen zum oben eingeführten “Standardmodell” der Kosmologie untersucht. Es stellt sich dabei heraus, daß keine der (hier vorgeschlagenen) Alternativen eine bedrohliche Konkurenz zu dem Standardmodell darstellt. Aber nichtsdestoweniger zeigen die Rechnungen, daß selbst so extreme Abänderungen wie z.B. modifizierte Newton’sche Dynamik (MOND) zu einem Universum führen können, welches dem beobachteten sehr nahe kommt. Die Ergebnisse in Bezug auf die Dynamik der Satellitengalaxien zeigen auf, daß die Untersuchung der Trümmerfelder von durch Gezeitenkräfte zerriebenen Satellitengalaxien Rückschlüsse auf Eigenschaften des ursprünglichen Satelliten zulassen. Diese Tatsache wird bei der Aufschlüsselung der Entstehungsgeschichte unserer eigenen Milchstraße von erheblichem Nutzen sein. Trotzdem deuten die hier vorgestellten Ergebnisse auch darauf hin, daß dieser Zusammenhang nicht so eindeutig ist, wie er zuvor mit Hilfe kontrollierter Einzelsimulationen von Satellitengalaxien in analytischen “Mutterpotentialen” vorhergesagt wurde: Das Zusammenspiel zwischen den Satelliten und der Muttergalaxie sowie die Einbettung der Rechnungen in einen kosmologischen Rahmen sind von entscheidender Bedeutung.
Narimani, Ali. "Dimensionless cosmology". Thesis, University of British Columbia, 2011. http://hdl.handle.net/2429/37365.
Testo completoWhiting, Alan B. "Local cosmology". Thesis, University of Cambridge, 1997. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.360010.
Testo completoSimon-Petit, Alicia. "Systèmes Dynamiques Gravitationnels". Thesis, Université Paris-Saclay (ComUE), 2018. http://www.theses.fr/2018SACLY021/document.
Testo completoDynamical systems have a centuries-long history with roots going back to the mathematical development for astronomy. In the modern formalism, the present thesis investigates dynamical properties of gravitation at different astrophysical or cosmological scales.In potential theory, isochrony often refers to harmonic oscillations of pendulums. In 1959, the mathematician and astronomer Michel Hénon introduced an extended definition of isochrony to characterize orbital oscillations of stars around the center of the system to which they belong. In that case, the period of oscillations can depend on the energy of the star. Today, Michel Hénon’s isochrone potential is mainly used for its integrable property in numerical simulations, but is not widely known. In this thesis, we revisit his geometrical characterization of isochrony and complete the family of isochrone potentials in physics. The classification of this family under different mathematical group actions highlights a particular relation between the isochrones. The actual Keplerian nature of isochrones is pointed out and stands at the heart of the new isochronerelativity, which are presented together.The consequences of this relativity in celestial mechanics — a generalization of Kepler’sThird law, Bohlin or Levi-Civita transformation, Bertrand’s theorem — are applied to analyze the result of a gravitational collapse. By considering dynamical orbital properties, an isochrone analysis is developed to possibly characterize a quasi-stationary state of isolated self-gravitating systems, such as dynamically young stellar clusters or galaxies.At a cosmological scale, the dynamics of the universe depends on its energy content. Its evolution can be expressed as an ecological dynamical system, namely a conservative generalized Lotka-Volterra model. In this framework of a spatially homogeneous and isotropic spacetime, named Jungle Universe, the dynamical impact of a non-gravitational interaction between the energy components is analyzed. As a result, effective dynamical behaviors could account for an accelerated expansion of the universe without dark energy
Libri sul tema "Cosmology"
Contopoulos, Georgios, e Dimitrios Kotsakis. Cosmology. Berlin, Heidelberg: Springer Berlin Heidelberg, 1987. http://dx.doi.org/10.1007/978-3-642-71464-1.
Testo completoBondi, Hermann. Cosmology. 2a ed. Mineola, N.Y: Dover Publications, 2010.
Cerca il testo completoHermann, Bondi. Cosmology. 2a ed. Mineola, N.Y: Dover Publications, 2010.
Cerca il testo completoHermann, Bondi. Cosmology. 2a ed. Mineola, N.Y: Dover Publications, 2010.
Cerca il testo completoLiebscher, Dierck-Ekkehard. Cosmology. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005. http://dx.doi.org/10.1007/b100199.
Testo completoHetherington, Norriss S. Cosmology. Boca Raton: CRC Press, 2023. http://dx.doi.org/10.1201/9781003418047.
Testo completoColes, Peter. Cosmology. New York: John Wiley & Sons, Ltd., 2003.
Cerca il testo completoNarlikar, Jayant Vishnu. Introduction to cosmology. 2a ed. Cambridge [England]: Cambridge University Press, 1993.
Cerca il testo completoRoos, Matts. Introduction to cosmology. Chichester: Wiley, 1994.
Cerca il testo completoDavis, Andrew M., Maria-Teresa Teixeira e Wm Andrew Schwartz, a cura di. Process Cosmology. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-81396-3.
Testo completoCapitoli di libri sul tema "Cosmology"
McNally, Derek. "Cosmology(Cosmologie)". In Reports on Astronomy, 561–80. Dordrecht: Springer Netherlands, 1991. http://dx.doi.org/10.1007/978-94-011-3364-7_34.
Testo completoKarttunen, Hannu, Pekka Kröger, Heikki Oja, Markku Poutanen e Karl Johan Donner. "Cosmology". In Fundamental Astronomy, 371–90. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/978-3-662-05333-1_19.
Testo completoSetti, G., K. Sato, J. Audouze, G. de Vaucouleurs, J. E. Gunn, S. Hayakawa, L. Zhi Fang et al. "Cosmology". In Reports on Astronomy, 653–70. Dordrecht: Springer Netherlands, 1988. http://dx.doi.org/10.1007/978-94-009-2981-4_36.
Testo completoFuller, Robert. "Cosmology". In Religion in American History, 190–209. Oxford, UK: Wiley-Blackwell, 2010. http://dx.doi.org/10.1002/9781444315806.ch10.
Testo completoLofton, Kathryn. "Cosmology". In Religion in American History, 266–84. Oxford, UK: Wiley-Blackwell, 2010. http://dx.doi.org/10.1002/9781444315806.ch14.
Testo completoCorrigan, John. "Cosmology". In Religion in American History, 29–48. Oxford, UK: Wiley-Blackwell, 2010. http://dx.doi.org/10.1002/9781444315806.ch2.
Testo completoMarini, Stephen A. "Cosmology". In Religion in American History, 109–33. Oxford, UK: Wiley-Blackwell, 2010. http://dx.doi.org/10.1002/9781444315806.ch6.
Testo completoMould, Richard A. "Cosmology". In Basic Relativity, 392–424. New York, NY: Springer New York, 1994. http://dx.doi.org/10.1007/978-1-4612-4326-7_14.
Testo completoKarttunen, Hannu, Pekka Kröger, Heikki Oja, Markku Poutanen e Karl Johan Donner. "Cosmology". In Fundamental Astronomy, 429–53. Berlin, Heidelberg: Springer Berlin Heidelberg, 1994. http://dx.doi.org/10.1007/978-3-662-11794-1_20.
Testo completoSteinhart, Eric. "Cosmology". In Believing in Dawkins, 157–88. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-43052-8_5.
Testo completoAtti di convegni sul tema "Cosmology"
Ureña-López, L. Arturo, Miguel Garcia Rocha, Ricardo Lopez Fernandez, Luis F. Rojas Ochoa e Gabino Torres Vega. "Cosmology". In ADVANCED SUMMER SCHOOL IN PHYSICS 2009: Frontiers in Contemporary Physics. AIP, 2010. http://dx.doi.org/10.1063/1.3507422.
Testo completoPolchinski, Joseph. "Cosmology". In Proceedings of the 23rd Solvay Conference on Physics. WORLD SCIENTIFIC, 2007. http://dx.doi.org/10.1142/9789812706768_0006.
Testo completoBelanger, Genevieve. "Cosmology". In Third Linear Collider Physics School 2009. Trieste, Italy: Sissa Medialab, 2011. http://dx.doi.org/10.22323/1.094.0011.
Testo completoFreedman, D. Z. "Matrix Cosmology". In THE NEW COSMOLOGY: Conference on Strings and Cosmology; The Mitchell Symposium on Observational Cosmology. AIP, 2004. http://dx.doi.org/10.1063/1.1848334.
Testo completoKinney, William H. "Inflationary Cosmology". In Proceedings of the 2008 Theoretical Advanced Study Institute in Elementary Particle Physics. WORLD SCIENTIFIC, 2010. http://dx.doi.org/10.1142/9789812838360_0013.
Testo completoShaposhnikov, Mikhail. "Cosmology: theory". In The European Physical Society Conference on High Energy Physics. Trieste, Italy: Sissa Medialab, 2014. http://dx.doi.org/10.22323/1.180.0155.
Testo completoBaumann, Daniel. "Primordial Cosmology". In Theoretical Advanced Study Institute Summer School 2017 "Physics at the Fundamental Frontier". Trieste, Italy: Sissa Medialab, 2018. http://dx.doi.org/10.22323/1.305.0009.
Testo completoLinde, Andrei. "Inflationary Cosmology". In Proceedings of Nobel Symposium 109. WORLD SCIENTIFIC, 2001. http://dx.doi.org/10.1142/9789812810434_0021.
Testo completoLesgourgues, Julien. "Neutrino cosmology". In International Workshop on Astroparticle and High Energy Physics. Trieste, Italy: Sissa Medialab, 2003. http://dx.doi.org/10.22323/1.010.0052.
Testo completoZAGERMANN, Marco. "String Cosmology". In European Physical Society Europhysics Conference on High Energy Physics. Trieste, Italy: Sissa Medialab, 2010. http://dx.doi.org/10.22323/1.084.0389.
Testo completoRapporti di organizzazioni sul tema "Cosmology"
Weinstein, Marvin, e Ratin Akhoury. Quantized Cosmology. Office of Scientific and Technical Information (OSTI), dicembre 2003. http://dx.doi.org/10.2172/826545.
Testo completoLi, Hui. Astrophysics/Cosmology Status Report. Office of Scientific and Technical Information (OSTI), agosto 2017. http://dx.doi.org/10.2172/1375895.
Testo completoShafi, Qaisar, Steven Barr, Thomas Gaisser e Todor Stanev. Particle Theory & Cosmology. Office of Scientific and Technical Information (OSTI), marzo 2015. http://dx.doi.org/10.2172/1213669.
Testo completoShafi, Qaisar. Particle Theory and Cosmology. Office of Scientific and Technical Information (OSTI), aprile 2024. http://dx.doi.org/10.2172/2340092.
Testo completoAssamagan, Ketevi, Chien-Yi Chen, John Paul Chou, David Curtin, Michael A. Fedderke, Yuri Gershtein, Xiao-Gang He et al. The Higgs Portal and Cosmology. Office of Scientific and Technical Information (OSTI), aprile 2016. http://dx.doi.org/10.2172/1255142.
Testo completoJin, Sian, Andre Grosset e Jesus Pulido. Insitu Compression for Cosmology Simulations. Office of Scientific and Technical Information (OSTI), agosto 2020. http://dx.doi.org/10.2172/1648072.
Testo completoWeinstein, M. Cosmology Quantized in Cosmic Time. Office of Scientific and Technical Information (OSTI), giugno 2004. http://dx.doi.org/10.2172/826997.
Testo completoWeinstein, M. Quantized Cosmology: A Simple Approach. Office of Scientific and Technical Information (OSTI), giugno 2004. http://dx.doi.org/10.2172/826998.
Testo completoSilk, J. I. High energy physics and cosmology. Office of Scientific and Technical Information (OSTI), gennaio 1991. http://dx.doi.org/10.2172/6284286.
Testo completoSehgal, N. The Atacama Cosmology Telescope: Cosmology from Galaxy Clusters Detected via the Sunyaev-Zel'dovich Effect. Office of Scientific and Technical Information (OSTI), agosto 2011. http://dx.doi.org/10.2172/1022513.
Testo completo