Letteratura scientifica selezionata sul tema "Continous blowing"
Cita una fonte nei formati APA, MLA, Chicago, Harvard e in molti altri stili
Consulta la lista di attuali articoli, libri, tesi, atti di convegni e altre fonti scientifiche attinenti al tema "Continous blowing".
Accanto a ogni fonte nell'elenco di riferimenti c'è un pulsante "Aggiungi alla bibliografia". Premilo e genereremo automaticamente la citazione bibliografica dell'opera scelta nello stile citazionale di cui hai bisogno: APA, MLA, Harvard, Chicago, Vancouver ecc.
Puoi anche scaricare il testo completo della pubblicazione scientifica nel formato .pdf e leggere online l'abstract (il sommario) dell'opera se è presente nei metadati.
Articoli di riviste sul tema "Continous blowing"
McCulloch, John G. "The History of the Development of Melt Blowing Technology". International Nonwovens Journal os-8, n. 1 (marzo 1999): 1558925099OS—80. http://dx.doi.org/10.1177/1558925099os-800123.
Testo completoMargaris, P., e I. Gursul. "Wing tip vortex control using synthetic jets". Aeronautical Journal 110, n. 1112 (ottobre 2006): 673–81. http://dx.doi.org/10.1017/s0001924000001536.
Testo completoYang, Chenghao, Elias J. G. Arcondoulis, Yannian Yang, Jing Guo, Reza Maryami, Chuanxing Bi e Yu Liu. "Active control of airfoil turbulent boundary layer noise with trailing-edge blowing". Journal of the Acoustical Society of America 153, n. 4 (aprile 2023): 2115–30. http://dx.doi.org/10.1121/10.0017787.
Testo completoLi, Wenjie, Shibo Wang, Jianxin Xu, Jianhang Hu, Hua Wang, Yuling Zhai, Qingtai Xiao, Ge Deng e Dongbo Li. "Numerical Investigation of the Enhanced Stirring Characteristics of a Multi-Lance Top-Blowing Continuous Converting Furnace for Lance Arrangement and Variable-Velocity Blowing". Energies 16, n. 5 (2 marzo 2023): 2412. http://dx.doi.org/10.3390/en16052412.
Testo completoMeijie, Z., G. Huazhi, H. Ao, Z. Hongxi e D. Chengji. "Numerical simulation and industrial practice of inclusion removal from molten steel by gas bottom-blowing in continuous casting tundish". Journal of Mining and Metallurgy, Section B: Metallurgy 47, n. 2 (2011): 137–47. http://dx.doi.org/10.2298/jmmb110120006m.
Testo completoSugiura, Konosuke, e Tetsuo Ohata. "Large-scale characteristics of the distribution of blowing-snow sublimation". Annals of Glaciology 49 (2008): 11–16. http://dx.doi.org/10.3189/172756408787814960.
Testo completoAyuni, Farihah, Gina Selvia Rahayu, Nesty Ermin Nadhirah, Tegar Selaras Gustavisiana e Hisny Fajrussalam. "Perspektif Islam terhadap “Kaum Majusi” Modern". YASIN 3, n. 3 (7 maggio 2023): 342–51. http://dx.doi.org/10.58578/yasin.v3i3.1080.
Testo completoWang, Dazhi, Fang Gao, Lidong Xing, Jianhua Chu e Yanping Bao. "Continuous Prediction Model of Carbon Content in 120 t Converter Blowing Process". Metals 12, n. 1 (14 gennaio 2022): 151. http://dx.doi.org/10.3390/met12010151.
Testo completoYoshinaga, Etsuo. "Blow Analytic Mappings and Functions". Canadian Mathematical Bulletin 36, n. 4 (1 dicembre 1993): 497–506. http://dx.doi.org/10.4153/cmb-1993-065-1.
Testo completoZhang, M. J., H. Z. Gu, A. Huang, H. X. Zhu e C. J. Deng. "Physical and mathematical modeling of inclusion removal with gas bottom-blowing in continuous casting tundish". Journal of Mining and Metallurgy, Section B: Metallurgy 47, n. 1 (2011): 37–44. http://dx.doi.org/10.2298/jmmb1101037z.
Testo completoTesi sul tema "Continous blowing"
Ammam, Tarek. "Development of innovative solutions for the control of the aerodynamic drag induced by cavity flows : Application to the reduction of railway energy consumtion". Electronic Thesis or Diss., Valenciennes, Université Polytechnique Hauts-de-France, 2024. http://www.theses.fr/2024UPHF0011.
Testo completoThis work concerns the analysis and control of the flow over cavities, which have the particularity of being laterally open and near a wall, with the aim of developing drag control solutions induced by bogie cavities of high-speed trains. To study this configuration, representative of railway cavities and known to be less sensitive to acoustic noise than cavities with smaller aspect ratios, experimental tests and numerical simulations (IDDES) were conducted. The motivations of our research focus on identifying the relationships between the flow and the aerodynamic loads applied on the cavity on one hand, and on the control of induced drag on the other hand. In this context, synchronized PIV-wall pressure tests were specifically conducted in addition to force measurements aimed at quantifying the contribution to drag (and thus to resistance to motion) of the cavity. These recent developments also allowed us to identify and parameterize a continuous blowing active control solution, based on reducing momentum at the cavity interface and underbody flow rate. The maximum associated drag reductions are around 20% for an empty cavity geometry and around 15% for a cavity including the bogie
TSAI, MAO-CHANG, e 蔡茂昌. "The Effect of Bottom Blowing Conditions on Floating Inclusion Behavior in the Vacuum Continuous Casting Process by Water Modeling". Thesis, 2007. http://ndltd.ncl.edu.tw/handle/10856600199584215391.
Testo completo義守大學
材料科學與工程學系碩士班
95
This research aims at enhancing the quality of melting metal solution in the vacuum continuous casting by using air blowing and floating inclusion to remove the nonmetallic impurity. Modify the air blowing in melting process by water model. Analyze the behavior of air bubbles to find the optimum parameters. In this experiment we made an Id112mm*H200mm acrylic water model. Confirm the similarity between the cold model and the hot model by the Buckingham theorem. Set the parameters of the water model experiment. Substitute copper melting by water and argon by air. Modify the real air blowing to float inclusion of hot model by water model. This research is divided into the static experiment and dynamic tests. (1)Static experiment:Without water entering from the water mold. Change the number of tuyeres (1~4) the tube, the liquid level (40, 80, 120mm), the air flow rate (1.0~2.5L/min) to analyze the influence of air bubble movement behavior by the tubes arrangement , the air bubble size, the air bubbles density of distribution. Estimate the optimum parameters combination. (2)Dynamic experiment:With water entering from the top of water mold and leaving from the bottom respectively. Modify the air blowing to float inclusion process whether the air bubble sink down to bottom and induce the flaw. (1) Result of static experiment: 1.With liquid level 80mm, four tuyeres, gas flowing rate below 1.5 L/min can make bubble size smaller and even. The air bubble flow field is stable and the turbulence of liquid surface may decrease. 2. With liquid level 80mm, 2 tuyeres, the gas flowing rate must be below 1.0 L/min. Converts in the actual casting system the optimum floating inclusion condition is:1. Melted fluid level is 80mm. The tuyere number is four. The argon flow rate must be below 6.67 L/min. 2. Melted fluid level is 80mm. The tuyere number is two. The argon flow rate must be below 4.44 L/min. (2) Result of dynamic test : The quantity of sinking air bubble is 0 %, that means that in the real casting process all air bubble float is upward. No air bubble will flow back to the flow channel.
Libri sul tema "Continous blowing"
Godøy, Rolf Inge. Key-postures, trajectories and sonic shapes. Oxford University Press, 2017. http://dx.doi.org/10.1093/oso/9780199351411.003.0002.
Testo completoHong, Yu. Forging Broadband for the Commanding-Heights Economy. University of Illinois Press, 2017. http://dx.doi.org/10.5406/illinois/9780252040917.003.0004.
Testo completoPitts-Taylor, Victoria, a cura di. Cultural Encyclopedia of the Body. Greenwood, 2008. http://dx.doi.org/10.5040/9798400635014.
Testo completoCapitoli di libri sul tema "Continous blowing"
Wang, Songsong, e Xueyi Guo. "Thermodynamic Modeling of Oxygen Bottom-Blowing Continuous Converting Process". In The Minerals, Metals & Materials Series, 573–83. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-95022-8_45.
Testo completoRen, Yong, Shuai Niu, WenCai Li e Xin Hong. "Experimental Research of Continuous Temperature Measurement for Molten Metal Bath through Bottom-Blowing Component". In EPD Congress 2014, 277–83. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2014. http://dx.doi.org/10.1002/9781118889664.ch32.
Testo completoKumar, A. R., K. M. Henderson e S. Schafrik. "Scale modeling, PIV, and LES of blowing type airflow in a deep cut continuous coal mining section". In Mine Ventilation, 65–74. London: CRC Press, 2021. http://dx.doi.org/10.1201/9781003188476-7.
Testo completoHartquist, T. W., J. E. Dyson e D. P. Ruffle. "Some Other Windy And Explosive Sources". In Blowing Bubbles In The Cosmos, 142–50. Oxford University PressNew York, NY, 2004. http://dx.doi.org/10.1093/oso/9780195130546.003.0011.
Testo completoSkowronski, Michael J., Michael R. Huspek e Camilla Righi. "Alternative Blowing Agent Solutions for Polyisocyanurate Continuous Laminate Metal Panels". In Polyurethanes Expo 2001, 97–106. CRC Press, 2020. http://dx.doi.org/10.1201/9780429332609-16.
Testo completo"Last Days with Chronic Obstructive Pulmonary Disease". In Respiratory Symptoms, a cura di Margaret L. Campbell, 119—C14P40. Oxford University PressNew York, 2023. http://dx.doi.org/10.1093/med/9780190098896.003.0014.
Testo completoHyde, Peter, e Alex Mahalov. "Bowing Sand, Dust, and Dunes, Then and Now–A North American Perspective". In Deserts and Desertification. IntechOpen, 2022. http://dx.doi.org/10.5772/intechopen.98337.
Testo completoD'Agostino, Susan. "Abandon perfectionism, because of the Hairy Ball Theorem". In How to Free Your Inner Mathematician, 131–36. Oxford University Press, 2020. http://dx.doi.org/10.1093/oso/9780198843597.003.0023.
Testo completoHalmi, Katherine A. "Eating disorders". In Pediatric Psychopharmacology: Principles and Practice, 592–604. Oxford University PressNew York, NY, 2002. http://dx.doi.org/10.1093/oso/9780195141733.003.0044.
Testo completo"Epilogue". In Fire Dreams, 210–24. Duke University Press, 2024. http://dx.doi.org/10.1215/9781478027690-007.
Testo completoAtti di convegni sul tema "Continous blowing"
Nonomura, Taku, Satoshi Sekimoto, Kengo Asada, Akira Oyama e Kozo Fujii. "Experimental Study of Blowing Direction Effects of DBD Plasma Actuator on Separation Control of Flow Around an Airfoil". In ASME-JSME-KSME 2011 Joint Fluids Engineering Conference. ASMEDC, 2011. http://dx.doi.org/10.1115/ajk2011-15010.
Testo completoKornilov, V. I., e E. A. Shkvar. "Turbulent boundary layer on a body of revolution under conditions of distributed air blowing". In ACTUAL PROBLEMS OF CONTINUUM MECHANICS: EXPERIMENT, THEORY, AND APPLICATIONS. AIP Publishing, 2023. http://dx.doi.org/10.1063/5.0132325.
Testo completoTadjfar, M., Saman Kasmaiee e S. Noori. "Continuous Blowing Jet Flow Control Optimization in Dynamic Stall of NACA0012 Airfoil". In ASME 2020 Fluids Engineering Division Summer Meeting collocated with the ASME 2020 Heat Transfer Summer Conference and the ASME 2020 18th International Conference on Nanochannels, Microchannels, and Minichannels. American Society of Mechanical Engineers, 2020. http://dx.doi.org/10.1115/fedsm2020-20149.
Testo completoOu, Shichuan, e Richard B. Rivir. "Shaped-Hole Film Cooling With Pulsed Secondary Flow". In ASME Turbo Expo 2006: Power for Land, Sea, and Air. ASMEDC, 2006. http://dx.doi.org/10.1115/gt2006-90272.
Testo completoHassan, O., e I. Hassan. "Experimental Flow Field Investigations Downstream a Film Cooling Scheme Over a Flat Plate Using the PIV Technique". In ASME 2013 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/imece2013-65650.
Testo completoRao, I. J. "Simulation of the Film Blowing Process Using a Continuum Model for Crystallization in Polymers". In ASME 2000 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2000. http://dx.doi.org/10.1115/imece2000-1993.
Testo completoShalash, Karim M., Lamyaa A. El-Gabry e Mohamed M. Abo El-Azm. "Investigation of a Novel Discrete Slot Film Cooling Scheme". In ASME Turbo Expo 2014: Turbine Technical Conference and Exposition. American Society of Mechanical Engineers, 2014. http://dx.doi.org/10.1115/gt2014-26019.
Testo completoCoulthard, Sarah M., Ralph J. Volino e Karen A. Flack. "Effect of Jet Pulsing on Film Cooling: Part 2 — Heat Transfer Results". In ASME Turbo Expo 2006: Power for Land, Sea, and Air. ASMEDC, 2006. http://dx.doi.org/10.1115/gt2006-91274.
Testo completoCoulthard, Sarah M., Ralph J. Volino e Karen A. Flack. "Effect of Jet Pulsing on Film Cooling: Part 1— Effectiveness and Flowfield Temperature Results". In ASME Turbo Expo 2006: Power for Land, Sea, and Air. ASMEDC, 2006. http://dx.doi.org/10.1115/gt2006-91273.
Testo completoAsgari, Ehsan, e Mehran Tadjfar. "Comparison of Two Active Flow Control Mechanisms of Pure Blowing and Pure Suction on a Pitching NACA0012 Airfoil at Reynolds Number of 1 × 106". In ASME 2018 5th Joint US-European Fluids Engineering Division Summer Meeting. American Society of Mechanical Engineers, 2018. http://dx.doi.org/10.1115/fedsm2018-83463.
Testo completo