Segui questo link per vedere altri tipi di pubblicazioni sul tema: Conductance quantization.

Articoli di riviste sul tema "Conductance quantization"

Cita una fonte nei formati APA, MLA, Chicago, Harvard e in molti altri stili

Scegli il tipo di fonte:

Vedi i top-50 articoli di riviste per l'attività di ricerca sul tema "Conductance quantization".

Accanto a ogni fonte nell'elenco di riferimenti c'è un pulsante "Aggiungi alla bibliografia". Premilo e genereremo automaticamente la citazione bibliografica dell'opera scelta nello stile citazionale di cui hai bisogno: APA, MLA, Harvard, Chicago, Vancouver ecc.

Puoi anche scaricare il testo completo della pubblicazione scientifica nel formato .pdf e leggere online l'abstract (il sommario) dell'opera se è presente nei metadati.

Vedi gli articoli di riviste di molte aree scientifiche e compila una bibliografia corretta.

1

Batra, Inder P. "Origin of conductance quantization". Surface Science 395, n. 1 (gennaio 1998): 43–45. http://dx.doi.org/10.1016/s0039-6028(97)00601-8.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
2

Sorée, Bart, Wim Magnus e Wim Schoenmaker. "Conductance quantization and dissipation". Physics Letters A 310, n. 4 (aprile 2003): 322–28. http://dx.doi.org/10.1016/s0375-9601(03)00351-7.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
3

Nöckel, J. U. "Conductance quantization and backscattering". Physical Review B 45, n. 24 (15 giugno 1992): 14225–30. http://dx.doi.org/10.1103/physrevb.45.14225.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
4

Cosby, Ronald M., Dustin R. Humm e Yong S. Joe. "Nanoelectronics using conductance quantization". Journal of Applied Physics 83, n. 7 (aprile 1998): 3914–16. http://dx.doi.org/10.1063/1.366626.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
5

SARMA, S. DAS, e SONG HE. "THEORY OF ELECTRON TRANSPORT THROUGH QUANTUM CONSTRICTIONS IN SEMICONDUCTOR NANOSTRUCTURES". International Journal of Modern Physics B 07, n. 19 (30 agosto 1993): 3375–404. http://dx.doi.org/10.1142/s0217979293003279.

Testo completo
Abstract (sommario):
Detailed numerical results are presented for the calculated conductance of quantum point contacts, or, narrow constrictions between high mobility two-dimensional electron systems fabricated on semiconductor nanostructures. The conductance is calculated from the two-terminal multichannel transmission matrix formalism using the recursive single-particle Green’s function technique. The Green’s functions are obtained recursively for a tight-binding two-dimensional disordered Anderson lattice model representing the constriction. The conductance is calculated as a function of the shape and the size of the constriction (i.e., its geometry), the temperature, and, the elastic disorder in the system. Our main results, which are consistent with experimental findings, are: (1) increase of elastic scattering destroys the quantization; (2) for a fixed amount of disorder (i.e., for a given value of the elastic mean free path), the conductance quantization is poorer for longer constrictions; (3) in general, the quantization is poorer for higher quantum numbers or subbands; (4) constrictions with sharper geometry have sharper quantization, but may have quantum resonances associated with their sharp corners; (5) the quantum resonances (in sharp constrictions) are suppressed for shorter constriction lengths and at higher temperatures; (6) in general, higher temperatures lower the quantization quality by smoothening out the conductance except for sharp constrictions where at the lowest temperatures the quantum resonances show up, adversely affecting the quantization; (7) in smooth or adiabatic constrictions, the conductance quantization is smooth (but not extremely accurate) but, adiabaticity is not a necessary requirement for conductance quantization; (8) in general, geometry, finite temperature, and finite disorder effects do not allow better than 1% type accuracy in the quantization (compared with integral multiples of 2e2/h) even in the best of circumstances; (9) increase of elastic disorder smoothly takes the system from a conductance quantized regime to the regime of universal conductance fluctuations; and, (10) inelastic scattering, which we treat only in a very crude phenomenological model, behaves similar to thermal effects in broadening and smearing the sharpness of the conductance quantization. We also discuss the effect of an external magnetic field on the conductance quantization phenomenon. Some results are given for the conductance of two constrictions in series.
Gli stili APA, Harvard, Vancouver, ISO e altri
6

Takayanagi, Kunio, Yukihito Kondo e Hideo Ohnishi. "Conductance Quantization of Gold Nanowire". Materia Japan 40, n. 12 (2001): 1000. http://dx.doi.org/10.2320/materia.40.1000.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
7

Bascones, E., G. Gómez-Santos e J. J. Sáenz. "Statistical significance of conductance quantization". Physical Review B 57, n. 4 (15 gennaio 1998): 2541–44. http://dx.doi.org/10.1103/physrevb.57.2541.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
8

Krompiewski, S. "Conductance quantization in ferromagnetic nanowires". Journal of Physics: Condensed Matter 12, n. 7 (3 febbraio 2000): 1323–28. http://dx.doi.org/10.1088/0953-8984/12/7/315.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
9

Kivelson, S., e S. A. Trugman. "Quantization of the Hall conductance from density quantization alone". Physical Review B 33, n. 6 (15 marzo 1986): 3629–35. http://dx.doi.org/10.1103/physrevb.33.3629.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
10

Ooka, Yutaka, Teruo Ono e Hideki Miyajima. "Conductance quantization in ferromagnetic Ni nanowire". Journal of Magnetism and Magnetic Materials 226-230 (maggio 2001): 1848–49. http://dx.doi.org/10.1016/s0304-8853(00)00881-7.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
11

Yacoby, A., H. L. Stormer, Ned S. Wingreen, L. N. Pfeiffer, K. W. Baldwin e K. W. West. "Nonuniversal Conductance Quantization in Quantum Wires". Physical Review Letters 77, n. 22 (25 novembre 1996): 4612–15. http://dx.doi.org/10.1103/physrevlett.77.4612.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
12

Lehmann, H., T. Benter, I. von Ahnen, J. Jacob, T. Matsuyama, U. Merkt, U. Kunze et al. "Spin-resolved conductance quantization in InAs". Semiconductor Science and Technology 29, n. 7 (12 maggio 2014): 075010. http://dx.doi.org/10.1088/0268-1242/29/7/075010.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
13

Poncharal, Ph, St Frank, Z. L. Wang e W. A. de Heer. "Conductance quantization in multiwalled carbon nanotubes". European Physical Journal D 9, n. 1 (dicembre 1999): 77–79. http://dx.doi.org/10.1007/s100530050402.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
14

Nawrocki, Waldemar. "Electrical and thermal conductance quantization in nanostructures". Journal of Physics: Conference Series 129 (1 ottobre 2008): 012023. http://dx.doi.org/10.1088/1742-6596/129/1/012023.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
15

Sorée, Bart, Wim Magnus e Wim Schoenmaker. "Nonequilibrium mesoscopic quantum transport and conductance quantization". Semiconductor Science and Technology 19, n. 4 (8 marzo 2004): S235—S237. http://dx.doi.org/10.1088/0268-1242/19/4/079.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
16

Hickmott, T. W. "Fractional Quantization in ac Conductance ofAlxGa1−xAsCapacitors". Physical Review Letters 57, n. 6 (11 agosto 1986): 751–54. http://dx.doi.org/10.1103/physrevlett.57.751.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
17

Kaufman, D., Y. Berk, B. Dwir, A. Rudra, A. Palevski e E. Kapon. "Conductance quantization in V-groove quantum wires". Physical Review B 59, n. 16 (15 aprile 1999): R10433—R10436. http://dx.doi.org/10.1103/physrevb.59.r10433.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
18

Shimizu, Masayoshi, Eiji Saitoh, Hideki Miyajima e Yoshichika Otani. "Conductance quantization in ferromagnetic Ni nano-constriction". Journal of Magnetism and Magnetic Materials 239, n. 1-3 (febbraio 2002): 243–45. http://dx.doi.org/10.1016/s0304-8853(01)00544-3.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
19

Yosefin, M., e M. Kaveh. "Conductance quantization in a general confining potential". Physical Review B 44, n. 7 (15 agosto 1991): 3355–58. http://dx.doi.org/10.1103/physrevb.44.3355.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
20

Zwolak, Michael, James Wilson e Massimiliano Di Ventra. "Dehydration and ionic conductance quantization in nanopores". Journal of Physics: Condensed Matter 22, n. 45 (29 ottobre 2010): 454126. http://dx.doi.org/10.1088/0953-8984/22/45/454126.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
21

Leng, Manhua, e Craig S. Lent. "Conductance quantization in a periodically modulated channel". Physical Review B 50, n. 15 (15 ottobre 1994): 10823–33. http://dx.doi.org/10.1103/physrevb.50.10823.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
22

Magnus, Wim, e Wim Schoenmaker. "Quantized conductance, circuit topology, and flux quantization". Physical Review B 61, n. 16 (15 aprile 2000): 10883–89. http://dx.doi.org/10.1103/physrevb.61.10883.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
23

Katsnelson, M. I. "Conductance quantization in graphene nanoribbons: adiabatic approximation". European Physical Journal B 57, n. 3 (giugno 2007): 225–28. http://dx.doi.org/10.1140/epjb/e2007-00168-5.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
24

Zwolak, Michael, James Wilson, Johan Lagerqvist e Massimiliano Di Ventra. "Dehydration and Ionic Conductance Quantization in Nanopores". Biophysical Journal 100, n. 3 (febbraio 2011): 471a. http://dx.doi.org/10.1016/j.bpj.2010.12.2761.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
25

Bachmann, Sven, Alex Bols, Wojciech De Roeck e Martin Fraas. "Quantization of Conductance in Gapped Interacting Systems". Annales Henri Poincaré 19, n. 3 (20 febbraio 2018): 695–708. http://dx.doi.org/10.1007/s00023-018-0651-0.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
26

Bezák, Viktor. "Conductance quantization of an ideal Sharvin contact". Annals of Physics 322, n. 11 (novembre 2007): 2603–17. http://dx.doi.org/10.1016/j.aop.2007.06.002.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
27

Faist, J., P. Guéret e H. Rothuizen. "Observation of impurity effects on conductance quantization". Superlattices and Microstructures 7, n. 4 (gennaio 1990): 349–51. http://dx.doi.org/10.1016/0749-6036(90)90224-u.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
28

Bracken, Paul. "Topological invariance of the Hall conductance and quantization". Modern Physics Letters B 29, n. 24 (3 settembre 2015): 1550135. http://dx.doi.org/10.1142/s0217984915501353.

Testo completo
Abstract (sommario):
It is shown that the Kubo equation for the Hall conductance can be expressed as an integral which implies quantization of the Hall conductance. The integral can be interpreted as the first Chern class of a [Formula: see text] principal fiber bundle on a two-dimensional torus. This accounts for the conductance given as an integer multiple of [Formula: see text]. The formalism can be extended to deduce the fractional conductivity as well.
Gli stili APA, Harvard, Vancouver, ISO e altri
29

Srivastav, Saurabh Kumar, Manas Ranjan Sahu, K. Watanabe, T. Taniguchi, Sumilan Banerjee e Anindya Das. "Universal quantized thermal conductance in graphene". Science Advances 5, n. 7 (luglio 2019): eaaw5798. http://dx.doi.org/10.1126/sciadv.aaw5798.

Testo completo
Abstract (sommario):
The universal quantization of thermal conductance provides information on a state's topological order. Recent measurements revealed that the observed value of thermal conductance of the 52 state is inconsistent with either Pfaffian or anti-Pfaffian model, motivating several theoretical articles. Analysis has been made complicated by the presence of counter-propagating edge channels arising from edge reconstruction, an inevitable consequence of separating the dopant layer from the GaAs quantum well and the resulting soft confining potential. Here, we measured thermal conductance in graphene with atomically sharp confining potential by using sensitive noise thermometry on hexagonal boron-nitride encapsulated graphene devices, gated by either SiO2/Si or graphite back gate. We find the quantization of thermal conductance within 5% accuracy for ν = 1;43;2 and 6 plateaus, emphasizing the universality of flow of information. These graphene quantum Hall thermal transport measurements will allow new insight into exotic systems like even-denominator quantum Hall fractions in graphene.
Gli stili APA, Harvard, Vancouver, ISO e altri
30

Fadaly, Elham M. T., Hao Zhang, Sonia Conesa-Boj, Diana Car, Önder Gül, Sébastien R. Plissard, Roy L. M. Op het Veld, Sebastian Kölling, Leo P. Kouwenhoven e Erik P. A. M. Bakkers. "Observation of Conductance Quantization in InSb Nanowire Networks". Nano Letters 17, n. 11 (14 luglio 2017): 6511–15. http://dx.doi.org/10.1021/acs.nanolett.7b00797.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
31

Agraït, N., J. G. Rodrigo e S. Vieira. "Conductance steps and quantization in atomic-size contacts". Physical Review B 47, n. 18 (1 maggio 1993): 12345–48. http://dx.doi.org/10.1103/physrevb.47.12345.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
32

Alekseev, Anton Yu, e Vadim V. Cheianov. "Nonuniversal conductance quantization in high-quality quantum wires". Physical Review B 57, n. 12 (15 marzo 1998): R6834—R6837. http://dx.doi.org/10.1103/physrevb.57.r6834.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
33

Elhoussine, F., S. Mátéfi-Tempfli, A. Encinas e L. Piraux. "Conductance quantization in magnetic nanowires electrodeposited in nanopores". Applied Physics Letters 81, n. 9 (26 agosto 2002): 1681–83. http://dx.doi.org/10.1063/1.1503400.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
34

Costa-Krämer, J. L., N. García e H. Olin. "Conductance Quantization in Bismuth Nanowires at 4 K". Physical Review Letters 78, n. 26 (30 giugno 1997): 4990–93. http://dx.doi.org/10.1103/physrevlett.78.4990.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
35

Yanson, A. I., e J. M. van Ruitenbeek. "Do Histograms Constitute a Proof for Conductance Quantization?" Physical Review Letters 79, n. 11 (15 settembre 1997): 2157. http://dx.doi.org/10.1103/physrevlett.79.2157.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
36

Taboryski, R., A. Kristensen, C. B. So/rensen e P. E. Lindelof. "Conductance-quantization broadening mechanisms in quantum point contacts". Physical Review B 51, n. 4 (15 gennaio 1995): 2282–86. http://dx.doi.org/10.1103/physrevb.51.2282.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
37

Li, C. Z., H. X. He, A. Bogozi, J. S. Bunch e N. J. Tao. "Molecular detection based on conductance quantization of nanowires". Applied Physics Letters 76, n. 10 (6 marzo 2000): 1333–35. http://dx.doi.org/10.1063/1.126025.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
38

Kiesslich, G., A. Wacker e E. Sch�ll. "Geometry Effects at Conductance Quantization in Quantum Wires". physica status solidi (b) 216, n. 2 (dicembre 1999): R5—R6. http://dx.doi.org/10.1002/(sici)1521-3951(199912)216:23.0.co;2-1.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
39

Oshima, Hirotaka, e Kenjiro Miyano. "Spin-dependent conductance quantization in nickel point contacts". Applied Physics Letters 73, n. 15 (12 ottobre 1998): 2203–5. http://dx.doi.org/10.1063/1.122423.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
40

Younis, Adnan, Dewei Chu e Sean Li. "Voltage sweep modulated conductance quantization in oxide nanocomposites". J. Mater. Chem. C 2, n. 48 (10 ottobre 2014): 10291–97. http://dx.doi.org/10.1039/c4tc01984a.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
41

Imamura, Hiroshi, Nobuhiko Kobayashi, Saburo Takahashi e Sadamichi Maekawa. "Conductance Quantization and Magnetoresistance in Magnetic Point Contacts". Physical Review Letters 84, n. 5 (31 gennaio 2000): 1003–6. http://dx.doi.org/10.1103/physrevlett.84.1003.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
42

Li, Jingze, Taisuke Kanzaki, Kei Murakoshi e Yoshihiro Nakato. "Metal-dependent conductance quantization of nanocontacts in solution". Applied Physics Letters 81, n. 1 (luglio 2002): 123–25. http://dx.doi.org/10.1063/1.1491015.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
43

Xu, Ying, Xingqiang Shi, Zhi Zeng, Zhao Yang Zeng e Baowen Li. "Conductance oscillation and quantization in monatomic Al wires". Journal of Physics: Condensed Matter 19, n. 5 (16 gennaio 2007): 056010. http://dx.doi.org/10.1088/0953-8984/19/5/056010.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
44

Faist, J., P. Guéret e H. Rothuizen. "Possible observation of impurity effects on conductance quantization". Physical Review B 42, n. 5 (15 agosto 1990): 3217–19. http://dx.doi.org/10.1103/physrevb.42.3217.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
45

Li, C. Z., H. Sha e N. J. Tao. "Adsorbate effect on conductance quantization in metallic nanowires". Physical Review B 58, n. 11 (15 settembre 1998): 6775–78. http://dx.doi.org/10.1103/physrevb.58.6775.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
46

Koma, Tohru, Toru Morishita e Taro Shuya. "Quantization of Conductance in Quasi-periodic Quantum Wires". Journal of Statistical Physics 174, n. 5 (16 gennaio 2019): 1137–60. http://dx.doi.org/10.1007/s10955-019-02227-1.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
47

Krinner, Sebastian, Martin Lebrat, Dominik Husmann, Charles Grenier, Jean-Philippe Brantut e Tilman Esslinger. "Mapping out spin and particle conductances in a quantum point contact". Proceedings of the National Academy of Sciences 113, n. 29 (29 giugno 2016): 8144–49. http://dx.doi.org/10.1073/pnas.1601812113.

Testo completo
Abstract (sommario):
We study particle and spin transport in a single-mode quantum point contact, using a charge neutral, quantum degenerate Fermi gas with tunable, attractive interactions. This yields the spin and particle conductance of the point contact as a function of chemical potential or confinement. The measurements cover a regime from weak attraction, where quantized conductance is observed, to the resonantly interacting superfluid. Spin conductance exhibits a broad maximum when varying the chemical potential at moderate interactions, which signals the emergence of Cooper pairing. In contrast, the particle conductance is unexpectedly enhanced even before the gas is expected to turn into a superfluid, continuously rising from the plateau at 1/h for weak interactions to plateau-like features at nonuniversal values as high as 4/h for intermediate interactions. For strong interactions, the particle conductance plateaus disappear and the spin conductance gets suppressed, confirming the spin-insulating character of a superfluid. Our observations document the breakdown of universal conductance quantization as many-body correlations appear. The observed anomalous quantization challenges a Fermi liquid description of the normal phase, shedding new light on the nature of the strongly attractive Fermi gas.
Gli stili APA, Harvard, Vancouver, ISO e altri
48

LESOVICK, G. B. "THERMOPOWER IN BALLISTIC 2D MICROJUNCTION WITH QUANTIZED RESISTANCE". Modern Physics Letters B 03, n. 08 (20 maggio 1989): 611–13. http://dx.doi.org/10.1142/s0217984989000960.

Testo completo
Abstract (sommario):
It is shown that thermopower, under condition of good quantization of conductance (in units of e2/h), could be of the order of kB/e. When the temperature difference between opposite sides of a microjunction is finite, thermopower becomes nonlinear. This phenomenon is connected with energy dependence of conductance.
Gli stili APA, Harvard, Vancouver, ISO e altri
49

Danneau, R., W. R. Clarke, O. Klochan, A. P. Micolich, A. R. Hamilton, M. Y. Simmons, M. Pepper e D. A. Ritchie. "Conductance quantization and the 0.7×2e2∕h conductance anomaly in one-dimensional hole systems". Applied Physics Letters 88, n. 1 (2 gennaio 2006): 012107. http://dx.doi.org/10.1063/1.2161814.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
50

Simanullang, Marolop Dapot Krisman, G. Bimananda M. Wisna, Koichi Usami e Shunri Oda. "Synthesis and characterization of Ge-core/a-Si-shell nanowires with conformal shell thickness deposited after gold removal for high-mobility p-channel field-effect transistors". Nanoscale Advances 2, n. 4 (2020): 1465–72. http://dx.doi.org/10.1039/d0na00023j.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
Offriamo sconti su tutti i piani premium per gli autori le cui opere sono incluse in raccolte letterarie tematiche. Contattaci per ottenere un codice promozionale unico!

Vai alla bibliografia