Letteratura scientifica selezionata sul tema "Conductance quantization"
Cita una fonte nei formati APA, MLA, Chicago, Harvard e in molti altri stili
Consulta la lista di attuali articoli, libri, tesi, atti di convegni e altre fonti scientifiche attinenti al tema "Conductance quantization".
Accanto a ogni fonte nell'elenco di riferimenti c'è un pulsante "Aggiungi alla bibliografia". Premilo e genereremo automaticamente la citazione bibliografica dell'opera scelta nello stile citazionale di cui hai bisogno: APA, MLA, Harvard, Chicago, Vancouver ecc.
Puoi anche scaricare il testo completo della pubblicazione scientifica nel formato .pdf e leggere online l'abstract (il sommario) dell'opera se è presente nei metadati.
Articoli di riviste sul tema "Conductance quantization"
Batra, Inder P. "Origin of conductance quantization". Surface Science 395, n. 1 (gennaio 1998): 43–45. http://dx.doi.org/10.1016/s0039-6028(97)00601-8.
Testo completoSorée, Bart, Wim Magnus e Wim Schoenmaker. "Conductance quantization and dissipation". Physics Letters A 310, n. 4 (aprile 2003): 322–28. http://dx.doi.org/10.1016/s0375-9601(03)00351-7.
Testo completoNöckel, J. U. "Conductance quantization and backscattering". Physical Review B 45, n. 24 (15 giugno 1992): 14225–30. http://dx.doi.org/10.1103/physrevb.45.14225.
Testo completoCosby, Ronald M., Dustin R. Humm e Yong S. Joe. "Nanoelectronics using conductance quantization". Journal of Applied Physics 83, n. 7 (aprile 1998): 3914–16. http://dx.doi.org/10.1063/1.366626.
Testo completoSARMA, S. DAS, e SONG HE. "THEORY OF ELECTRON TRANSPORT THROUGH QUANTUM CONSTRICTIONS IN SEMICONDUCTOR NANOSTRUCTURES". International Journal of Modern Physics B 07, n. 19 (30 agosto 1993): 3375–404. http://dx.doi.org/10.1142/s0217979293003279.
Testo completoTakayanagi, Kunio, Yukihito Kondo e Hideo Ohnishi. "Conductance Quantization of Gold Nanowire". Materia Japan 40, n. 12 (2001): 1000. http://dx.doi.org/10.2320/materia.40.1000.
Testo completoBascones, E., G. Gómez-Santos e J. J. Sáenz. "Statistical significance of conductance quantization". Physical Review B 57, n. 4 (15 gennaio 1998): 2541–44. http://dx.doi.org/10.1103/physrevb.57.2541.
Testo completoKrompiewski, S. "Conductance quantization in ferromagnetic nanowires". Journal of Physics: Condensed Matter 12, n. 7 (3 febbraio 2000): 1323–28. http://dx.doi.org/10.1088/0953-8984/12/7/315.
Testo completoKivelson, S., e S. A. Trugman. "Quantization of the Hall conductance from density quantization alone". Physical Review B 33, n. 6 (15 marzo 1986): 3629–35. http://dx.doi.org/10.1103/physrevb.33.3629.
Testo completoOoka, Yutaka, Teruo Ono e Hideki Miyajima. "Conductance quantization in ferromagnetic Ni nanowire". Journal of Magnetism and Magnetic Materials 226-230 (maggio 2001): 1848–49. http://dx.doi.org/10.1016/s0304-8853(00)00881-7.
Testo completoTesi sul tema "Conductance quantization"
Zheng, Tao. "Study of Conductance Quantization by Cross-Wire Junction". Thesis, University of North Texas, 2004. https://digital.library.unt.edu/ark:/67531/metadc5540/.
Testo completoLehmann, Hauke [Verfasser]. "Spin-resolved conductance quantization in InAs nanodevices / Hauke Lehmann". München : Verlag Dr. Hut, 2013. http://d-nb.info/103304170X/34.
Testo completoNishi, Yusuke. "Nonpolar Resistive Switching Based on Quantized Conductance in Transition Metal Oxides". Kyoto University, 2019. http://hdl.handle.net/2433/242544.
Testo completoLind, Hans. "Spin Polarization and Conductance in Quantum Wires under External Bias Potentials". Thesis, Linköping University, Department of Physics, Chemistry and Biology, 2010. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-54514.
Testo completoWe study the spin polarization and conductance in infinitely long quasi one-dimensionalquantum wires under various conditions in an attempt to reproduce and to explain some of theanomalous conductance features as seen in various experiments. In order to accomplish thistask we create an idealized model of a quantum wire in a split-gate semiconductorheterostructure and we perform self-consistent Hartree-Fock calculations to determine theelectron occupation and spin polarization. Based on those results we calculate the currentthrough the wire as well as the direct and differential conductances. In the frame of theproposed model the results show a high degree of similarity to some of the experimentallyobserved conductance features, particularly the 0.25- and 0.85-plateaus. These results lead usto the conclusion that those conductance anomalies are in fact caused by the electronsspontaneously polarizing due to electron-electron interactions when an applied potentialdrives a current through the wire.
Clarke, Warrick Robin Physics Faculty of Science UNSW. "Quantum interaction phenomena in p-GaAs microelectronic devices". Awarded by:University of New South Wales. School of Physics, 2006. http://handle.unsw.edu.au/1959.4/32259.
Testo completoBrand, Janetta Debora. "A quantum hall effect without landau levels in a quasi one dimensional system". Thesis, Stellenbosch : Stellenbosch University, 2012. http://hdl.handle.net/10019.1/71643.
Testo completoENGLISH ABSTRACT: The experimental observation of the quantum Hall effect in a two-dimensional electron gas posed an intriguing question to theorists: Why is the quantization of conductance so precise, given the imperfections of the measured samples? The question was answered a few years later, when a connection was uncovered between the quantum Hall effect and topological quantities associated with the band structure of the material in which it is observed. The Hall conductance was revealed to be an integer topological invariant, implying its robustness to certain perturbations. The topological theory went further than explaining only the usual integer quantum Hall effect in a perpendicular magnetic field. Soon it was realized that it also applies to certain systems in which the total magnetic flux is zero. Thus it is possible to have a quantized Hall effect without Landau levels. We study a carbon nanotube in a magnetic field perpendicular to its axial direction. Recent studies suggest that the application of an electric field parallel to the magnetic field would induce a gap in the electronic spectrum of a previously metallic carbon nanotube. Despite the quasi onedimensional nature of the carbon nanotube, the gapped state supports a quantum Hall effect and is associated with a non zero topological invariant. This result is revealed when an additional magnetic field is applied parallel to the axis of the carbon nanotube. If the flux due to this magnetic field is varied by one flux quantum, exactly one electron is transported between the ends of the carbon nanotube.
AFRIKAANSE OPSOMMING: Die eksperimentele waarneming van die kwantum Hall effek in ’n twee-dimensionele elektron gas laat ’n interessante vraag aan teoretiese fisikuste: Waarom sou die kwantisasie van die geleiding so presies wees al bevat die monsters, waarop die meetings gedoen word, onsuiwerhede? Hierdie vraag word ’n paar jaar later geantwoord toe ’n konneksie tussen die kwantum Hall effek en topologiese waardes, wat verband hou met die bandstruktuur van die monster, gemaak is. Dit is aan die lig gebring dat die Hall geleiding ’n heeltallige topologiese invariante is wat die robuustheid teen sekere steurings impliseer. Die topologiese teorie verduidelik nie net die gewone kwantum Hall effek wat in ’n loodregte magneetveld waargeneem word nie. Dit is ook moontlik om ’n kwantum Hall effek waar te neem in sekere sisteme waar die totale magneetvloed nul is. Dit is dus moontlik om ’n gekwantiseerde Hall effek sonder Landau levels te hˆe. Ons bestudeer ’n koolstofnanobuis in ’n magneetveld loodreg tot die aksiale rigting. Onlangse studies dui daarop dat die toepassing van ’n elektriese veld parallel aan die magneetveld ’n gaping in die elektroniese spektrum van ’n metaliese koolstofnanobuis induseer. Ten spyte van die een-dimensionele aard van die koolstofnanobuis ondersteun die gapings-toestand steeds ’n kwantum Hall effek en hou dit verband met ’n nie-nul topologiese invariante. Hierdie resultaat word openbaar wanneer ’n bykomende magneetveld parallel tot die as van die koolstofnanobuis toegedien word. Indien die vloed as gevolg van hierdie magneetveld met een vloedkwantum verander word, word presies een elektron tussen die twee kante van die koolstofnanobuis vervoer.
Sattar, Abdul. "Electrical Characterization of Cluster Devices". Thesis, University of Canterbury. Physics and Astronomy, 2011. http://hdl.handle.net/10092/6677.
Testo completoLy, Ousmane. "Microscopie à grille locale comme outil d’extraction des propriétés électroniques locales en transport quantique". Thesis, Strasbourg, 2017. http://www.theses.fr/2017STRAE022/document.
Testo completoThe scanning gate microscopy (SGM) technique consists in measuring the conductance of a two dimensional electron gas (2DEG) under the influence of a scanning tip. In this work, an analytical approach complemented by numerical simulations is developed to study the connection between SGM measurements and local electronic properties in mesoscopic devices. The connection between the SGM response and the partial local density of states (PLDOS) is studied for the case of a quantum point contact surrounded by clean or disordered 2DEG for perturbative or non-perturbative, local or extended tips. An SGM-PLDOS correspondence is found for integer transmissions and local tips. The degradation of this correspondence out of these conditions is studied. Moreover, a presumed link between the SGM response and the Hilbert transform of the LDOS is discussed. To study the role of the tip strength, an analytical formula giving the full conductance in the case of local tips is obtained. Furthermore, a Green function method enabling to calculate the quantum conductance in the presence of a finite size tip in terms of the unperturbed properties is proposed. Finally the dependence of the PLDOS branches on the Fermi energy is studied
Lagos, Paredes Maureen Joel. "Efeitos estruturais na quantização da condutância de nanofios metálicos". [s.n.], 2007. http://repositorio.unicamp.br/jspui/handle/REPOSIP/259172.
Testo completoDissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Fisica Gleb Wataghin
Made available in DSpace on 2018-08-08T07:13:58Z (GMT). No. of bitstreams: 1 LagosParedes_MaureenJoel_M.pdf: 3881181 bytes, checksum: 517e8507ccdf35f0fa7a7f9fcb4b3b84 (MD5) Previous issue date: 2007
Resumo: O estudo de fios metálicos de tamanho atômico (NF's) tem atraído grande interesse devido aos novos efeitos químicos e físicos neles observados. Entre esses novos fenômenos podemos destacar a quantização da condutância, efeito que deve ser fundamental no desenho dos novos nanodispositivos eletrônicos. NF's são usualmente gerados através de um procedimento simples de deformação mecânica: duas superfícies metálicas são colocadas em contato e depois afastadas. Nos últimos estágios do estiramento antes da ruptura, um fio de alguns átomos de diâmetro é gerado enquanto a condutância é medida. Os NF's têm sido estudados por diferentes grupos e, em diversas condições de temperatura (4 - 300 K) e pressão (de ambiente a UHV). Os resultados apresentam importantes variações e, têm gerado interpretações muito controversas. Devemos enfatizar que muitas interpretações têm sido feitas sem considerar que a deformação estrutural dos NF's deve depender fortemente da temperatura. Nesta tese estudamos as propriedades estruturais e eletrônicas NF's e, em particular analisamos a influência de efeitos térmicos no arranjo atômico, e sua manifestação na condutância. A estrutura dos NF's foi estudada por microscopia eletrônica de transmissão de alta resolução resolvidas no tempo. A condutância foi medida utilizando um sistema de quebra controlada de junções operado em ultra-alto-vácuo. Os experimentos foram realizados a ~150 e 300 K. Nossos resultados mostraram que, à temperatura ambiente os NF's são sempre cristalinos e livre de defeitos nas regiões mais finas; e deformam unicamente ao longo dos eixos cristalográficos [111], [100] e [110]. A baixa temperatura duas importantes diferenças foram observadas: (i) NF's de ouro apresentam defeitos, principalmente falhas de empilhamento e maclas. (ii) NF's alongados na direção [110] evoluem em cadeias atômicas, de comportamento mecânico muito diferente da temperatura ambiente, onde quebram abruptamente. Segundo as imagens de microscopia eletrônica, discordâncias parciais (Shockley) geram falhas de empilhamento; e cadeias de átomos suspensos são observados a ~150 e 300 K. Histogramas globais de condutância adquiridos a baixa temperatura revelaram: (i) aumento da intensidade do pico ~1 Go; (ii) leve diminuição da condutância devido ao aumento de defeitos; e (iii) a existência de uma sub-estrutura no pico ~2 Go, indicando a formação de dois arranjos atômicos estáveis. Resumidamente, nossos resultados mostram que a formação de defeitos é um evento freqüente a ~150 K. Provavelmente, mais defeitos na estrutura devem acontecer para temperaturas menores (4 - 10 K). Portanto, uma importante mudança na evolução da condutância durante a elongação de NF's deve ser esperado a baixa temperatura. Assim, a comparação direta de medidas de transporte de NF's realizadas a diferentes temperaturas pode levar a sérias discrepâncias. Esperamos ter contribuído a melhorar a compreensão e interpretação de experimentos de transporte realizados em diferentes condições, de modo tal, a gerar um modelo único e coerente que explique as propriedades físicas de NF's metálicos
Abstract: The study of atomic-size metal nanowires (NW's) is attracting a great interest due to occurrence a novel physical and chemical phenomena. Among these new phenomena, we can mention conductance quantization that will certainly influence the design of nanodevices. NW's are usually generated by means of a simple procedure: two metallic surfaces are put into contact and, then retracted. Just before rupture atomic-size NW's are formed, and the conductance is measured during the wire elongation. The interpretation of the results is troublesome, because conductance is measured during the modification of the atomic structure. This kind of experimental study has been performed by many research groups and, a quite wide range of temperatures (4 - 300 K) and vacuum condition have been used (from ambient to UHV). In fact, the results display significant variation, what has generated several controversial interpretations. It must be emphasized that many models have been derived without taking into account that the NW structural deformation should be significantly dependent on temperature. In this Thesis research work, we have studied the structural and electronic properties of gold NW's, in particular addressing how thermal effects influence the atomistic aspects of the NW deformation and how this influences the quantum conductance behavior. The structure of NW's has been studied by means of time-resolved high resolution transmission electron microscopy; the NWs transport measurements were based on a mechanically controlled break junction operated in ultra-high-vacuum. The experiments were performed at ~150 and 300 K. Our results have shown that at room temperature the atomic-size NW's. are always crystalline and free of defects, and the atomic structure is spontaneously deformed such that one of the [111]/[100]/[110] crystallographic axis becomes approximately parallel to the stretching direction. Low temperature observations revealed two important differences: i) Au NWs show extended defects, mainly stacking faults and, twinning; ii) NWs elongated along the [110] axis evolve to suspended atomic chains, while at room temperature they break abruptly. Partial Schockley dislocations generate the staking faults; suspended atoms chains are both observed at ~150 and 300 K. The global histograms of conductance at ~150 K showed that: i) a increase of the 1 Go peak intensity; ii) slight reduction of the NWs conductance due to scattering at defects and; iii) the peak at ~2 Go shows a sub structure, what is due to the occurrence of two different atomic arrangements with similar conductance. Briefly, our results revealed that the formation of defects is very frequent in NWs generated at ~150 K; the occurrence of more defects should be expected when NWs are studied at cryogenic temperatures. Then, a significant modification of the NW conductance behavior should be expected at low temperature. In these terms, the direct comparison of conductance measurements realized at different temperature regimes can lead to serious discrepancies. We hope that this work contribute to improve the interpretation and understanding of NW transport studies in order to develop a coherent and complete model that explain the physical properties of atomic-size metal NWs
Mestrado
Física da Matéria Condensada
Mestre em Física
Chen, Peng-Yu, e 陳鵬宇. "Room-temperature conductance quantization at a mechanically controlled break junction". Thesis, 2004. http://ndltd.ncl.edu.tw/handle/36376219839057070566.
Testo completo輔仁大學
物理學系
92
Abstract Room-temperature conductance quantization at a mechanically controlled break junction We have studied conductance quantization through point-contact junctions of metal wires using a mechanically controlled wire-breaking device in ambient condition. This experiment demonstrates that the conduction through a nano constriction between two electron reservoirs can be treated by Landauer's formula,where G0 is the unitary conductance 2e^2/h , n denotes each possible conduction channel, and T is the transmission coefficient for each channel at the junction. The Landauer’s formula states a specific quantum size effect: T either equal to 1 or 0, in a ballistic constriction, e.g., the physical dimension of the confinement is much smaller than the electron mean free path. We have tested quantized conductance with various metals such as Au, Pt, Cu, and Ag. For Pt junctions, the standard deviation of a quantized conductance was found to be the smallest. This could be explained by a lower Pt diffusivity at room temperature. The junctions of Au and Pt also behaved differently as stretched. The conductance of Au tended to drop stepwise to the lowest quantized G whereas the Pt junctions often drifted back to a higher G value. Keyword:conductance、ballistic transport、Landauer's formula、 Mechanically Controlled Break Junction、nanowire
Libri sul tema "Conductance quantization"
Burton, J. D., e E. Y. Tsymbal. Magnetoresistive phenomena in nanoscale magnetic contacts. A cura di A. V. Narlikar e Y. Y. Fu. Oxford University Press, 2017. http://dx.doi.org/10.1093/oxfordhb/9780199533046.013.18.
Testo completovan Houselt, Arie, e Harold J. W. Zandvliet. Self-organizing atom chains. A cura di A. V. Narlikar e Y. Y. Fu. Oxford University Press, 2017. http://dx.doi.org/10.1093/oxfordhb/9780199533046.013.9.
Testo completoCapitoli di libri sul tema "Conductance quantization"
Magnus, Wim, e Wim Schoenmaker. "Conductance Quantization". In Springer Series in Solid-State Sciences, 225–44. Berlin, Heidelberg: Springer Berlin Heidelberg, 2002. http://dx.doi.org/10.1007/978-3-642-56133-7_16.
Testo completoGarcía, N., J. L. Costa-Krämer, A. Gil, M. I. Marqués e A. Correia. "Conductance Quantization in Metallic Nanowires". In Mesoscopic Electron Transport, 581–616. Dordrecht: Springer Netherlands, 1997. http://dx.doi.org/10.1007/978-94-015-8839-3_16.
Testo completoPoncharal, Ph, St Frank, Z. L. Wang e W. A. de Heel. "Conductance quantization in multiwalled carbon nanotubes". In The European Physical Journal D, 77–79. Berlin, Heidelberg: Springer Berlin Heidelberg, 1999. http://dx.doi.org/10.1007/978-3-642-88188-6_15.
Testo completoRuitenbeek, J. M., J. M. Krans, H. E. Brom e L. J. Jongh. "Conductance Quantization in Metals: Some Unsolved Problems". In Nanowires, 251–61. Dordrecht: Springer Netherlands, 1997. http://dx.doi.org/10.1007/978-94-015-8837-9_19.
Testo completoNawrocki, Waldemar. "Quantization of Electrical and Thermal Conductance in Nanostructures". In Introduction to Quantum Metrology, 157–72. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-15669-9_7.
Testo completoNawrocki, W., e M. Wawrzyniak. "Conductance Quantization in Magnetic and Nonmagnetic Metallic Nanostructures". In Nanostructured Magnetic Materials and their Applications, 383–92. Dordrecht: Springer Netherlands, 2004. http://dx.doi.org/10.1007/978-1-4020-2200-5_30.
Testo completoNawrocki, Waldemar. "Quantization of Electrical and Thermal Conductance in Nanostructures". In Introduction to Quantum Metrology, 185–202. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-19677-6_7.
Testo completoOlin, H., J. L. Costa-Krämer, N. Garcia, S. E. Kubatkin e T. Claeson. "Conductance Quantization in Gold Nanowires at Low Temperature". In Nanowires, 237–42. Dordrecht: Springer Netherlands, 1997. http://dx.doi.org/10.1007/978-94-015-8837-9_17.
Testo completode Haan, S., A. Lorke, J. P. Kotthaus, W. Wegscheider e M. Bichler. "Conductance quantization in an array of ballistic constrictions". In Springer Proceedings in Physics, 755–56. Berlin, Heidelberg: Springer Berlin Heidelberg, 2001. http://dx.doi.org/10.1007/978-3-642-59484-7_356.
Testo completoZhou, C., C. J. Muller, M. R. Deshpande, J. McCormack e M. A. Reed. "Conductance Quantization in Fully Integrated Break Junctions at Room Temperature". In Nanowires, 263–74. Dordrecht: Springer Netherlands, 1997. http://dx.doi.org/10.1007/978-94-015-8837-9_20.
Testo completoAtti di convegni sul tema "Conductance quantization"
Poulain, Christophe, Guillaume Jourdan, Alexis Peschot e Vincent Mandrillon. "Contact Conductance Quantization in a MEMS Switch". In 2010 IEEE Holm Conference on Electrical Contacts (Holm 2010). IEEE, 2010. http://dx.doi.org/10.1109/holm.2010.5619518.
Testo completoDuan, Qingxi, Jingxian Li, Jiadi Zhu, Teng Zhang, Jingjing Yang, Yuchao Yang e Ru Huang. "Conductance quantization in oxide-based resistive switching devices". In 2019 China Semiconductor Technology International Conference (CSTIC). IEEE, 2019. http://dx.doi.org/10.1109/cstic.2019.8755752.
Testo completoZota, Cezar B., Lars-Erik Wernersson e Erik Lind. "Conductance quantization in quasi-ballistic InGaAs nanowire MOSFETs". In 2015 73rd Annual Device Research Conference (DRC). IEEE, 2015. http://dx.doi.org/10.1109/drc.2015.7175667.
Testo completoNAWROCKI, W., e M. WAWRZYNIAK. "CONDUCTANCE QUANTIZATION IN MAGNETIC AND NONMAGNETIC METALLIC NANOWIRES". In Reviews and Short Notes to NANOMEETING-2001. WORLD SCIENTIFIC, 2001. http://dx.doi.org/10.1142/9789812810076_0043.
Testo completoNAWROCKI, W., M. WAWRZYNIAK, B. SUSŁA e J. BARNAŚ. "QUANTIZATION OF ELECTRICAL CONDUCTANCE IN METAL-SEMICONDUCTOR NANOCONTACTS". In Proceedings of the International Conference on Nanomeeting 2007. WORLD SCIENTIFIC, 2007. http://dx.doi.org/10.1142/9789812770950_0127.
Testo completoGarcia-Martin, Antonio, Luis S. Froufe-Perez e Juan J. Saenz. "Conductance quantization in nanoscale wires with surface disorder". In Microtechnologies for the New Millennium 2005, a cura di Paolo Lugli, Laszlo B. Kish e Javier Mateos. SPIE, 2005. http://dx.doi.org/10.1117/12.608225.
Testo completoTakayanagi, Kunio, Yoshifumi Oshima e Yoshihiko Kurui. "Conductance quantization of gold nanowires as a ballistic conductor". In 2009 IEEE International Interconnect Technology Conference - IITC. IEEE, 2009. http://dx.doi.org/10.1109/iitc.2009.5090337.
Testo completoScappucci, G., L. Di Gaspare, E. Giovine, A. Notargiacomo, R. Leoni e F. Evangelisti. "Conductance Quantization in Schottky-gated Si/SiGe Quantum Point Contacts". In PHYSICS OF SEMICONDUCTORS: 28th International Conference on the Physics of Semiconductors - ICPS 2006. AIP, 2007. http://dx.doi.org/10.1063/1.2730107.
Testo completoSune, J., E. Miranda, D. Jimenez, X. Saura, S. Long, L. Ming, J. M. Rafi e F. Campabadal. "Threshold switching and conductance quantization in Al/HfO2/Si(p) structures". In 2012 International Conference on Solid State Devices and Materials. The Japan Society of Applied Physics, 2012. http://dx.doi.org/10.7567/ssdm.2012.b-6-3.
Testo completoTavakoli, Adib, Kunal Lulla, Thierry Crozes, Eddy Collin e Olivier Bourgeois. "Measurement of heat conduction in a ballistic 1D phonon waveguide: no quantization of the thermal conductance". In 2018 IEEE 18th International Conference on Nanotechnology (IEEE-NANO). IEEE, 2018. http://dx.doi.org/10.1109/nano.2018.8626298.
Testo completo