Letteratura scientifica selezionata sul tema "Composites fibres de carbone recyclées"

Cita una fonte nei formati APA, MLA, Chicago, Harvard e in molti altri stili

Scegli il tipo di fonte:

Consulta la lista di attuali articoli, libri, tesi, atti di convegni e altre fonti scientifiche attinenti al tema "Composites fibres de carbone recyclées".

Accanto a ogni fonte nell'elenco di riferimenti c'è un pulsante "Aggiungi alla bibliografia". Premilo e genereremo automaticamente la citazione bibliografica dell'opera scelta nello stile citazionale di cui hai bisogno: APA, MLA, Harvard, Chicago, Vancouver ecc.

Puoi anche scaricare il testo completo della pubblicazione scientifica nel formato .pdf e leggere online l'abstract (il sommario) dell'opera se è presente nei metadati.

Articoli di riviste sul tema "Composites fibres de carbone recyclées":

1

Faure, Alexandre, Olivier Mantaux e Arnaud Gillet. "Performances of composites made from different recycled carbon fibre semi-products". Journal of Physics: Conference Series 2526, n. 1 (1 giugno 2023): 012048. http://dx.doi.org/10.1088/1742-6596/2526/1/012048.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
Abstract (sommario):
Abstract Recycled carbon fibres (rCF) were generally chosen for their low price and environmental features. However, performances of composites made of recycled carbon fibres are often too low to compete with lightweight alloys and glass fibre composites materials. As performances of rCF composites depend strongly on the fibres architecture, new semi-products with long and aligned recycled carbon fibres were developed by MANIFICA (Cleansky European Project). The use of long (up to 250mm) and highly aligned recycled fibres now provides rCF composites with excellent mechanical properties. The purpose of this work is to assess the performances of composites manufactured with these new rCF semi-products. Semi-products with distinct architectures developed by MANIFICA are first presented. Then mechanical performances of composite plates manufactured from the different semi-products are evaluated. Results are finally compared in order to identify the effect of the manufacturing parameters of the semi-products on the final composite properties. This crucial information will allow end-users to select the right semi-product to design recycled carbon fibre composite innovative parts.
2

Isa, Amiruddin, Norlin Nosbi, Mokhtar Che Ismail, Hazizan Md Akil, Wan Fahmin Faiz Wan Ali e Mohd Firdaus Omar. "A Review on Recycling of Carbon Fibres: Methods to Reinforce and Expected Fibre Composite Degradations". Materials 15, n. 14 (18 luglio 2022): 4991. http://dx.doi.org/10.3390/ma15144991.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
Abstract (sommario):
Carbon fibres are widely used in modern industrial applications as they are high-strength, light in weight and more reliable than other materials. The increase in the usage of carbon fibres has led to the production of a significant amount of waste. This has become a global issue because valuable carbon fibre waste ends up in landfill. A few initiatives have been undertaken by several researchers to recycle carbon fibre waste; however, the properties of this recycled material are expected to be worse than those of virgin carbon fibre. The incorporation of polymers, nanoparticles and other hybrid materials could enhance the overall properties of recycled carbon fibre waste. However, the degradation of fibre composites is expected to occur when the material is exposed to certain conditions and environments. The study of fibre composite degradation is crucial to enhance their properties, strength, safety and durability for future applications.
3

Bachmann, Jens, Martin Wiedemann e Peter Wierach. "Flexural Mechanical Properties of Hybrid Epoxy Composites Reinforced with Nonwoven Made of Flax Fibres and Recycled Carbon Fibres". Aerospace 5, n. 4 (10 ottobre 2018): 107. http://dx.doi.org/10.3390/aerospace5040107.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
Abstract (sommario):
Can a hybrid composite made of recycled carbon fibres and natural fibres improve the flexural mechanical properties of epoxy composites compared to pure natural fibre reinforced polymers (NFRP)? Growing environmental concerns have led to an increased interest in the application of bio-based materials such as natural fibres in composites. Despite their good specific properties based on their low fibre density, the application of NFRP in load bearing applications such as aviation secondary structures is still limited. Low strength NFRP, compared to composites such as carbon fibre reinforced polymers (CFRP), have significant drawbacks. At the same time, the constantly growing demand for CFRP in aviation and other transport sectors inevitably leads to an increasing amount of waste from manufacturing processes and end-of-life products. Recovering valuable carbon fibres by means of recycling and their corresponding re-application is an important task. However, such recycled carbon fibres (rCF) are usually available in a deteriorated (downcycled) form compared to virgin carbon fibres (vCF), which is limiting their use for high performance applications. Therefore, in this study the combination of natural fibres and rCF in a hybrid composite was assessed for the effect on flexural mechanical properties. Monolithic laminates made of hybrid nonwoven containing flax fibres and recycled carbon fibres were manufactured with a fibre volume fraction of 30% and compared to references with pure flax and rCF reinforcement. Three-point bending tests show a potential increase in flexural mechanical properties by combining rCF and flax fibre in a hybrid nonwoven.
4

Karuppannan Gopalraj, Sankar, e Timo Kärki. "A Study to Investigate the Mechanical Properties of Recycled Carbon Fibre/Glass Fibre-Reinforced Epoxy Composites Using a Novel Thermal Recycling Process". Processes 8, n. 8 (8 agosto 2020): 954. http://dx.doi.org/10.3390/pr8080954.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
Abstract (sommario):
Manufacturing-based carbon fibre-reinforced polymer (CFRP) and glass fibre-reinforced polymer (GFRP) wastes (pre-consumer waste) were recycled to recover valuable carbon fibres (CFs) and glass fibres (GFs), utilising a novel thermal recycling process with a cone calorimeter setup. The ideal conditions to recycle both the fibres occurred at 550 °C in atmospheric pressure. The processing time in the batch reactor to recycle CFs was 20–25 min, and to recycle GFs it was 25–30 min. The recovery rate of the recycled CFs was 95–98 wt%, and for GFs it was 80–82 wt%. Both the recycled fibres possessed a 100–110 mm average length. The resin phase elimination was verified by employing scanning electron microscopy (SEM). Furthermore, the fibres were manually realigned, compression moulded at room temperature, and cured for 24 h by a laminating epoxy resin system. The newly manufactured CFRP and GFRP composites were continuous (uniform length from end to end), unidirectionally oriented (0°), and non-woven. The composites were produced in two fibre volumes: 40 wt% and 60 wt%. The addition of ≈20 wt% recycled CFs increased the tensile strength (TS) by 12%, young modulus (YM) by 34.27% and impact strength (IS) by 7.26%. The addition of ≈20 wt% recycled GFs increased the TS by 75.14%, YM by 12.23% and the IS by 116.16%. The closed-loop recycling approach demonstrated in this study can effectively recycle both CFRP and GFRP manufacturing wastes. Preserving the structural integrity of the recycled fibres could be an advantage, enabling recycling for a specified number of times.
5

Faure, Alexandre, Olivier Mantaux, Arnaud Gillet e Gilles Cazaurang. "New Intelligent Semi-Products based on Recycled Carbon Fibres". IOP Conference Series: Materials Science and Engineering 1226, n. 1 (1 febbraio 2022): 012102. http://dx.doi.org/10.1088/1757-899x/1226/1/012102.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
Abstract (sommario):
Abstract The carbon fibre recycling industry is not yet able to operate at full capacity. This lack of potential is a repercussion of a low demand for recycled carbon fibres (rCF) to manufacture new composite materials. As a matter of fact, few semi-products containing recycled carbon fibres are available on the market. Moreover, rCF semi-products available do not allow to manufacture high performances composite parts. The MANIFICA project, based on highly realigned carbon fibres after steam thermolysis, aims at producing new semi-products from recycled carbon fibres for high performance composites. In this article we introduce the I2M/Université de Bordeaux re-alignment process producing continuous tapes made of highly aligned long discontinuous fibres. These tapes are then used to manufacture new intelligent rCF semi-products. In the first part, the mechanical properties of rCF composites based on different semi-products are compared. In the second part, several semi products based on realigned fibres tapes are presented. This work demonstrates that high performance products can be targeted with recycled carbon fibres, thanks to the development of these intelligent semi-products.
6

Laurikainen, P., e E. Sarlin. "Viability of recycled fibres extracted from EoL composites". IOP Conference Series: Materials Science and Engineering 1293, n. 1 (1 novembre 2023): 012043. http://dx.doi.org/10.1088/1757-899x/1293/1/012043.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
Abstract (sommario):
Abstract Recycling thermoset-based composites is a technological and economic challenge. The predominating recycling methods (mechanical recycling and pyrolysis) downgrade the fibre properties (length, strength) and are energy-intensive. To avoid downcycling and to ensure economic feasibility, technological solutions need to be developed to enable recycling of long reinforcing fibres that can also be used in demanding applications. Thermochemical recycling, where reinforcing fibres are extracted from the depolymerized matrix, can be considered as an advanced option for recovery of higher quality fibres from EoL composites. Additional steps are required to use these fibres in new composite structures. Thermochemical recycling removes the sizing from the fibre surface making it difficult to handle and resulting in poor fibre-matrix compatibility especially in the case of glass fibres. In this study, we discuss the re-sizing of recycled fibres. We have focused on fibres extracted from glass fibre reinforced composites (GFRPs) from EoL wind turbine blades and carbon fibre reinforced composites (CFRPs) collected from aeronautics industry. We demonstrate the steps for a batch re-sizing process and study the effects of the re-sizing on the properties of composites made of recycled fibres. The interfacial properties are analysed with micro-mechanical testing using the microbond method – both for thermoset and thermoplastic composites – and with tensile tests for thermoplastic composites. Re-sizing significantly eases the handling of the fibres, but the interfacial compatibility is improved only in the case of GFRPs as thermochemically recycled carbon fibres (rCF) exhibit very good interfacial performance even without sizing. This study highlights that with proper recovery and resizing processes, recycled fibres can be viable feedstocks for various applications and – with future improvements on the fibre recovery methods – even approach the applicability of virgin fibres.
7

Pomázi, Ákos, Dániel István Poór, Norbert Geier e Andrea Toldy. "Optimising Recycling Processes for Polyimine-Based Vitrimer Carbon Fibre-Reinforced Composites: A Comparative Study on Reinforcement Recovery and Material Properties". Materials 17, n. 10 (15 maggio 2024): 2372. http://dx.doi.org/10.3390/ma17102372.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
Abstract (sommario):
We investigated the recycling process of carbon fibre-reinforced polyimine vitrimer composites and compared composites made from virgin and recycled fibres. The vitrimer matrix consisted of a two-component polyimine-type vitrimer system, and as reinforcing materials, we used nonwoven felt and unidirectional carbon fibre. Various diethylenetriamine (DETA) and xylene solvent ratios were examined to find the optimal dissolution conditions. The 20:80 DETA–xylene ratio provided efficient dissolution, and the elevated temperature (80 °C) significantly accelerated the process. Scaling up to larger composite structures was demonstrated. Scanning electron microscopy (SEM) confirmed effective matrix removal, with minimal residue on carbon fibre surfaces and good adhesion in recycled composites. The recycled nonwoven composite exhibited a decreased glass transition temperature due to the residual solvents in the matrix, while the UD composite showed a slight increase. Dynamic mechanical analysis on the recycled composite showed an increased storage modulus for nonwoven composites at room temperature and greater resistance to deformation at elevated temperatures for the UD composites. Interlaminar shear tests indicated slightly reduced adhesion strength in the reprocessed composites. Overall, this study demonstrates the feasibility of recycling vitrimer composites, emphasising the need for further optimisation to ensure environmental and economic sustainability while mitigating residual solvent and matrix effects.
8

Sales-Contini, Rita C. M., Hugo M. S. Costa, Heide H. Bernardi, William M. M. Menezes e Francisco J. G. Silva. "Mechanical Strength and Surface Analysis of a Composite Made from Recycled Carbon Fibre Obtained via the Pyrolysis Process for Reuse in the Manufacture of New Composites". Materials 17, n. 2 (14 gennaio 2024): 423. http://dx.doi.org/10.3390/ma17020423.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
Abstract (sommario):
This work aims to obtain recycled carbon fibre and develop an application for this new material. The carbon fibres were obtained by recycling aerospace prepreg waste via the pyrolysis process. The recycled fibres were combined with an Araldite LH5052/Aradur LY5053 epoxy resin/hardener system using manual lay-up and vacuum bagging processes. For comparison, the same resin/hardener system was used to produce a composite using commercial carbon fibre. The recycled and commercial composites were subjected to flexural, tensile and Mode I testing. Fracture aspects were analysed via scanning electron microscopy (SEM). The pyrolysis process did not affect the fibre surface as no degradation was observed. The fracture aspect showed a mixture of failure in the recycled composite laminate and interlaminar/translaminar failure near the surface of the commercial composite caused by flexural stress. Flexural and tensile tests showed a loss of mechanical strength due to the recycling process, but the tensile values were twice as high. The sand ladder platform was the project chosen for the development of a product made with recycled carbon fibres. The product was manufactured using the same manufacturing process as the specimens and tested with a 1243 kg car. The method chosen to design, manufacture and test the prototype sand ladder platform made of recycled carbon fibre was appropriate and gave satisfactory results in terms of high mechanical strength to bending and ease of use.
9

Oliveira, Maria, Kim L. Pickering e Christian Gauss. "Hybrid Polyethylene Composites with Recycled Carbon Fibres and Hemp Fibres Produced by Rotational Moulding". Journal of Composites Science 6, n. 11 (18 novembre 2022): 352. http://dx.doi.org/10.3390/jcs6110352.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
Abstract (sommario):
This study assessed polyethene composites produced by rotational moulding with hybrid reinforcement using recycled carbon fibre (RCF) and hemp fibre (HF). First, the RCF was treated with nitric acid to introduce hydroxyl groups on the fibres’ surface and was characterised by infrared spectroscopy and microscopy analyses. Although the fibre surface treatment improved the tensile properties of the composites, the use of grafted maleic anhydride polyethylene (MAPE) as a coupling agent was more effective in improving the interfacial bonding between the fibres and the matrix. Alkali-treated hemp fibres were then used in combination with RCF to produce rotationally moulded composites with an overall fibre content of 10 wt.% but with different ratios of HF/RCF, namely, (20/80) and (50/50). The results showed that the addition of RCF increased the composite’s Young’s modulus compared to neat PE, regardless of the fibre treatment. Similarly, the hybrid composites showed superior Young’s moduli than the HF–PE composites through the increase in the RCF content. It was also observed that adding RCF reduced the void size within the final composites compared to the HF–PE composites, which contributed to the greater performance of the hybrid composites compared to their natural counterparts.
10

Matrenichev, Vsevolod, Maria Clara Lessa Belone, Sarianna Palola, Pekka Laurikainen e Essi Sarlin. "Resizing Approach to Increase the Viability of Recycled Fibre-Reinforced Composites". Materials 13, n. 24 (17 dicembre 2020): 5773. http://dx.doi.org/10.3390/ma13245773.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
Abstract (sommario):
Most recycling methods remove the essential sizing from reinforcing fibres, and many studies indicate the importance of applying sizing on recycled fibres, a process we will denote here as resizing. Recycled fibres are not continuous, which dissociates their sizing and composite lay-up processes from virgin fibres. In this study, commercial polypropylene and polyurethane-based sizing formulations with an aminosilane coupling agent were used to resize recycled glass and carbon fibres. The impact of sizing concentration and batch process variables on the tensile properties of fibre-reinforced polypropylene and polyamide composites were investigated. Resized fibres were characterized with thermal analysis, infrared spectroscopy and electron microscopy, and the tensile properties of the composites were analysed to confirm the achievable level of performance. For glass fibres, an optimal mass fraction of sizing on the fibres was found, as an excess amount of film former has a plasticising effect. For recycled carbon fibres, the sizing had little effect on the mechanical properties but led to significant improvement of handling and post-processing properties. A comparison between experimental results and theoretical prediction using the Halpin-Tsai model showed up to 81% reinforcing efficiency for glass fibres and up to 74% for carbon fibres.

Tesi sul tema "Composites fibres de carbone recyclées":

1

Shi, Yang. "Economie circulaire pour les composites à fibres de carbone : du déchet aéronautique vers les composites carbone+ thermoplastiques recyclés". Electronic Thesis or Diss., Bordeaux, 2022. http://www.theses.fr/2022BORD0153.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
Abstract (sommario):
Depuis leur industrialisation, la production de composites en fibres de carbone augmente de façon continue. Lors du recyclage des composites à fibres de carbone, seules les fibres seront recyclées. La « suppression » de la matrice est réalisée par pyrolyse, solvolyse ou vapo-thermolyse, procédés qui n’entraînent que peu de dégradation des fibres. Afin de susciter une demande pour les fibres de carbone recyclées, il faut donner de la valeur ajoutée aux fibres recyclées en démontrant la faisabilité de fabriquer des pièces composites (fibre recyclée+matrice) de haute qualité.Les architectures de fibres recyclées semi longues avec un très bon alignement ont été produites par la technologie de réalignement brevetée du laboratoire qui permet d’assurer une exploitation optimale des propriétés des fibres de carbone recyclées. Dans le but de maîtriser et d’optimiser les propriétés du nouveau composite (à fibres discontinues), les mécanismes de transfert de charge entre fibres ont été étudiés, et les propriétés utiles de la matrice ont été identifiées. Une attention particulière a été portée au calcul de la longueur de transfert de charge entre deux fibres discontinues en fonction des propriétés de l'interface fibre recyclée / matrice thermoplastique. En effet, notre objectif est non seulement de rechercher des solutions optimales en termes de résistance mais aussi des solutions qui permettent de limiter l’impact environnemental, d’où notre choix des matrices thermoplastiques (y compris recyclées) pour cette étude.Tous les résultats des simulations numériques ont été validés par comparaison avec des résultats expérimentaux. De plus des composites fibres de carbone recyclées/matrice thermoplastique (PA6 et PC) ont été mis en œuvre et testés. Ces matériaux présentent des taux de fibres supérieurs à 50% et offrent de meilleures propriétés mécaniques que les mêmes matériaux avec matrice epoxy.Une analyse environnementale a été propsée sur l’exemple d’une pale d’éolienne portative en comparant les impacts de la matière première, de la fabrication et de la fin de vie d’une pièce réalisée avec différents matériaux (alliage léger, composite fibres de verre, composites à fibres recyclées). Cela démontre l’intérêt des fibres de carbone recyclées associées à une matrice thermoplastique recyclée, pour minimiser l’impact environnemental tout en maximisant les performances mécaniques
Since their industrialization, the production of carbon fiber composites is continuously increasing. When recycling carbon fiber composites, only the fibers are recycled. The matrix is "removed" by pyrolysis, solvolysis or vapour-thermolysis, processes that cause little degradation of the fibres. In order to create a demand for recycled carbon fibers, it is necessary to add value to recycled fibers by demonstrating the feasibility of manufacturing high quality composite parts (recycled fiber + matrix).Semi-long recycled fiber architectures with very good alignment were produced by the laboratory's patented realignment technology that ensures optimal exploitation of recycled carbon fiber properties. In order to control and optimize the properties of the new composite (staple fiber), the mechanisms of load transfer between fibers were studied, and the useful properties of the matrix were identified. Particular attention has been paid to the calculation of the load transfer length between two staple fibers as a function of the properties of the recycled fiber/thermoplastic matrix interface. Indeed, our objective is not only to find optimal solutions in terms of strength but also solutions that allow to limit the environmental impact, hence our choice of thermoplastic matrices (including recycled) for this study.All the results of the numerical simulations were validated by comparison with experimental results. In addition, recycled carbon fiber/thermoplastic matrix composites (PA6 and PC) were implemented and tested. These materials have fiber contents higher than 50% and offer better mechanical properties than the same materials with epoxy matrix.An environmental analysis was performed on the example of a portable wind turbine blade by comparing the impacts of the raw material, manufacturing and end of life of a part made with different materials (light alloy, glass fiber composite, recycled fiber composites). This demonstrates the interest of recycled carbon fibers associated with a recycled thermoplastic matrix, to minimize the environmental impact while maximizing mechanical performance
2

Jlassi, Sabrine. "Composites à fibres de carbone recyclées : variabilité des sources et optimisation des performances mécaniques". Thesis, Ecole nationale des Mines d'Albi-Carmaux, 2019. http://www.theses.fr/2019EMAC0006.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
Abstract (sommario):
Le recyclage des matériaux composites renforcés de fibres de carbone suscite de plus en plus d’intérêt pour répondre aux exigences règlementaires et aux besoins industriels. Le défi majeur est de récupérer les fibres de carbone afin de les réintégrer dans des composites (2.0) de seconde génération. La particularité des fibres recyclées, provenant de diverses sources, réside dans la variabilité de leurs propriétés et d’un point de vue industriel et économique, le tri des composites par type/grade de fibres avant le recyclage semble onéreux. L’objectif de cette thèse est d’évaluer l’intérêt du traitement par vapo-thermolyse des composites usagés sans un tri préalable et de valider à une échelle représentative les conditions de remise en forme des fibres recyclées en renfort textile et de remise en œuvre des composites 2.0. L’étude s’est focalisée sur le développement et la caractérisation mécanique de nouveaux composites renforcés de non-tissés en fibres de carbone vierges. Les non-tissés ont été mis en forme par cardage en se basant sur un plan d’expériences type plan de mélanges prenant en compte trois grades de fibres de carbone coupées en trois longueurs différentes. Les résultats ont montré que le mélange de fibres de propriétés différentes et de longueurs permet de réduire la variabilité des propriétés des composites. Mais l’augmentation des proportions des fibres ayant de faibles propriétés mécaniques dans un mélange provoque une chute des performances. Ces résultats ont permis une meilleure compréhension de l’influence des propriétés des fibres et de l’architecture du renfort non-tissé sur les propriétés des composites. L’étude a été complétée par une comparaison des propriétés mécaniques de deux composites renforcés de non-tissés simples et comélés à base de fibres de carbone vierges et recyclées. Les résultats ont montré un excellent potentiel des renforts en fibres de carbone recyclées comparés aux renforts en fibres vierges et aux renforts en fibres recyclées actuellement commercialisés
There is a great deal of interest with carbon fiber reinforced composite recycling in order to respond to regulatory requirements and industrial needs. The major challenge is to recover carbon fibers in order to reintegrate them into second-generation (2.0) composites. The particularity of recycled carbon fibers coming from different sources is the variability of their properties. From an industrial and economical point of view, composite sorting by fiber type/grade before recycling seems to be not profitable. This project aims to evaluate the interest of recycling composites by steam-thermolysis without preliminary sorting and to validate at a representative scale the implementation conditions of recycled fibers into textile reinforcements and 2.0 thermoplastic composites. The study focused on development and mechanical characterization of new virgin carbon fiber non-woven reinforced composites. A design of experiments was carried out by using a Mixture Design methodology considering three carbon fiber grades cut into three different lengths in order to produce non-woven reinforcement by carding. It has been shown that the mixture of fibers with different properties and lengths induces reducing variability of composite properties. But the increase in mixture proportion of fibers having low mechanical properties leads to a drop-in composite performance. This part allowed a better understanding of fiber properties and non-woven reinforcement architecture influence on composite properties. The study was completed by a comparison of mechanical properties of two simple and comingled recycled carbon fiber non-woven reinforced composites. The results showed an excellent potential of recycled carbon fiber non-woven reinforcement compared to virgin carbon fiber and commercialized recycled carbon fiber non-wovens
3

Boulanghien, Maxime. "Formulations de composites thermoplastiques à partir de fibres de carbone recyclées par vapo-thermolyse". Thesis, Ecole nationale des Mines d'Albi-Carmaux, 2014. http://www.theses.fr/2014EMAC0020/document.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
Abstract (sommario):
L'industrie de la fibre de carbone connaît actuellement une forte croissance, passant d'une demande annuelle mondiale de 18 000 tonnes en 2001 à 48 000 tonnes en 2013. Entre l'important gisement de déchets composites à valoriser et les différentes mesures législatives françaises et européennes prises en faveur d'une gestion durable des déchets, le recyclage des composites carbone (PRFC - Polymères Renforcés de Fibres de Carbone) offre d'intéressantes perspectives environnementales et économiques. L'objectif de ce travail de thèse est d'obtenir des composites thermoplastiques à partir de fibres de carbone recyclées. Des fibres de carbone ont ainsi été récupérées du traitement par vapo-thermolyse de composites à matrice époxyde fabriqués par LRI (Liquid Resin Infusion). La vapo-thermolyse est un procédé thermochimique utilisant la vapeur d'eau surchauffée à pression atmosphérique pour la dégradation de la matrice organique des composites et la récupération des fibres de carbone. De prime abord, l'étude des propriétés des fibres montre que le procédé est particulièrement efficace pour dégrader la résine tout en préservant les propriétés mécaniques des fibres récupérées. Deux voies de formulation sont alors proposées. La première concerne l'élaboration de granulés thermoplastiques pour l'injection ; la seconde l'élaboration de mats à orientation aléatoire pour la fabrication de TRE (Thermoplastique Renforcé Emboutissable). L'étude des propriétés mécaniques des composites ainsi élaborés montre des résultats comparables à ceux obtenus pour des matériaux élaborés à partir de fibres vierges. La fibre de carbone recyclée par vapo-thermolyse constitue donc une fibre compétitive en tant que renfort pour des composites thermoplastiques à fibres courtes
World need in carbon fibre grew from 18,000 tons per year in 2001 to 48,000 tons in 2013. With the increasing amount of composite waste and the recent French or European legislation focus towards a sustainable waste management, carbon fibre composites recycling offers interesting economic and environmental perspectives. This project aims at enabling the manufacturing of thermoplastic composites from recycled carbon fibres. To reach this goal, PAN-based carbon fibres were recycled from epoxy resin/carbon fibre composites by steam-thermolysis. It is a thermochemical process using superheated steam at environmental pressure to degrade the organic matrix of composites and thus to recover carbon fibres. Reclaimed carbon fibres were first studied so as to show that the steam-thermal process is particularly efficient to degrade the epoxy resin of composites while maintaining fibres mechanical properties. Two kinds of composites were then considered: short-fibre reinforced compounds for injection and randomly-oriented fibre mat reinforced thermoplastics. Their mechanical properties were studied and results show that mechanical performances of recycled carbon fibre-based composites are similar to those of virgin carbon fibre-based composites. Steam-thermolysis recycled carbon fibre is a competitive fibre while being used as reinforcement for short fibre reinforced thermoplastics
4

Fontaine, Pauline. "Traitement thermique de recyclage appliqué aux composites carbone/PEEK et aux mélanges de composites renforcés carbone. Solutions alternatives de valorisation des fibres recyclées". Thesis, Ecole nationale des Mines d'Albi-Carmaux, 2020. http://www.theses.fr/2020EMAC0015.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
Abstract (sommario):
Les composites renforcés à fibres de carbone (CRFC) sont des matériaux de haute technicité appliqués à de nombreux domaines, du sport à l’aéronautique. Cette dernière décennie a vu leur demande croitre continuellement, générant en conséquence une augmentation du volume de déchets. Incités par les directives Européennes sur la gestion des déchets, des traitements thermiques de recyclage industriel ont été développés afin de récupérer les fibres de carbone issues des CFRC, principalement à matrice thermodurcissable. Actuellement, les CRFC en développement et/ou de dernières générations, utilisent des matrices thermostables telles que le Poly Ether Ether Cétone (PEEK). Une partie des travaux de thèse consiste à étudier la faisabilité de recyclage de ce composite thermostable, seul et en mélange avec d’autres types de composites à matrice thermodurcissable et thermoplastique. Un pilote semi-industriel a été employé sous atmosphères inerte (pyrolyse) et réactives (vapo-thermolyse et air). Les premiers résultats sur des mélanges ont montré que sous atmosphère inerte la récupération des fibres de carbone issues des matrices thermostables est quasi impossible. A l’inverse, les essais sur les composites PEEK en atmosphères oxydantes permettent l’extraction de la fibre mais induisent des modifications morphologiques et chimiques de la surface ainsi qu’une réduction de la résistance en traction. Les travaux de thèse se focalisent également sur des solutions alternatives de valorisation des fibres de carbone recyclées. Ces fibres ont été recouvertes de nanocellulose en tant qu’agent d’ensimage, en vue de leur réutilisation dans de nouvelles formulations. La perte de propriétés mécaniques induite par le recyclage a été partiellement compensée par ce traitement de surface. Des fibres recyclées ont également été incorporées dans un composite à renfort naturel de jute et matrice PA6 dans le but de créer un composite hybride offrant des propriétés équilibrées en termes de résistance, prix et impact écologique
Carbon Fiber Reinforced Composites (CFRC) are high technical materials applied in various fields from sports to aeronautics. During the last decade, the demand of CFRC has extended significantly resulting in increasing the volume of composite waste generated each year. Incited by European directives, thermal recycling treatments have been developed at industrial scale to recover carbon fibers, mostly from thermosetting composites. Nowadays CFRP in development used thermoresistant resins such as Poly Ether Ether Ketone (PEEK). Part of this work is to study the recycling feasibility of this type of CFRP alone and mixed with thermosetting and thermoplastics matrix based composites. Semi-industrial pilot was used in inert (pyrolysis) and reactive (steam-thermolysis, oxydation) atmosphere conditions. First results of mixture perform in nitrogen have revealed that inert atmosphere cannot allow the recovery of carbon fibers from thermoresistant resins. On the contrary trials on PEEK in oxydative atmospheres enable the extraction of fiber, but induce morphological and chemical modifications and tensile strength reduction. New approach on the recycled carbon fiber valorization have also been studied. These fibers have been coated by nanocellulose as sizing agent for their reuse in new composite formulations. Mechanical properties loss induce by recycling have been offset thank to this surface treatment. Recycled fibers was also incorporate in jute/PA6 composite to create a hybrid composite with balance properties in terms of strength, price and environmental impact
5

Howarth, Jack. "Material characterisation and interface optimisation of recycled carbon fibre composites". Thesis, University of Sheffield, 2012. http://etheses.whiterose.ac.uk/4042/.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
Abstract (sommario):
Composites manufactured from a novel non-woven veil of recycled carbon fibre were tested in longitudinal tension, 3-point bend and short beam shear to assess their mechanical properties with respect to other commonly available materials. It was found that their mechanical properties were intermediate between ‘high-end’ unidirectional pre-preg and ‘low-end’ chopped strand mat, and similar to that of other short-fibre reinforced plastics. A range of oxygen plasma treatments were carried out on the fibres to improve interfacial performance of the composites. It was found that treatment at an intermediate plasma power of 20 W resulted in the greatest improvement in tensile strength of a 10⁰ off-axis composite. Samples were manufactured from either 2 individual veils (IV) or from 2, 10-layer ‘pre-forms’ (PF). Both exhibited similar improvements in 10⁰ off-axis strength. Thus shadowing of the fibre within the plasma did not appear to be significant. Overtreatment at higher plasma powers (35 and 50 W for IV and 50 W for PF) resulted in a significant reduction in tensile strength and failure strain. X-ray Photoelectron Spectroscopy (XPS) showed that plasma treatment at 20 W resulted in the highest level of oxygen functionality on the fibre surface, correlating with the best interfacial performance. Plasma treatment at 10 and 35 W resulted in slightly elevated surface oxygen content, however the off-axis tensile properties of 10 W treated samples were not significantly improved compared to the untreated control. The poor mechanical performance of the over-treated samples can be attributed to either an overly strong interface resulting from increased adhesion or damage to the fibres as a result of the treatment process. There were large variations in fibre wettability across treatments, such that no discernible pattern was present between wettability and interfacial performance. XPS and ToF-SIMS analysis showed that there was almost complete coverage of the veil by the binder in the veil-making process, and that silicon contamination on the fibre itself is likely silica based, and that silicon present in the binder is PDMS.
6

Fradet, Guillaume. "Physico-chimie de l’interface fibres/matrice : applications aux composites Carbone/Carbone". Thesis, Bordeaux 1, 2013. http://www.theses.fr/2013BOR14948/document.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
Abstract (sommario):
Ces travaux de thèse portent sur la physico-chimie de l'interface fibre/matrice appliquée aux composites Carbone/Carbone. La surface des fibres de carbone est modifiée par divers traitements de surface (voie gazeuse et voie humide). L'impact de ces différents procédés sur l'état de surface des fibres a été évalué par chromatographie gazeuse en phase inverse à dilution infinie, MEB, AFM, MET, RAMAN… Suite à ces caractérisations, des traitements de surface ont été retenus pour la réalisation de composite C/C. Les propriétés notamment mécaniques des matériaux composites à interfaces modulées (force de la liaison fibre/matrice) ont pu être évaluées. Finalement, il a pu être établi une relation entre modifications de surface des fibres de carbone et comportement macroscopique des composites C/C
This work focuses on the physical chemistry of the fiber/matrix interface applied to composites carbon/carbon. The surface of carbon fibers was modified by various surface treatments. The carbon fibers surface variation was evaluated by inverse gas chromatography at infinite dilution, SEM, AFM, TEM, Raman... After these characterizations, surface treatments were selected for the realization of C/C composites. The mechanical properties of composites at modulated interfaces (fibers/matrix bonding) were evaluated. Finally, a correlation between surface modification of carbon fibers and macroscopic behavior of composite C/C was established
7

Breban, Philippe. "Composites aluminium fibres de carbone obtenus par filage". Châtenay-Malabry, Ecole centrale de Paris, 1990. http://www.theses.fr/1990ECAP0130.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
Abstract (sommario):
La plupart des composites à matrice métalliques étudiés à l'heure actuelle sont élaborés par trois technologies principales, dont le coût relativement élevé limite les domaines d'utilisation. Pour palier cet inconvénient, nous avons travaillé à mettre au point un procédé de cofilage en phase solide. L’évolution du procédé nous a permis de résoudre les problèmes d'imprégnation du renfort par la matrice. Dans le cadre de l'optimisation des étapes de fabrication, nous avons étudié l'influence des paramètres suivants sur le comportement et les mécanismes d'endommagement du matériau: longueur des fibres, orientation du renfort et fraction volumique locale. Pour cela nous avons développé une démarche de type micro-macro fondée sur la théorie d'inclusion équivalente d'Eshelby. Nous modélisons ainsi l'influence de la microstructure sur les caractéristiques élastiques, les coefficients de dilatation et la surface seuil d'écoulement. Des calculs par éléments finis sur cellules de base à trois phases complète cette approche. Nous regardons l'influence de la répartition des fibres sur le développement de la plasticité locale. Une configuration de fibres proches de leurs voisines a un rôle prépondérant sur la propagation de l'endommagement qui se produit en tête de fibre. Nous proposons un critère analytique d'initiation de cet endommagement qui prend en compte la distribution de fraction volumique locale dans le matériau. Les résultats sont comparés à des essais de traction dans l'enceinte du microscope électronique à balayage, ou nous pouvons suivre les différentes étapes du processus de rupture. L’outil analytique développé est intégré dans une démarche originale de détermination d'une statistique d'endommagement pour une structure. Nous pouvons, ainsi, donner localement la probabilité d'endommagement d'un volume de composite en fonction de l'observation de ses distributions de microstructure, et du chargement
8

Devallencourt, Leriche Christine. "Caractérisation physico-chimiques de celluloses recyclées, de résines mélamine formaldéhyde et de composites résine/cellulose". Rouen, 1997. http://www.theses.fr/1997ROUES055.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
Abstract (sommario):
Lorsqu’une résine mélamine formaldéhyde est introduite dans un substrat cellulosique, un matériau composite est obtenu. Dans ce travail, nous montrons que les propriétés mécaniques et le comportement à l'humidité de ce composite dépendent du taux de dilution, du PH de la solution de résine et de la température de traitement utilisée. Les méthodes expérimentales utilisées sont l'analyse thermogravimétrique (ATG), l'analyse thermogravimétrique couplée IRFT, la RMN du 13C, l'analyse mécanique dynamique et l'analyse enthalpique différentielle (AED). A l'aide de l'analyse ATG utilisée en mode isotherme, nous avons montré que les cinétiques de dégradation des celluloses recyclées sont d'ordre 1. Ce résultat nous a autorisés à utiliser le modèle cinétique de Broido (mode dynamique) et ainsi à trouver une méthode qui permet la quantification des constituants des celluloses de récupération en particulier les quantités relatives en pâte mécanique et chimique. A l'aide de l'ATG couplée IRFT, l'ATG en mode isotherme et en mode dynamique et l'AED, nous avons montré que les réactions d'auto condensation de la résine sont accélérées en PH acide lorsque cette résine est introduite dans la matrice cellulosique. Les mesures viscoélastiques montrent que des réactions de co-condensation peuvent avoir lieu pour des recuits à haute température lorsque le PH est neutre ou basique, tandis que pour les systèmes à PH acide les réactions d'auto condensation restent majoritaires. Enfin, l'étude en absorption d'eau sur les composites résine/cellulose recyclée (PH=7) montre un double mode d'absorption, du type Langmuir et Flory Huggins, dépendant du taux d'humidité relative. En présence de la résine mélamine formaldéhyde le comportement à l'humidité du composite se rapproche de celui d'un polymère dense.
9

Mercier, Sylvie. "Réactivité interfaciale de systèmes aluminium-fibres de carbone et aluminium-fibres céramique". Mulhouse, 1994. http://www.theses.fr/1994MULH0303.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
Abstract (sommario):
L'objectif de l'étude est d'apporter une contribution à la compréhension des phénomènes interfaciaux qui interviennent lors de l'élaboration des matériaux composites à renfort fibreux et à matrice aluminium. Les renforts choisis pour cette étude ont été des fibres de carbone, des fibres de carbone protégées, et des fibres à base de carbure de silicium. Ces fibres sous forme de tissu ont été recouvertes d'aluminium par dépôt physique en phase vapeur. Les matériaux ainsi obtenus ont subi des traitements thermiques dans un réacteur couple à un spectromètre de masse. L'existence de réactions entre certains gaz produits par les fibres (CO, CO2) et l'aluminium lorsque la température est supérieure à 650°C a ainsi pu être mise en évidence. Ces réactions se produisent lors de la traversée du dépôt d'aluminium par les gaz issus des fibres et provoquent la formation de carbone d'aluminium. Le carbure d'aluminium est également formé par des réactions entre les espèces solides constituant les fibres et le métal. La quantité de carbure d'aluminium formé à l'interface fibre/métal lors des traitements thermiques a été déterminée par hydrolyse. Il a ainsi pu être montré que le carbure d'aluminium provient essentiellement des réactions entre les solides constituant les fibres et le métal. L'efficacité de divers recouvrements contre la formation de carbure d'aluminium a aussi été étudiée.
10

Després, Jean-François. "Les interphases de carbone pyrolytique dans les composites carbone-carbure de silicium". Pau, 1993. http://www.theses.fr/1993PAUU3021.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
Abstract (sommario):
Pour conférer des propriétés satisfaisantes à un composite où sont unis fibres de carbone et carbure de silicium, il semble indispensable d'interposer une troisième phase : une interphase de carbone pyrolytique. L'interphase, en améliorant le comportement par un transfert de charge effectif depuis la matrice sur les fibres, n'élève pas systématiquement les niveaux de contrainte et d'allongement à la rupture. Il faut donc, à l'aide du microscope électronique par transmission, rechercher une origine à cette dispersion en étudiant la nanotexture de l'interphase. Ainsi il a été possible d'extraire trois familles de comportement mécanique. La corrélation étant mise en évidence, l'interprétation qu'elle suggère conduit à préférer une liaison pyrocarbone/matrice plutôt de faible force, une liaison trop forte induisant un comportement fragile. Enfin après avoir compris le fonctionnement d'un composite interphase, une ébauche d'étude d'élaboration de pyrocarbone sur substrat plan a examiné les relations textures/paramètres physiques (T et temps). On a pu se rendre compte de la double évolution de l'organisation de la texture qui diminuait pour une augmentation de température ou de la durée du dépôt. Ainsi, pour une loi cinétique simple, la quantité et la qualité du dépôt sont deux aspects antagonistes.

Libri sul tema "Composites fibres de carbone recyclées":

1

Delmonte, John. Technology of carbon and graphite fiber composites. Malabar, Fla: R.E. Krieger Pub. Co., 1987.

Cerca il testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
2

Pierre, Delhaes, a cura di. Fibers and composites. London: Taylor & Francis, 2003.

Cerca il testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
3

Morgan, Peter. Carbon Fibers and Their Composites. CRC, 2005.

Cerca il testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
4

Morgan, Peter. Carbon Fibers and Their Composites. Taylor & Francis Group, 2005.

Cerca il testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
5

Morgan, Peter. Carbon Fibers and Their Composites. Taylor & Francis Group, 2005.

Cerca il testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
6

Delhaes, Pierre. Fibers and Composites. Taylor & Francis Group, 2003.

Cerca il testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
7

Delhaes, Pierre. Fibers and Composites. Taylor & Francis Group, 2003.

Cerca il testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
8

Delhaes, Pierre. Fibers and Composites. Taylor & Francis Group, 2003.

Cerca il testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
9

Polymercarbon Nanotube Composites Preparation Properties And Applications. Woodhead Publishing, 2011.

Cerca il testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
10

Kodolov, Vladimir I., A. K. Haghi, P. M. Sivakumar e Gennady Efremovich Zaikov. Nanostructure, Nanosystems, and Nanostructured Materials: Theory, Production and Development. Apple Academic Press, Incorporated, 2013.

Cerca il testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri

Capitoli di libri sul tema "Composites fibres de carbone recyclées":

1

García-Arrieta, Sonia, Essi Sarlin, Amaia De La Calle, Antonello Dimiccoli, Laura Saviano e Cristina Elizetxea. "Thermal Demanufacturing Processes for Long Fibers Recovery". In Systemic Circular Economy Solutions for Fiber Reinforced Composites, 81–97. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-22352-5_5.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
Abstract (sommario):
AbstractThe possibility of recycling glass (GF) and carbon fibers (CF) from fiber-reinforced composites by using pyrolysis was studied. Different fibers from composite waste were recovered with thermal treatment. The recycled fibers were evaluated as a reinforcement for new materials or applications. The main objective was to evaluate the fibers obtained from the different types of industrial composite waste considering the format obtained, the cleanliness and the amount of inorganic fillers and finally, the fibers quality. These characteristics defined the processes, sectors and applications in which recycled fibers can replace virgin fibers. These fibers were also evaluated and validated with tensile testing and compared to the tensile strength of virgin GF and CF.
2

Mantelli, Andrea, Alessia Romani, Raffaella Suriano, Marinella Levi e Stefano Turri. "Additive Manufacturing of Recycled Composites". In Systemic Circular Economy Solutions for Fiber Reinforced Composites, 141–66. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-22352-5_8.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
Abstract (sommario):
AbstractAn additive remanufacturing process for mechanically recycled glass fibers and thermally recycled carbon fibers was developed. The main purpose was to demonstrate the feasibility of an additive remanufacturing process starting from recycled glass and carbon fibers to obtain a new photo- and thermally-curable composite. 3D printable and UV-curable inks were developed and characterized for new ad-hoc UV-assisted 3D printing apparatus. Rheological behavior was investigated and optimized considering the 3D printing process, the recyclate content, and the level of dispersion in the matrix. Some requirements for the new formulations were defined. Moreover, new printing apparatuses were designed and modified to improve the remanufacturing process. Different models and geometries were defined with different printable ink formulations to test material mechanical properties and overall process quality on the final pieces. To sum up, 3D printable inks with different percentages of recycled glass fiber and carbon fiber reinforced polymers were successfully 3D printed.
3

Laurikainen, Pekka, Sarianna Palola, Amaia De La Calle, Cristina Elizetxea, Sonia García-Arrieta e Essi Sarlin. "Fiber Resizing, Compounding and Validation". In Systemic Circular Economy Solutions for Fiber Reinforced Composites, 125–40. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-22352-5_7.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
Abstract (sommario):
AbstractThe mechanical performance of a composite is greatly related to the load transfer capability of the interface between the matrix and the reinforcing fibers, i.e. the fiber/matrix adhesion, which is enhanced by a surface treatment called sizing. The original sizing of reinforcing fibers is removed during recycling process, which is recognized to contribute in typical issues of recycled fibers, namely uneven fiber properties and poor fiber/matrix adhesion. Applying a new sizing, a process denoted here as resizing, can help mitigate the issues. Furthermore, the sizing has a major role in improving the processability of the fibers as it contributes to the distribution of the fibers in the matrix. Proper distribution, along with the fiber fraction, are highly important for the composite performance. These properties are ensured by proper compounding. Here we demonstrate and validate the process steps to resize and compound recycled glass and carbon fibers with thermoplastic matrices. We found that at a relatively high sizing concentration, the compounding of all tested material combinations was possible. The resizing of the recycled fibers improved the compatibility at the fiber/matrix interface. It was concluded that recycled fibers can be used to replace virgin fibers in automotive industry to allow weight reductions and to promote circularity.
4

García-Arrieta, Sonia, Iratxe López Benito, Marta García, Giacomo Bonaiti, Olatz Ollo Escudero e Cristina Elizetxea. "Use Case 2: Thermal Recycling of Long Fibers". In Systemic Circular Economy Solutions for Fiber Reinforced Composites, 323–44. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-22352-5_16.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
Abstract (sommario):
AbstractThis chapter describes the industrial demonstration of the reuse of recycled fibers obtained by a thermal process. Four demonstrators are described in which both recycled carbon fibers and recycled glass fibers have been incorporated into different matrices. The automotive sector proposes 3 demo cases (Pedal Bracket, Front-end carrier and Cowl top support) with demanding mechanical and thermal requirements. These components were manufactured by injection molding with thermoplastic matrices. The construction sector proposes 1 demo case (Light transmitting single skin profiled sheet.) with mechanical and light transmittance requirements that was manufactured by continuous lamination. It is demonstrated that the incorporation of recycled fiber for these applications is technically possible, fulfilling the requirements demanded by each sector.
5

Lammer, Herfried, Tamara König, Giacomo Bonaiti e Roberto Onori. "Use Case 1: Mechanical Recycling of Short Fibers". In Systemic Circular Economy Solutions for Fiber Reinforced Composites, 303–22. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-22352-5_15.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
Abstract (sommario):
AbstractThe main objective of Use Case 1 is the development of industrial demonstrators of new products incorporating mechanically recycled glass fiber composites. These demonstrators will determinate the technical feasibility and cost effectiveness for glass and carbon fibers recycling solutions. The demonstrators include structural parts like a ski by HEAD Sport and sanitary products like shower trays by Novellini where the recycling fibers are used for existing products. A series of design concepts have been developed supported by a design briefing and a co-design methodology for street furniture and similar products, where the recycled materials are already considered from the start of the design of the product.
6

Trochoutsou, Niki, Danny Smyl e Giacomo Torelli. "Self-Sensing Performance of Cementitious Composites with Carbon and Recycled Carbon Fibres". In RILEM Bookseries, 203–14. Cham: Springer Nature Switzerland, 2024. http://dx.doi.org/10.1007/978-3-031-53389-1_20.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
7

Minosi, S., G. Buccoliero, M. Araganese, U. Raganato, A. Tarzia, S. Corvaglia e N. Gallo. "Application of Recycled Carbon Fibers in Aircraft Windows Frame". In Dynamic Response and Failure of Composite Materials, 337–42. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-28547-9_38.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
8

Copani, Giacomo, Maryam Mirpourian, Nikoletta Trivyza, Athanasios Rentizelas, Winifred Ijomah, Sarah Oswald e Stefan Siegl. "New Business Models and Logistical Considerations for Composites Re-use". In Systemic Circular Economy Solutions for Fiber Reinforced Composites, 385–415. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-22352-5_19.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
Abstract (sommario):
AbstractThe growing use of composites in various industries such as aerospace, automotive and wind turbine has increased environmental concerns regarding their waste disposal methods. Deploying circular economy practices to reuse composites could play a crucial role in the future. In this regard, this chapter addresses the development and implementation of new business models for composites re-use, as fundamental enabler for the industrial exploitation and diffusion of technological and methodological innovations developed in the FiberEUse project. Seven products were chosen as representatives for composites reuse application in four industrial sectors: sanitary, sports equipment, furniture and automotive. Re-use business models are presented describing their value proposition, with particular reference to the provision of advanced product-service bundles, the revenue models (including schemes such as leasing), as well as new supply chain configurations entailing new partnership between producers and recyclers to access post-use composites to re-use. Given the importance of reverse supply networks, the potential reverse logistics pathways for mechanical recycling of Glass Fiber Reinforced Plastic (GFRP), thermal recycling of Carbon Fiber Reinforced Plastic (CFRP) and remanufacturing of CF composites waste in Europe for 2020 and 2050 have been investigated. We concluded that the optimal reverse logistics network needs to be decentralized in more than one country in Europe. Therefore, it is suggested that policy makers address regulation to allow the transportation of waste between European countries to facilitate the development of recycling networks for composites reuse.
9

La Rosa, A. D., V. Leistad e Z. Gavric. "LCA of Reusing Carbon Fibers Recycled Through Solvolysis Process of Thermoset Composites". In Sustainable Production, Life Cycle Engineering and Management, 143–53. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-90217-9_13.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
10

Irez, Alaeddin Burak, e Sukru Yirik. "Development of Cost-Effective Sustainable Hybrid Composites Based on Recycled PP and Chopped Carbon Fibers". In Lecture Notes in Mechanical Engineering, 145–55. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-99-3672-4_12.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri

Atti di convegni sul tema "Composites fibres de carbone recyclées":

1

BARNETT, PHILIP R., NADIM S. HMEIDAT e DAYAKAR PENUMADU. "NEAR ZERO-WASTE MANUFACTURING OF CARBON FIBER-REINFORCED THERMOPLASTIC COMPOSITES". In Proceedings for the American Society for Composites-Thirty Seventh Technical Conference. Destech Publications, Inc., 2022. http://dx.doi.org/10.12783/asc37/36464.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
Abstract (sommario):
Organosheet composite scrap made from polyphenylene sulfide reinforced with long recycled carbon fibers was reprocessed to produce compression molding compounds. No additional polymer was added to the process, making this a demonstration of closed-loop recyclability in composites manufacturing. The recyclate, produced by hammer-milling organosheet trimmings, was sieved and the resulting particulate geometry was measured to predict the fiber length in the molded composites. Tensile testing of the composites revealed that high stiffness parts (tensile modulus greater than 13 GPa) can be achieved using particulate molding compounds, but that tensile strength was significantly degraded. Still, the isotropic molded composites exhibited a greater than 18.8% increase in tensile strength over the neat polymer. Evaluation of the composite microstructure via optical microscopy revealed that fiber packing played a significant role in the tensile strength of the particulate composites, indicating that microstructural heterogeneity should be avoided to maximize the properties of composites made of recycled organosheet waste.
2

Pompidou, Stéphane, Marion Prinçaud, Nicolas Perry e Dimitri Leray. "Recycling of Carbon Fiber: Identification of Bases for a Synergy Between Recyclers and Designers". In ASME 2012 11th Biennial Conference on Engineering Systems Design and Analysis. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/esda2012-82106.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
Abstract (sommario):
In order to decrease both energy consumption and CO2 emissions, the automotive, aeronautics and aerospace industries aim at making lighter vehicles. To achieve this, composite materials provide good opportunities, ensuring high material properties and free definition of geometry. As an example, for cold applications, the use of carbon fiber/thermoset composites is ever increasing, in spite of a high fiber price. But in a global and eco-friendly approach, the major limitation for their use remains their potential recyclability. Recycling a composite means having a recycling technology available, getting a dismantle solution and an access for the product, and disposing identification plus selection possibilities to the materials. Thus, carbon fibers recovery (i.e. recycling and re-processing) would both help design engineers to balance energy efficiency and cost, and open new opportunities for developing second-life composites, dedicated to the manufacture of medium or low loaded parts (non-structural in many cases). A first section presents an overview of composite recycling possibilities. Indeed, environmentally and economically, composite incineration is not attractive (even with an energetic valorization), let-alone burying. Reuse and recycling thus remain the two most interesting options. Aeronautics offers a high potential in terms of fiber deposit. In southwest France, composites recycling will increase in terms of quantity due to dismantling platforms Tarmac (dedicated to civil aircraft applications) and P2P (for the disassembly of ballistic weapons). In addition, from a technical point of view, and even if end-of-life solutions for composites still remain under development, solvolysis (i.e. water under supercritical conditions) already offers the opportunity to recover carbon fibers. The resulting recyclate retains up to 90 percent of the fiber’s mechanical properties. A second part will explore the recycling to design issue (i.e. how recycling processes have to balance the previous aspects of the end-of-life proposal). The recycler clearly becomes a new supplier in the carbon fiber lifecycle, by revalorizing wastes with alternatives to burning. Moreover, increasing carbon fiber shelf life reduces its product life impact. Finally, promoting carbon fiber end-of-life would ensure to link aeronautics, automotive, and leisure and sports industries; but one can create demand for recycled reinforcement, by packaging it in useful and attractive forms for those end-users (e.g. pseudo-continuous fiber, felt, strips, bands, patches, etc.). These sections will be enlightened by several examples from collaborations between I2M and local industries.
3

Malkapuram, Devaiah. "Development of Hybrid Natural Fiber Reinforced Composite Material for Automotive Applications". In International Conference on Advances in Design, Materials, Manufacturing and Surface Engineering for Mobility. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 2023. http://dx.doi.org/10.4271/2023-28-0131.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
Abstract (sommario):
<div class="section abstract"><div class="htmlview paragraph">Industrialization concerns are stimulating research in development of new materials for automotive industries. Natural fibers which are available abundantly can be extracted naturally from environment. Preventing further pollutants on environment from depleting dwindling wood resources from forests and earth surface.</div><div class="htmlview paragraph">Natural fibers are derived from renewable sources, making them environmentally friendly. Their use in composites reduces dependence on non-renewable resources and helps lower the carbon footprint of automobiles. Natural fibers, such as hemp, jute, and flax are lightweight materials. By incorporating them into polymer composites, the overall weight of automobile components can be reduced, leading to improved fuel efficiency and lower emissions. Natural fibers are generally less expensive than synthetic fibers, incorporating natural fibers into polymer composites can help reduce material costs in automobile manufacturing. Natural fiber polymer composites can be recycled at the end of their life cycle, contributing to a more sustainable automotive industry.</div><div class="htmlview paragraph">In this project work, we have opted Hemp and Short carbon as fiber composite and prepared three composites of Hemp, Short Carbon and hybrid composite of both fibers. The composites are prepared by employing Hand Lay-up technique and evaluated the Density, Water Absorption Tensile Strength, Flexural Strength of the Hemp, Short Carbon and Hemp/Short Carbon fiber reinforced polymer matrix composites.</div></div>
4

BOCCARUSSO, L. "Mechanical and chemical combined recycling process for CFRP scraps". In Material Forming. Materials Research Forum LLC, 2024. http://dx.doi.org/10.21741/9781644903131-63.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
Abstract (sommario):
Abstract. Composite materials are increasingly employed in many industrial sectors. Among others, carbon fibers are primarily used as reinforcing agents in high-performance composites with synthetic resin matrices such as epoxies, polyimides, vinyl esters, phenolics, and certain thermoplastics. However, when carbon fibers are coupled with thermosetting matrices, the resulting composites are not easily recyclable. When these products reach their end-of-life (EoL), there are several difficulties in their recycling and in the reuse of the carbon fiber reinforcement. Several recycling process methods exist, but one of the most promising and investigated in recent years is the mechanical one, which, unlike other approaches, does not require the use of high temperatures to decompose the polymeric matrix. However, the presence of residual matrix on the surface of the fibers negatively affects their potential reuse for the production of new composites. In comparison to well-known mechanical recycling methods such as shredding, crushing, and hammer milling processes, this work presents a combined recycling process comprising mechanical recycling by milling and a soft chemical treatment at temperatures significantly lower than those reached during conventional thermal recycling processes. Recycled fibers were then used to produce new composite laminates using an epoxy resin as the matrix. The effects of the chemical treatment on the adhesion between recycled fibers and the new resin were evaluated through pull-out and bending tests.
5

Lang, T., M. Hasan, T. Gereke, A. Abdkader e C. Cherif. "Modeling and Simulation of Recycled Carbon Fiber Reinforced Composites with Varying Fiber Lengths". In VIII Conference on Mechanical Response of Composites. CIMNE, 2021. http://dx.doi.org/10.23967/composites.2021.085.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
6

Ghorbel, Elhem, e Mariem Limaiem. "Efficiency of Bio-Sourced Composites in Confining Recycled Aggregates Concrete". In 4th International Conference on Bio-Based Building Materials. Switzerland: Trans Tech Publications Ltd, 2022. http://dx.doi.org/10.4028/www.scientific.net/cta.1.505.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
Abstract (sommario):
This research investigates the efficiency of using Flax Fibers reinforced bio-sourced polymer by comparison to traditional system based on Carbone Fiber Reinforced Epoxy Polymer in order to confine recycled aggregates concrete. Four concrete formulations have been formulated by incorporating recycled aggregates from demolition waste (0%, 30%, 50% and 100%). An air-entraining agent was added to the formulations to achieve the level of 4% occluded air. The main objective is to discuss and to evaluate the effectiveness of confining them using bio-sourced composite by comparison to traditional ones. To hit this target, the developed approaches are both experimental and analytical. The first part is experimental and aimed to characterize the mechanical behavior of the materials: the composites used in the confining process the unconfined concrete (effect of incorporating recycled aggregates on the overall mechanical characteristics). We establish that bio-sourced composites are efficient in strengthening recycled aggregates concrete especially if they are air-entrained. The second part of this work is dedicated to analytical modeling of mechanical behavior of confined concrete with composite under compression based on Mander’s model. The input parameters of the model were modified to consider the rate of recycled aggregates incorporation. Comparison between experimental results and the modified Mandel’s Model is satisfactory.
7

Hosokawa, Meire Noriko, e Jane Maria Faulstich de Paiva. "Flexural properties of recycled ABS/recycled carbon fiber fabric composites". In PROCEEDINGS OF THE 37TH INTERNATIONAL CONFERENCE OF THE POLYMER PROCESSING SOCIETY (PPS-37). AIP Publishing, 2023. http://dx.doi.org/10.1063/5.0168558.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
8

DE FAZIO, D. "Mechanical recycling of CFRPs: manufacturing and characterization of recycled laminates". In Italian Manufacturing Association Conference. Materials Research Forum LLC, 2023. http://dx.doi.org/10.21741/9781644902714-48.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
Abstract (sommario):
Abstract. Carbon fibre reinforced plastics (CFRPs) are a very attractive family of materials used in various application fields such as automotive, marine or aeronautic, due to their high specific mechanical properties. However, the large use of CFRPs dramatically increases the amount of waste materials that derives from the end-of-life products and the off-cuts generated during the manufacturing. In this contest, especially when thermosetting matrices are considered, the need to further study the recycling process of CFRPs is an open topic, both in academic and industrial research. Therefore, in this experimental campaign, CFRP materials deriving from the aeronautic field were recycled by using a milling process. The obtained chips were sieved and inspected with a confocal microscope aiming to evaluate the presence of residual matrix on the recovered fibre’s surface. Then the sieved reinforcement was impregnated with new epoxy resin and three-point bending tests were performed to understand the mechanical properties of the recycled composite materials. To produce recycled composites, two manufacturing techniques, i.e. open moulding and compression moulding were considered.
9

Meshoyrer, Emanuel, Crystal Pan, Brianna Yao, Joanna Zhang e Elizabeth Chang. "Development of Polymer Composites Reinforced with Recycled Carbon Fibers". In 2019 IEEE MIT Undergraduate Research Technology Conference (URTC). IEEE, 2019. http://dx.doi.org/10.1109/urtc49097.2019.9660443.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
10

BOCCARUSSO, L. "Unconventional method for recycling CFRPs by using a milling process". In Material Forming. Materials Research Forum LLC, 2023. http://dx.doi.org/10.21741/9781644902479-181.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
Abstract (sommario):
Abstract. Composite materials are increasingly employed in many industrial sectors (transportation, infrastructure, electronics). Among the others, carbon fibers are used primarily as reinforcing agents in high-performance composites with synthetic resin matrices such as epoxies, polyimides, vinyl esters, phenolics, and certain thermoplastics. However, when carbon fibers were coupled with a thermosetting matrix, the resulting composites are not easily recyclable. When these products reaching their end-of-life (EoL) there are several difficulties in their recycling and in the reuse of the carbon fiber reinforce. There are several recycling process methods, but one of the most promising and investigated in the last years is the mechanical one that differently from other approaches do not require the use of high temperature or chemical substances to decompose the polymeric matrix. Respect to known mechanical recycling methods like shredding, crushing and hammer milling process, in this work is presented a mechanical recycling that mainly consists in the use of an un-conventional milling process in order to obtain carbon/epoxy chips. Different chips in terms of geometry and size were obtained by fixing the milling process parameters, so the results in terms of chip morphological characteristic were presented. CFRPs chips, after sieving, were then used to manufacture new CFRPs laminates produced starting from recycled materials.

Vai alla bibliografia