Letteratura scientifica selezionata sul tema "Composite materials Cu/D"
Cita una fonte nei formati APA, MLA, Chicago, Harvard e in molti altri stili
Consulta la lista di attuali articoli, libri, tesi, atti di convegni e altre fonti scientifiche attinenti al tema "Composite materials Cu/D".
Accanto a ogni fonte nell'elenco di riferimenti c'è un pulsante "Aggiungi alla bibliografia". Premilo e genereremo automaticamente la citazione bibliografica dell'opera scelta nello stile citazionale di cui hai bisogno: APA, MLA, Harvard, Chicago, Vancouver ecc.
Puoi anche scaricare il testo completo della pubblicazione scientifica nel formato .pdf e leggere online l'abstract (il sommario) dell'opera se è presente nei metadati.
Articoli di riviste sul tema "Composite materials Cu/D"
Wang, Qing Yun, Wei Ping Shen e Ming Liang Ma. "Mean and Instantaneous Thermal Expansion of Uncoated and Ti Coated Diamond/Copper Composite Materials". Advanced Materials Research 702 (maggio 2013): 202–6. http://dx.doi.org/10.4028/www.scientific.net/amr.702.202.
Testo completoSundaram, Rajyashree, Atsuko Sekiguchi, Guohai Chen, Don Futaba, Takeo Yamada, Ken Kokubo e Kenji Hata. "Influence of Carbon Nanotube Attributes on Carbon Nanotube/Cu Composite Electrical Performances". C 7, n. 4 (15 novembre 2021): 78. http://dx.doi.org/10.3390/c7040078.
Testo completoZhang, Dan-dan, e Zai-ji Zhan. "Experimental investigation of interfaces in graphene materials/copper composites from a new perspective". RSC Advances 6, n. 57 (2016): 52219–26. http://dx.doi.org/10.1039/c6ra07606h.
Testo completoWidiatmoko, Julian, Fanghui Jia e Zhengyi Jiang. "Al-Cu Composite’s Springback in Micro Deep Drawing". Journal of Engineering and Technological Sciences 55, n. 4 (26 ottobre 2023): 384–92. http://dx.doi.org/10.5614/j.eng.technol.sci.2023.55.4.3.
Testo completoOrii, Yuta, Masaki Kobayashi, Yuki Nagai, Kohei Atsumi, Daichi Tazaki, Satoshi Ehara e Takashiro Akitsu. "Anisotropic strain and Jahn-Teller effect of chiral complexes and metal oxides". Acta Crystallographica Section A Foundations and Advances 70, a1 (5 agosto 2014): C179. http://dx.doi.org/10.1107/s2053273314098209.
Testo completoChow, G. M., T. Ambrose, John Q. Xiao, M. E. Twigg, S. Baral, A. M. Ervin, S. B. Qadri e C. R. Feng. "Chemical precipitation and properties of nanocrystalline FeCu alloy and composite powders". Nanostructured Materials 1, n. 5 (settembre 1992): 361–68. http://dx.doi.org/10.1016/0965-9773(92)90086-d.
Testo completoStando, Grzegorz Jan, Pyry-Mikko Hannula, Bogumiła Kumanek, Mari Lundström, Haitao Liu e Dawid Janas. "(Digital Presentation) Recovery of Copper from Wastewater By Electrodeposition Onto Nanocarbon Composites". ECS Meeting Abstracts MA2022-01, n. 9 (7 luglio 2022): 761. http://dx.doi.org/10.1149/ma2022-019761mtgabs.
Testo completoZaporotskova, I. V., D. P. Radchenko, L. V. Kozitov, P. A. Zaporotskov e A. V. Popkova. "Theoretical studies of a metal composite based on a monolayer of pyrolyzed polyacrylonitrile containing paired metal atoms Cu—Co, Ni—Co, Ni—Cu, Ni—Fe and an amorphizing silicon additive". Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering 23, n. 3 (10 novembre 2020): 196–202. http://dx.doi.org/10.17073/1609-3577-2020-3-196-202.
Testo completoWang, Wen-Min, Lu Zhang, Wen-Long Wang, Jin-Yi Huang, Qian-Yuan Wu e Jerry J. Wu. "Photocatalytic Degradation of 1,4-Dioxane by Heterostructured Bi2O3/Cu-MOF Composites". Catalysts 13, n. 8 (15 agosto 2023): 1211. http://dx.doi.org/10.3390/catal13081211.
Testo completoAli, Amira H., Asmaa S. Hassan, Ashour M. Ahmed, Ahmed A. Abdel-Khaliek, Sawsan Abd El Khalik, Safaa M. Abass, Mohamed Shaban, Fatimah Mohammed Alzahrani e Mohamed Rabia. "Preparation and Characterization of Nanostructured Inorganic Copper Zinc Tin Sulfide-Delafossite Nano/Micro Composite as a Novel Photodetector with High Efficiency". Photonics 9, n. 12 (14 dicembre 2022): 979. http://dx.doi.org/10.3390/photonics9120979.
Testo completoTesi sul tema "Composite materials Cu/D"
Kraiem, Nada. "Impression 3D de matériaux composites à base de diamant pour des applications de gestion thermique". Electronic Thesis or Diss., Bordeaux, 2024. http://www.theses.fr/2024BORD0129.
Testo completoWith the trend towards miniaturization of electrical equipment and the constant increase in power density in semiconductor devices, efficient heat management has become a major concern for researchers. Indeed, this technological evolution imposes increasingly strict constraints in terms of thermal dissipation, necessitating innovative solutions to ensure better durability and reliability of components. In this context, the use of composite materials offering high thermal conductivity and low coefficient of thermal expansion compared to pure metals has become essential to address overheating issues in electronic components. The utilization of advanced materials such as diamond (D), with exceptional thermal conductivity and hardness properties, stands out as a preferred choice for reinforcing metal matrices. However, its incorporation into composite materials requires the creation of a well-defined D-metal interface, both to avoid porosity formation and to ensure efficient transfer of thermal properties. Additive manufacturing of 3D materials by laser fusion is emerging as a promising solution, not only for the ease of implementation of these composites, but also for the creation of complex structures dedicated to heat dissipation. These structures play a crucial role in optimizing the heat exchange surface by convection with the surrounding air, thus allowing efficient dissipation of heat generated by modern electronic devices.In this study, 3D printing of copper (Cu) was achieved through the addition of an optimal amount of aluminum. This approach significantly improved the densification of copper-based materials, despite the challenges posed by its high reflectivity. Subsequently, in-depth investigation and optimization of laser 3D printing of the AlSi10Mg alloy, before and after the incorporation of D, were carried out. Finally, a crucial post-processing step was optimized, consisting of polishing Al/D composite materials using laser ablation.This work was carried out as part of an international collaboration between the University of Nebraska, Lincoln in the United States of America, and the University of Bordeaux in France
Guazzone, Federico. "Engineering of substrate surface for the synthesis of ultra-thin composite Pd and Pd-Cu membranes for H₂ separation". Link to electronic thesis, 2005. http://www.wpi.edu/Pubs/ETD/Available/etd-011006-123013/.
Testo completoKaforey, Monica L. "Solid state thermal gradient processing of Y₁Ba₂Cu₃O₇âx/Ag superconducting composite ribbons". Thesis, Massachusetts Institute of Technology, 1994. http://hdl.handle.net/1721.1/28038.
Testo completoVita. Title as it appears in the Feb. 1994 MIT Graduate List: Solid state temperature gradient processing of Y₁Ba₂Cu₃O₇âx/Ag superconducting composite ribbons.
Includes bibliographical references (leaves 197-202).
by Monical L. Kaforey.
Ph.D.
Wenger, Wolfgang. "Investigations into 3-D reinforcements for composite materials". Thesis, University of Ulster, 1993. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.358671.
Testo completoMeier, Dominik [Verfasser], e Leonhard M. [Akademischer Betreuer] Reindl. "Millimeter-wave tomographic imaging of composite materials". Freiburg : Universität, 2021. http://d-nb.info/1233197053/34.
Testo completoTilliander, Ulrika. "Synthesis of nano sized Cu and Cu-W alloy by hydrogen reduction". Licentiate thesis, KTH, Materials Science and Engineering, 2005. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-353.
Testo completoThe major part of the present work, deals with the reduction kinetics of Cu2O powder and a Cu2O-WO3 powder mixture by hydrogen gas, studied by ThermoGravimetric Analysis (TGA). The reduction experiments were carried out both isothermally and non-isothermally on thin powder beds over different temperature intervals. During the experiments, the reductant gas flow rate was kept just above the starvation rate for the reaction to ensure that chemical reaction was the rate-controlling step. The activation energy for the reactions was evaluated from isothermal as well as non-isothermal reduction experiments.
In the case of the reduction of Cu2O, the impact of the stability of the copper oxide on the activation energy for hydrogen reduction under identical experimental conditions is discussed. A closer investigation of additions of Ni or NiO to Cu2O did not have a perceptible effect on the kinetics of reduction.
In the case of the reduction of the Cu2O-WO3 mixture, the reaction mechanism was found to be affected in the temperature range 923-973 K, which is attributed to the reaction/transformation in the starting oxide mixture. At lower temperatures, Cu2O was found to be preferentially reduced in the early stages, followed by the reduction of the tungsten oxide. At higher temperatures, the reduction kinetics was strongly affected by the formation of a complex oxide from the starting materials. It was found that the Cu2O-WO3 mixture underwent a reaction/transformation which could explain the observed kinetic behavior.
The composition and microstructures of both the starting material and the reaction products were analyzed by X-ray diffraction (XRD) as well as by microprobe analysis. vi Kinetic studies of reduction indicated that, the mechanism changes significantly at 923 K and the product formed had unusual properties. The structural studies performed by XRD indicated that, at 923 K, Cu dissolved in W forming a metastable solid solution, in amorphous/nanocrystalline state. The samples produced at higher as well as lower temperatures, on the other hand, showed the presence two phases, pure W and pure Cu. The SEM results were in conformity with the XRD analysis and confirmed the formation of W/Cu alloy. TEM analysis results confirmed the above observations and showed that the particle sizes was about 20 nm.
The structure of the W/Cu alloy produced in the present work was compared with those for pure copper produced from Cu2O produced by hydrogen reduction under similar conditions. It indicated that the presence of W hinders the coalescence of Cu particles and the alloy retains its nano-grain structure. The present results open up an interesting process route towards the production of intermetallic phases and composite materials under optimized conditions.
Guazzone, Federico. "Engineering of Substrate Surface for the synthesis of Ultra-Thin Composite Pd and Pd-Cu Membranes for H2 Separation". Digital WPI, 2006. https://digitalcommons.wpi.edu/etd-dissertations/442.
Testo completoKuttner, Christian [Verfasser]. "Macromolecular Interphases and Interfaces in Composite Materials / Christian Kuttner". München : Verlag Dr. Hut, 2014. http://d-nb.info/1063222036/34.
Testo completoQuelennec, Xavier. "Nanostructuration d'un composite Cu-Fe par déformation intense : vers un mélange forcé à l'échelle atomique". Phd thesis, Université de Rouen, 2008. http://tel.archives-ouvertes.fr/tel-00648688.
Testo completoMorgan, Margaret. "Geometric modelling of 3-D woven reinforcements in composite materials". Thesis, University of Ulster, 2005. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.423442.
Testo completoLibri sul tema "Composite materials Cu/D"
Wenger, Wolfgang. Investigations into 3-D reinforcements for composite materials. [s.l: The Author], 1993.
Cerca il testo completoMoore, Thomas J. Tensile strength of simulated and welded butt joints in W-Cu-composite sheet. Cleveland, Ohio: Lewis Research Center, 1994.
Cerca il testo completoCenter, Langley Research, a cura di. Fatigue resistance of unnotched and post-impact (+ ø30ʻ́/0ʻ́) 3-D braided composites. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1994.
Cerca il testo completoCenter, Langley Research, a cura di. Fatigue resistance of unnotched and post-impact (+̲30/0) 3-D braided composites. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1994.
Cerca il testo completoPoe, Clarence C. Mechanics of textile composites conference: Proceedings of a conference sponsored by the National Aeronautics and Space Administration, Washington, D. C., and held in Hampton, Virginia, December 6-8, 1994. Hampton, Va: Langley Research Center, 1995.
Cerca il testo completoInternational Meeting on Modern Ceramics Technologies (12th 2010 Montecatini Terme, Italy). Ceramics and composites in extreme environments & for chemical and electrochemical applications: 12th international ceramics congress, part D. Stafa-Zuerich: Trans Tech Pubs. ltd. on behalf of Techna Group, 2011.
Cerca il testo completoThomas, Hahn H., ASTM Committee D-30 on High Modulus Fibers and Their Composites., ASTM Committee E-24 on Fracture Testing. e Symposium on Composite Materials: Fatigue and Fracture., a cura di. Composite materials: Fatigue and fracture : a symposium sponsored by ASTM Committee D-30 on High Modulus Fibers and Their Composites, Dallas, TX, 24-25 Oct. 1984. Philadelphia, PA: ASTM, 1986.
Cerca il testo completoL, Kessler Sandra, e ASTM Committee D-20 on Plastics., a cura di. Instrumented impact testing of plastics and composite materials: A symposium sponsored by ASTM Committee D-20 on Plastics, Houston, TX, 11-12 March 1985. Philadelphia, PA: ASTM, 1987.
Cerca il testo completoMiravete, Antonio. 3-D Textile Reinforcements In Composite Materials. CRC, 1999.
Cerca il testo completoMiravete, Antonio, a cura di. 3-D Textile Reinforcements In Composite Materials. CRC Press, 1999. http://dx.doi.org/10.1201/9781439823262.
Testo completoCapitoli di libri sul tema "Composite materials Cu/D"
Gay, Daniel. "Quasi-Orthotropic Homogenized Laminates or D-D Laminates". In Composite Materials, 309–54. 4a ed. Boca Raton: CRC Press, 2022. http://dx.doi.org/10.1201/9781003195788-18.
Testo completoShohji, Ikuo, Susumu Arai, Naoki Kano, Noboru Otomo e Masahisa Uenishi. "Development of Cu Brazing Sheet with Cu-P Composite Plating". In Key Engineering Materials, 2025–28. Stafa: Trans Tech Publications Ltd., 2007. http://dx.doi.org/10.4028/0-87849-456-1.2025.
Testo completoJiang, Guosheng, Liyong Diao e Ken Kuang. "Improved Manufacturing Process of Cu/Mo70-Cu/Cu Composite Heat Sinks for Electronic Packaging Applications". In Advanced Thermal Management Materials, 99–107. New York, NY: Springer New York, 2012. http://dx.doi.org/10.1007/978-1-4614-1963-1_7.
Testo completoLin, Hong Ming, Giin Shan Chen e Pee Yew Lee. "Microstructure and Properties of Vacuum Hot-Pressing SiC/ Ti-Cu-Ni-Sn Bulk Metallic Glass Composites". In Composite Materials V, 26–30. Stafa: Trans Tech Publications Ltd., 2007. http://dx.doi.org/10.4028/0-87849-451-0.26.
Testo completoFan, Zhi Kang, e Peng Xiao. "Morphology of Chromium in Cu- 2.0%~4.2%Cr Alloys". In Advances in Composite Materials and Structures, 277–80. Stafa: Trans Tech Publications Ltd., 2007. http://dx.doi.org/10.4028/0-87849-427-8.277.
Testo completoJain, Tanvi, Hridyesh Kumar e Pradip Kumar Dutta. "D-Glucosamine and N-Acetyl D-Glucosamine: Their Potential Use as Regenerative Medicine". In Springer Series on Polymer and Composite Materials, 279–95. New Delhi: Springer India, 2015. http://dx.doi.org/10.1007/978-81-322-2511-9_11.
Testo completoWang, Xin Hong, Zeng Da Zou, Min Zhang, Si Li Song e Shi Yao Qu. "Bonding Strength and Microstructure of Cermet/Cu-Based Alloy Composite Brazed Coatings". In Key Engineering Materials, 154–59. Stafa: Trans Tech Publications Ltd., 2005. http://dx.doi.org/10.4028/0-87849-978-4.154.
Testo completoRajanna, T. R., Amar Singh e K. Joseph Shibu. "Qualification of 3-D Printed AlSi10Mg Part for Military Airborne Applications". In Composite Materials for Extreme Loading, 171–86. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-4138-1_13.
Testo completoXiao, Peng, e Zhi Kang Fan. "Effects of Chromium Particle on Elevated Temperature Tensile Strength of Cu-Cr Alloy". In Advances in Composite Materials and Structures, 273–76. Stafa: Trans Tech Publications Ltd., 2007. http://dx.doi.org/10.4028/0-87849-427-8.273.
Testo completoHan, Guihong, Pengfei Tang, Hongyang Wu, Jun Ma, Xiaomeng Yang e Yongsheng Zhang. "Adsorption Behavior of Cu(II) to Silica-Humics Composite Aerogels". In The Minerals, Metals & Materials Series, 91–96. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-05749-7_10.
Testo completoAtti di convegni sul tema "Composite materials Cu/D"
Sinha, Arpita, Jadran A. Mihailovic, James E. Morris, Hua Lu e Chris Bailey. "Modeling thermal conductivity and CTE for CNT-Cu composites for 3-D TSV application". In 2010 IEEE Nanotechnology Materials and Devices Conference (NMDC). IEEE, 2010. http://dx.doi.org/10.1109/nmdc.2010.5652157.
Testo completoSundaram, Rajyashree, Guohai Chen, Takeo Yamada, Don Futaba, Kenji Hata, Ken Kokubo e Atsuko Sekiguchi. "Lightweight Cu/Carbon Nanotube Composite Electric Conductors". In 2020 International Conference on Solid State Devices and Materials. The Japan Society of Applied Physics, 2020. http://dx.doi.org/10.7567/ssdm.2020.k-9-03.
Testo completoGoldie, James H., Michael J. Gerver, John Oleksy, Gregory P. Carman e Terrisa A. Duenas. "Composite Terfenol-D sonar transducers". In 1999 Symposium on Smart Structures and Materials, a cura di Manfred R. Wuttig. SPIE, 1999. http://dx.doi.org/10.1117/12.352797.
Testo completoYungang Li, Limin Liu e Jie Li. "The progress of W-Cu composite materials preparation technique". In Environment (ICMREE). IEEE, 2011. http://dx.doi.org/10.1109/icmree.2011.5930584.
Testo completoMoskvichev, E. N. "Fabrication of NiAl strengthened Cu-Al based composite". In PROCEEDINGS OF THE II INTERNATIONAL CONFERENCE ON ADVANCES IN MATERIALS, SYSTEMS AND TECHNOLOGIES: (CAMSTech-II 2021). AIP Publishing, 2022. http://dx.doi.org/10.1063/5.0092748.
Testo completoBharathi, K. Divya, M. R. Rahman, Sunita Choudhary e S. B. Arya. "Development and characterization of Cu/MWCNT composite prepared by electrodeposition technique". In ADVANCES IN MECHANICAL DESIGN, MATERIALS AND MANUFACTURE: Proceeding of the Second International Conference on Design, Materials and Manufacture (ICDEM 2019). AIP Publishing, 2020. http://dx.doi.org/10.1063/5.0010560.
Testo completoZhang, Yinghui, Linghui He, Haixia Tian e Kai Peng. "Influences of Carbon Nanotubes on Performance of W-Cu Composite Materials". In 2015 International Conference on Advanced Material Engineering. WORLD SCIENTIFIC, 2015. http://dx.doi.org/10.1142/9789814696029_0051.
Testo completoWatanabe, Naoyuki, e Yasuyo Tanzawa. "Delamination analysis of 3-D orthogonal interlocked fabric composite". In 37th Structure, Structural Dynamics and Materials Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1996. http://dx.doi.org/10.2514/6.1996-1418.
Testo completoShi, Yu, Yi Wang, Gaoming Wang, Wei Li, Tao Yu e Chunhua Lu. "Thermal properties of nano-SiO2 optimized aluminate cementitious composite Cu powders". In 2015 4th International Conference on Mechatronics, Materials, Chemistry and Computer Engineering. Paris, France: Atlantis Press, 2015. http://dx.doi.org/10.2991/icmmcce-15.2015.476.
Testo completoRamli, M. I. I., M. A. A. Mohd Salleh, M. M. Al Bakri Abdullah, R. M. Said, A. V. Sandu e N. Saud. "Microstructural and phase analysis of Sn-Cu-Ni-XSiC composite solder". In ADVANCED MATERIALS ENGINEERING AND TECHNOLOGY V: International Conference on Advanced Material Engineering and Technology 2016. Author(s), 2017. http://dx.doi.org/10.1063/1.4981848.
Testo completoRapporti di organizzazioni sul tema "Composite materials Cu/D"
Chefetz, Benny, Baoshan Xing, Leor Eshed-Williams, Tamara Polubesova e Jason Unrine. DOM affected behavior of manufactured nanoparticles in soil-plant system. United States Department of Agriculture, gennaio 2016. http://dx.doi.org/10.32747/2016.7604286.bard.
Testo completo