Letteratura scientifica selezionata sul tema "Complexe vagal"
Cita una fonte nei formati APA, MLA, Chicago, Harvard e in molti altri stili
Consulta la lista di attuali articoli, libri, tesi, atti di convegni e altre fonti scientifiche attinenti al tema "Complexe vagal".
Accanto a ogni fonte nell'elenco di riferimenti c'è un pulsante "Aggiungi alla bibliografia". Premilo e genereremo automaticamente la citazione bibliografica dell'opera scelta nello stile citazionale di cui hai bisogno: APA, MLA, Harvard, Chicago, Vancouver ecc.
Puoi anche scaricare il testo completo della pubblicazione scientifica nel formato .pdf e leggere online l'abstract (il sommario) dell'opera se è presente nei metadati.
Articoli di riviste sul tema "Complexe vagal"
Champeil-Potokar, G., O. Rampin, A. M. Davila, D. Hermier, G. Boudry, V. Douard e I. Denis. "Plasticité gliale dans le complexe dorso-vagal en réponse à des régimes « gras-sucrés » de type occidental". Nutrition Clinique et Métabolisme 35, n. 1 (aprile 2021): 35. http://dx.doi.org/10.1016/j.nupar.2021.01.033.
Testo completoCaspar, V., T. Charleux, A. Beddok, N. Giraud, B. Bernard, M. Martin, J. Thariat, C. Dupin, A. Huchet e V. Vendrely. "Impact dosimétrique de la dose au complexe vagal dorsal et survenue de nausées en cours de radiothérapie". Cancer/Radiothérapie 25, n. 6-7 (ottobre 2021): 734–35. http://dx.doi.org/10.1016/j.canrad.2021.07.018.
Testo completoChampeil-Potokar, G., L. Jaulin, M. S. Hjeij, A. Couvineau, A. Blais e I. Denis. "Effets d’un régime gras-sucré (GS) et d’un traitement aux orexines A (OxA) sur la plasticité gliale dans le complexe dorso-vagal chez la souris". Nutrition Clinique et Métabolisme 36, n. 1 (febbraio 2022): S13. http://dx.doi.org/10.1016/j.nupar.2021.12.024.
Testo completoOkumura, T., I. L. Taylor e T. N. Pappas. "Microinjection of TRH analogue into the dorsal vagal complex stimulates pancreatic secretion in rats". American Journal of Physiology-Gastrointestinal and Liver Physiology 269, n. 3 (1 settembre 1995): G328—G334. http://dx.doi.org/10.1152/ajpgi.1995.269.3.g328.
Testo completoViard, Eddy, Zhongling Zheng, Shuxia Wan e R. Alberto Travagli. "Vagally mediated, nonparacrine effects of cholecystokinin-8s on rat pancreatic exocrine secretion". American Journal of Physiology-Gastrointestinal and Liver Physiology 293, n. 2 (agosto 2007): G493—G500. http://dx.doi.org/10.1152/ajpgi.00118.2007.
Testo completoWang, Sheng-Zhi, Xiao-Dong Liu, Yu-Xin Huang, Qing-Jiu Ma e Jing-Jie Wang. "Disruption of Glial Function Regulates the Effects of Electro-Acupuncture at Tsusanli on Gastric Activity in Rats". American Journal of Chinese Medicine 37, n. 04 (gennaio 2009): 647–56. http://dx.doi.org/10.1142/s0192415x09007132.
Testo completoHornby, Pamela J. "II. Excitatory amino acid receptors in the brain-gut axis". American Journal of Physiology-Gastrointestinal and Liver Physiology 280, n. 6 (1 giugno 2001): G1055—G1060. http://dx.doi.org/10.1152/ajpgi.2001.280.6.g1055.
Testo completoPowley, Terry L. "Brain-gut communication: vagovagal reflexes interconnect the two “brains”". American Journal of Physiology-Gastrointestinal and Liver Physiology 321, n. 5 (1 novembre 2021): G576—G587. http://dx.doi.org/10.1152/ajpgi.00214.2021.
Testo completoPowley, Terry L., e Robert J. Phillips. "I. Morphology and topography of vagal afferents innervating the GI tract". American Journal of Physiology-Gastrointestinal and Liver Physiology 283, n. 6 (1 dicembre 2002): G1217—G1225. http://dx.doi.org/10.1152/ajpgi.00249.2002.
Testo completoRusetsky, I. I. "0 trigemino-vagal reflex". Kazan medical journal 18, n. 2 (23 settembre 2021): 84–104. http://dx.doi.org/10.17816/kazmj79881.
Testo completoTesi sul tema "Complexe vagal"
Rouquet, Thais. "Caractérisation des effets centraux de la metformine sur des modèles murins sains ou obèses et diabétiques". Thesis, Aix-Marseille, 2015. http://www.theses.fr/2015AIXM4378.
Testo completoMetformin, an antidiabetic compound, still remains a first-line treatment for type 2 diabetes. The mechanisms by which this compound exerts its antihyperglycemic effect are increasingly documented. However, its anorectic action and central targets remain less studied. Furthermore, increasing data in the literature suggest that physical activity, commonly associated with anti-obesity and anti-diabetic therapies, may increase neural networks’ sensitivity to endogenous signals involved in food intake and body weight control. This suggests that the efficacy of therapies inducing expression modulation of these signals may be directly enhanced by physical activity. In the present study, we sought i) to explore the central effects of metformin in mice and, ii) determine whether physical activity could potentiate the effects of metformin. All my work, in partnership with the company BIOMEOSTASIS brought new elements about mechanisms involved in the central effects of metformin and identified nesfatin-1 as a potential actor for the anorectic effects of this compound
Liu, Xinhuai. "Effets de la substance p et du glutamate au niveau du complexe vagal dorsal". Aix-Marseille 2, 1998. http://www.theses.fr/1998AIX22041.
Testo completoSiaud, Philippe. "Etude morphologique et fonctionnelle des interconnexions entre l'hypothalamus et le complexe vagal dorsal du bulbe". Montpellier 2, 1989. http://www.theses.fr/1989MON20090.
Testo completoBlondeau, Claude. "Distribution des récepteurs aux neurokinines dans le complexe vagal dorsal chez le rat : implications fonctionnelles". Aix-Marseille 1, 2001. http://www.theses.fr/2001AIX11046.
Testo completoDerghal, Adel. "Etude du rôle des microARN dans la régulation du système mélanocortinergique : implication dans le contrôle central de l'homéostasie énergétique". Thesis, Aix-Marseille, 2015. http://www.theses.fr/2015AIXM4334.
Testo completoThe central control of energy balance involves a highly regulated neuronal network within the hypothalamus and the dorsal vagal complex (DVC). In these structures, pro-opiomelanocortin (POMC) neurons are known to reduce meal size and to increase energy expenditure. Thus, leptin, a peripheral signal that relays information regarding body fat content, modulates the activity of POMC neurons. MicroRNAs (miRNAs) are short non-coding RNAs of 22-26 nucleotides that post-transcriptionally interfere with target gene expression by binding to their mRNAs. To date, the role of the miRNAs in the control of energy balance remains to be clarified. In this context, we developed a transgenic mouse model with a deletion of the miRNA processing enzyme DICER specifically in POMC cells. Conditional deletion of Dicer in POMC cells leads to an increase in hypothalamic leptin sensitivity. These results suggest an important role of miRNAs in the leptin-dependent POMC neuron activity. Next, we identified and characterized the miRNAs that potentially target POMC mRNA. After the selection of miRNA of interest by in silico approach, we observed that miR-383, miR-384-3p, and miR-488 expressions were up-regulated in the hypothalamus of leptin deficient ob/ob mice. In accordance with these observations, we showed that miR-383, miR-384-3p and miR-488 were also increased in db/db mice that exhibit a non-functional leptin receptor. The intraperitoneal injection of leptin down-regulated the expression of these miRNAs of interest in the hypothalamus of ob/ob mice, thus showing the involvement of leptin in the expression of miR-383, miR-384-3p and miR-488
Bonnet, Marion. "Implication des neurones exprimant NUCB2/nesfatine-1 dans la régulation de l'homéostasie énergétique". Thesis, Aix-Marseille, 2013. http://www.theses.fr/2013AIXM4310/document.
Testo completoThe long term maintenance of body weight results from a balance between energy expenditure and intake. This balance, called “energy homeostasis”, involves a large number of molecules. Among these, nesfatin-1, discovered in 2006, is an 82 amino-acid peptide derived from the cleavage of the protein NUCB2. The interest generated by nesfatin-1 lies in its anorexigenic effect performed independently of leptin signalization. Nesfatin-1 is expressed in several organs such as adipose tissue, stomach, pancreas, and brain. In the brain, its expression is limited to a few neuronal groups located in the hypothalamus and dorsal vagal complex. In this work, we analyzed the sensitivity of NUCB2/nesfatin-1-expressing neurons to physiological and physiopathological peripheral signals affecting food intake. We show that these neurons are sensitive to hypoglycemia and that they could contribute to the counter-regulatory response established in order to restore the basal blood glucose level. Moreover, we show that they are activated in response to two inflammatory stimuli: lipopolysaccharide administration and food intoxication with a mycotoxin named deoxynivalenol. So, NUCB2/nesfatin-1-expressing neurons could contribute to the development of inflammatory anorexia. This study was the first evidence of an involvement of this peptide in a pathological situation. Taken together, these results suggest that in addition to its satiating effect, nesfatin-1 participates in the central signalization involved in glucodetection and inflammatory responses
Dupin, Alice. "Insular Cortex neurons projecting to the vagal complex : characterization and roles in behavior and inflammation". Electronic Thesis or Diss., Sorbonne université, 2024. http://www.theses.fr/2024SORUS192.
Testo completoBrain-body interactions are crucial for organisms survival; the brain constantly receives external and internal information that it integrates to regulate various physiological function. Notably, the nervous system closely interacts with the immune system. In the case of inflammation, the brain's features enable an optimized regulation of immune responses. These features include the brain's ability to sense environmental cues, anticipate outcomes, and transmit signals rapidly through an extensive network of neurons innervating the entire body within milliseconds. The vagus nerve, linking the brain to visceral organs, is an important support of this bidirectional communication. It is composed of sensory and motor branches. Sensory afferences carry peripheral information to the vagal complex in the brain which transmits the signals to deeper brain structures, while motor efferences mediate the generated responses to targeted organs.In processing internal information, the insular cortex emerges as a critical multimodal hub. As a sensory cortex, it receives various inputs from external-sensing systems such as somatosensory, and olfactory cortices, while also being densely interconnected with regions processing internal cues such as inflammatory threats, such as the vagal complex. This allows the insular cortex to integrate exteroceptive and interoceptive information and play a pivotal role in the salience network. Within the organism, it can optimize responses to specific situations by regulating cardiac or intestinal activity, as well as immune responses, but the underlying circuits are poorly understood. Given the role played by the vagus nerve in transmitting information between the brain and the periphery, along with the presence of projections from the insular cortex to the vagal complex (InsCtxVC), we hypothesize that some of the insular cortex functions are mediated through the vagus nerve.To investigate the role of InsCtxVC, we first characterized these neurons anatomically using viral retrograde labeling. We found that InsCtxVC are predominantly located within the posterior-intermerdiate InsCtx, mainly in layer V, and express CTIP, a downstream effector of the Fezf2 pathway. Next, we examined the connectivity of these neurons using viral labeling of outputs and inputs. Our experiments revealed that within the vagal complex, InsCtxVC neurons preferentially synapse with the medial NTS (rather than caudal NTS or DMN), and the central amygdala and parasubthalamic nucleus. Additionally, we analyzed their presynaptic inputs, highlighting a predominant innervation from sensory cortices including the insula itself, the somatosensory and olfactory cortices. Based on our anatomical findings and existing litterature, we screened various contexts likely to recruit the InsCtxVC. Through specific chemogenetic and optogenetic manipulation of these neurons, we found that InsCtxVC are not involved in anxiety behaviors or neuroimmune conditionned taste aversion. However, chemogenetic activation of InsCtxVC neurons during early LPS-induced inflammation exacerbates sickness behavior, including increased weight loss, elevated blood proinflammatory cytokines and corticosterone response. Taken together, our results characterize a previsouly undefined neuronal population linking the insular cortex to a major parasympathetic center, which regulates immune responses in the periphery
Bariohay, Bruno. "Implication du Brain-Derived Neurotrophic Factor (BDNF) au niveau du Complexe Vagal Dorsal (CVD) dans le contrôle de la prise alimentaire". Aix-Marseille 3, 2007. http://www.theses.fr/2007AIX30018.
Testo completoBDNF has been implicated as an anorexigenic factor in the central regulation of food intake. In the present work, we identify the DVC as a key site where BDNF plays its anorexigenic role, downstream of melanocortinergic signalling. In the adult rat, we show that central application of exogenous BDNF at the DVC level induces anorexia and body weight loss, whereas endogenous BDNF protein content in the DVC is modulated in a manner consistent with an anorexigenic role, during the dark/light cycle, as well as following experimental paradigms affecting nutritional status or implying leptin, CCK or ghrelin treatments. In addition, we show that 4th ventricle administration of agonists or antagonists for type 3/4 melanocortinergic receptors (MC3/4R) induces respectively an increase and a decrease in BDNF protein content, whereas the orexigenic effects of the MC3/4R antagonist are blocked by a co-treatment with exogenous BDNF
Charrier, Céline. "Mise en évidence de cellules-souches neurales dans le complexe vagal dorsal de rongeur adulte et recherche de leurs facteurs de contrôle". Aix-Marseille 3, 2005. http://www.theses.fr/2005AIX30063.
Testo completoThe dorsal vagal complex (DVC) is a neurovegetative cerebral center displaying plasticity and neurogenesis in adult rat. In vivo, I have demonstrated occurrence of proliferative cells within DVC by Ki-67 immunohistochemistry and by D-cyclin western-blot. In vitro, in primary cultures from microdissected DVC, I have generated neurospheres showing self-renewal and containing neuronal and glial cells. Therefore adult rat DVC does contain neural stem cells. I have looked for extracellular regulators of DVC stem cells through two approaches. In vivo, lesion-induced proliferative stimulation in DVC was correlated, by RT-PCR and by DNA microarray, with transcriptional induction of two mitogens: the growth factors EGF and BDNF. In vitro, neural stem cell proliferation was inhibited by the anorexigenic hormone leptin. These cellular neurobiology data bring about novel vistas about integrative processes in autonomic neurosciences
Rachidi, Fatima. "Effets du stress d’immobilisation sur la neurogenèse et les neuropeptides contrôlant la prise alimentaire dans le complexe vagal dorsal chez le rat adulte". Aix-Marseille 3, 2009. http://www.theses.fr/2009AIX30015.
Testo completoImmobilization stress (IS) elicits feeding inhibition. Food intake is regulated by the dorsal vagal complex (DVC) and the hypothalamus. The DVC emerged as a novel focus of adult neurogenesis, the role of which is unknown. I have investigated the effect of chronic IS (3 weeks) on DVC neurogenesis by means of in vivo BrdU incorporation in brain, by using double immunohistochemistry and confocal microscopy. I have shown that IS inhibits adult neurogenesis by 40% in DVC and stimulates it by 200% in olfactory bulb. It suggests that DVC neurogenesis plays a specific role in long-term food intake regulation. I have then characterized the effect of IS on expression of the key messengers regulating food intake in DVC and hypothalamus, by means of ELISA or RT-PCR on tissular extracts. NPY, AgRP, CART, POMC are significantly induced by acute IS. These results contribute to neurobiology of nutrition and of DVC
Libri sul tema "Complexe vagal"
Slabbert, T. J. C. Demographic characteristics of the black population of the Vaal Triangle Complex (VTC), March 1994. Vanderbijlpark, South Africa: Dept. of Economics, Vista University, 1995.
Cerca il testo completoM, Levin. The unemployment rate of blacks in the Vaal Triangle complex: Lekoa municipal area, June 1988. Vanderbijlpark: Vista University, 1988.
Cerca il testo completoAspects of poverty of black households: Vaal Triangle Complex, March 1994. Vanderbijlpark, South Africa: Dept. of Economics, Vista University, 1995.
Cerca il testo completoBrady, Peter A. Specific Arrhythmias and Syncope. Oxford University Press, 2012. http://dx.doi.org/10.1093/med/9780199755691.003.0044.
Testo completoChristiansen, Jason. Vagus Nerve Exercises: Complete Self-Help Guide to Stimulate Your Vagal Tone, Relieve Anxiety and Prevent Inflamation - Learn the Secrects to Unleash Your Body Natural Healing Power. Independently Published, 2019.
Cerca il testo completoVagus Nerve Exercises: Complete Self-Help Guide to Stimulate Your Vagal Tone, Relieve Anxiety and Prevent Inflammation - Learn the Secrets to Unleash Your Body Natural Healing Power. Independently Published, 2020.
Cerca il testo completoPorges, Marcus. Vagus Nerve: 2 BOOKS in 1. Vagus Nerve & Vagus Nerve Exercises. a Complete Self-Help Guide to Stimulate Vagal Tone. Practical Exercises for Chronic Illness, Depression, Anxiety and Trauma. Independently Published, 2019.
Cerca il testo completoDiálogos entre políticas públicas e direito: participação e efetividade na sociedade contemporânea. Editora Amplla, 2020. http://dx.doi.org/10.51859/amplla.dpp146.1120-0.
Testo completoCapitoli di libri sul tema "Complexe vagal"
Hassen, A. H., e E. P. Broudy. "Endogenous Opioids in the Dorsal Vagal Complex and Resting Cardiovascular Function in the Anesthetized Rat". In Opioid Peptides and Blood Pressure Control, 90–97. Berlin, Heidelberg: Springer Berlin Heidelberg, 1988. http://dx.doi.org/10.1007/978-3-642-73429-8_9.
Testo completoPowley, T. L., H. R. Berthoud, E. A. Fox e W. Laughton. "The Dorsal Vagal Complex Forms a Sensory-Motor Lattice: The Circuitry of Gastrointestinal Reflexes". In Neuroanatomy and Physiology of Abdominal Vagal Afferents, 55–79. CRC Press, 2020. http://dx.doi.org/10.1201/9781003069171-3.
Testo completoAltschuler, S. M., L. Rinaman e R. R. Miselis. "Viscerotopic Representation of the Alimentary Tract in the Dorsal and Ventral Vagal Complexes in the Rat". In Neuroanatomy and Physiology of Abdominal Vagal Afferents, 21–53. CRC Press, 2020. http://dx.doi.org/10.1201/9781003069171-2.
Testo completoM. Hutauruk, Syahrial, Elvie Zulka Kautzia Rachmawati e Khoirul Anam. "Autonomic Neuroregulation in the Larynx and Its Clinical Implication". In Laryngology [Working Title]. IntechOpen, 2022. http://dx.doi.org/10.5772/intechopen.105363.
Testo completoSelden, Nathan R. "Atonic Seizures". In Functional Neurosurgery, C11—C11.P68. Oxford University PressNew York, 2019. http://dx.doi.org/10.1093/med/9780190887629.003.0011.
Testo completoBlack, Caroline. "Crying Infant". In Acute Care Casebook, a cura di Jennifer Sanders, 267–71. Oxford University Press, 2018. http://dx.doi.org/10.1093/med/9780190865412.003.0054.
Testo completo"CALBIND1N-D28K-LIKE IMMUNOREACTIVITY IN SPINAL AND DORSAL VAGAL COMPLEX PROJECTIONS IN RAT". In Vitamin D, 615–16. De Gruyter, 1991. http://dx.doi.org/10.1515/9783110850345-202.
Testo completoCheshire, William P. "Cardiovagal Reflexes". In Clinical Neurophysiology, 658–73. Oxford University Press, 2016. http://dx.doi.org/10.1093/med/9780190259631.003.0039.
Testo completoKitahama, Kunio, Keiko Ikemoto, Michael Geffard e Yves Tillet. "Noradrenaline-immunoreactive Neurons in Cat Dorsal Vagal Complex, Following Administration of Pargyline, Parachlorophenylalanine or Colchicine". In Recent Developments in Medicine and Medical Research Vol. 9, 72–94. Book Publisher International (a part of SCIENCEDOMAIN International), 2021. http://dx.doi.org/10.9734/bpi/rdmmr/v9/5251f.
Testo completoKarcioglu, Ozgur. "Recognition and Management of Supraventricular Arrhythmias and Atrial Fibrillation in the Acute Setting". In Atrial Fibrillation - Diagnosis and Management in the 21st Century [Working Title]. IntechOpen, 2022. http://dx.doi.org/10.5772/intechopen.106182.
Testo completoAtti di convegni sul tema "Complexe vagal"
Gutium, Mircea. "Perfecționarea managementului serviciului vamal". In International Scientific-Practical Conference "Economic growth in the conditions of globalization". National Institute for Economic Research, 2023. http://dx.doi.org/10.36004/nier.cecg.iv.2023.17.23.
Testo completoCrhová, Marie, Iva Hrnčiříková, Radka Střeštíková, Klára Šoltés-Mertová, Martin Komzák, Kateřina Kapounková e Anna Ondračková. "Effect of a 3-month Exercise Intervention on Physical Performance, Body Composition, Depression and Autonomic Nervous System in Breast Cancer Survivors: A Pilot Study". In 12th International Conference on Kinanthropology. Brno: Masaryk University Press, 2020. http://dx.doi.org/10.5817/cz.muni.p210-9631-2020-50.
Testo completoLeandri, Gaia, e David Sunnucks. "FROM ANATOMY TO ART. GENOESE PAINTINGS IN THE LATE RENAISSANCE". In 10th SWS International Scientific Conferences on ART and HUMANITIES - ISCAH 2023. SGEM WORLD SCIENCE, 2023. http://dx.doi.org/10.35603/sws.iscah.2023/fs08.11.
Testo completo"THC COMO PRECIPITANTE DE PSICOSIS. A PROPÓSITO DE UN CASO". In 23° Congreso de la Sociedad Española de Patología Dual (SEPD) 2021. SEPD, 2021. http://dx.doi.org/10.17579/sepd2021p027v.
Testo completoAguiar, Beatriz Natália Guedes Alcoforado. "Experiência de ensino aprendizagem BIM". In IV ENCONTRO NACIONAL SOBRE O ENSINO DE BIM. ANTAC, 2022. http://dx.doi.org/10.46421/enebim.v4i00.1910.
Testo completoMelo, Reymard Sávio Sampaio de, e Érica de Sousa Checcucci. "Ateliê integrado Arquitetura + Engenharia Civil". In IV ENCONTRO NACIONAL SOBRE O ENSINO DE BIM. ANTAC, 2022. http://dx.doi.org/10.46421/enebim.v4i00.1913.
Testo completoCecchini, Arnaldo, e Maria Rita Schirru. "L’esplosione urbana: un fenomeno a molte dimensioni". In International Conference Virtual City and Territory. Roma: Centre de Política de Sòl i Valoracions, 2014. http://dx.doi.org/10.5821/ctv.7972.
Testo completo