Letteratura scientifica selezionata sul tema "Cohomology of condensed groups"
Cita una fonte nei formati APA, MLA, Chicago, Harvard e in molti altri stili
Consulta la lista di attuali articoli, libri, tesi, atti di convegni e altre fonti scientifiche attinenti al tema "Cohomology of condensed groups".
Accanto a ogni fonte nell'elenco di riferimenti c'è un pulsante "Aggiungi alla bibliografia". Premilo e genereremo automaticamente la citazione bibliografica dell'opera scelta nello stile citazionale di cui hai bisogno: APA, MLA, Harvard, Chicago, Vancouver ecc.
Puoi anche scaricare il testo completo della pubblicazione scientifica nel formato .pdf e leggere online l'abstract (il sommario) dell'opera se è presente nei metadati.
Articoli di riviste sul tema "Cohomology of condensed groups"
Rodrigues Jacinto, Joaquín, e Juan Rodríguez Camargo. "Solid locally analytic representations of 𝑝-adic Lie groups". Representation Theory of the American Mathematical Society 26, n. 31 (31 agosto 2022): 962–1024. http://dx.doi.org/10.1090/ert/615.
Testo completoArtusa, Marco. "Duality for condensed cohomology of the Weil group of a $p$-adic field". Documenta Mathematica 29, n. 6 (26 novembre 2024): 1381–434. http://dx.doi.org/10.4171/dm/977.
Testo completoGähler, Franz, e Johannes Kellendonk. "Cohomology groups for projection tilings of codimension 2". Materials Science and Engineering: A 294-296 (dicembre 2000): 438–40. http://dx.doi.org/10.1016/s0921-5093(00)01171-0.
Testo completoFISHER, BENJI N., e DAVID A. RABSON. "Group Cohomology and Quasicrystals I: Classification of Two-Dimensional Space Groups". Ferroelectrics 305, n. 1 (gennaio 2004): 37–40. http://dx.doi.org/10.1080/00150190490462360.
Testo completoConduché, Daniel, Hvedri Inassaridze e Nick Inassaridze. "Modq cohomology and Tate–Vogel cohomology of groups". Journal of Pure and Applied Algebra 189, n. 1-3 (maggio 2004): 61–87. http://dx.doi.org/10.1016/j.jpaa.2003.10.025.
Testo completoInassaridze, H. "Non-Abelian Cohomology of Groups". gmj 4, n. 4 (agosto 1997): 313–31. http://dx.doi.org/10.1515/gmj.1997.313.
Testo completoThomas, C. B. "COHOMOLOGY OF FINITE GROUPS". Bulletin of the London Mathematical Society 29, n. 1 (gennaio 1997): 121–23. http://dx.doi.org/10.1112/blms/29.1.121.
Testo completoHiller, Howard. "Cohomology of Bieberbach groups". Mathematika 32, n. 1 (giugno 1985): 55–59. http://dx.doi.org/10.1112/s002557930001086x.
Testo completoHuebschmann, Johannes. "Cohomology of metacyclic groups". Transactions of the American Mathematical Society 328, n. 1 (1 gennaio 1991): 1–72. http://dx.doi.org/10.1090/s0002-9947-1991-1031239-1.
Testo completoPirashvili, Mariam. "Symmetric cohomology of groups". Journal of Algebra 509 (settembre 2018): 397–418. http://dx.doi.org/10.1016/j.jalgebra.2018.05.020.
Testo completoTesi sul tema "Cohomology of condensed groups"
Artusa, Marco. "Sur des théorèmes de dualité pour la cohomologie condensée du groupe de Weil d'un corps p-adique". Electronic Thesis or Diss., Bordeaux, 2024. http://www.theses.fr/2024BORD0228.
Testo completoThe goal of this thesis is twofold. First, we build a topological cohomology theory for the Weil group of p-adic fields. Secondly, we use this theory to prove duality theorems for such fields, which manifest as Pontryagin duality between locally compact abelian groups. These results improve existing duality theorems and give them a topological flavour. Condensed Mathematics allow us to reach these objectives, providing a framework where it is possible to do algebra with topological objects. We define and study a cohomology theory for condensed groups and pro-condensed groups, and we apply it to the Weil group of a p-adic field, considered as a pro-condensed group. The resulting cohomology groups are proved to be locally compact abelian groups of finite ranks in some special cases. This allows us to enlarge the local Tate duality to a more general category of non-necessarily discrete coefficients, where it takes the form of a Pontryagin duality between locally compact abelian groups. In the last part of the thesis, we use the same framework to recover a Weil-version of the Tate duality with coefficients in abelian varieties and more generally in 1-motives, expressing those dualities as perfect pairings between condensed abelian groups. To do this, we associate to every algebraic group, resp. 1-motive, a condensed abelian group, resp. a complex of condensed abelian groups, with an action of the (pro-condensed) Weil group. We call this association the condensed Weil-´etale realisation. We show the existence of a condensed Poincar´e pairing for abelian varieties and we prove a condensed-Weil version of the Tate duality with coefficients in abelian varieties, which improves the correspondent result of Karpuk. Lastly, we exhibit a condensed Poincar´e pairing for 1-motives. We show that this pairing is compatible with the weight filtration and we prove a duality theorem with coefficients in 1-motives, which improves a result of Harari-Szamuely
Watson, Toni Aliza. "Twisted cohomology groups". College Park, Md. : University of Maryland, 2006. http://hdl.handle.net/1903/3929.
Testo completoThesis research directed by: Dept. of Mathematics. Title from t.p. of PDF. Includes bibliographical references. Published by UMI Dissertation Services, Ann Arbor, Mich. Also available in paper.
Česnavičius, Kęstutis. "Selmer groups as flat cohomology groups". Thesis, Massachusetts Institute of Technology, 2014. http://hdl.handle.net/1721.1/90180.
Testo completoCataloged from PDF version of thesis.
Includes bibliographical references (pages 44-46).
Given a prime number p, Bloch and Kato showed how the p Selmer group of an abelian variety A over a number field K is determined by the p-adic Tate module. In general, the pm1-Selmer group Selpmn A need not be determined by the mod pm Galois representation A[pm]; we show, however, that this is the case if p is large enough. More precisely, we exhibit a finite explicit set of rational primes E depending on K and A, such that Selpm A is determined by A[pm] for all ... In the course of the argument we describe the flat cohomology group ... of the ring of integers of K with coefficients in the pm- torsion A[pm] of the Neron model of A by local conditions for p V E, compare them with the local conditions defining Selm 2A, and prove that A[p't ] itself is determined by A[pm] for such p. Our method sharpens the relationship between Selpm A and ... which was observed by Mazur and continues to work for other isogenies 0 between abelian varieties over global fields provided that deg o is constrained appropriately. To illustrate it, we exhibit resulting explicit rank predictions for the elliptic curve 11A1 over certain families of number fields. Standard glueing techniques developed in the course of the proofs have applications to finite flat group schemes over global bases, permitting us to transfer many of the known local results to the global setting.
by Kęstutis Česnavičius.
Ph. D.
Clark, Jonathan Owen. "Cohomology of some finite groups". Thesis, University of Oxford, 1993. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.240535.
Testo completoEastridge, Samuel Vance. "First l^2-Cohomology Groups". Thesis, Virginia Tech, 2015. http://hdl.handle.net/10919/52952.
Testo completoMaster of Science
QUADRELLI, CLAUDIO. "Cohomology of Absolute Galois Groups". Doctoral thesis, Università degli Studi di Milano-Bicocca, 2014. http://hdl.handle.net/10281/56993.
Testo completoLeary, Ian James. "The cohomology of certain finite groups". Thesis, University of Cambridge, 1990. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.386114.
Testo completoKim, Yunhyong. "Smooth cochain cohomology of loop groups". Thesis, University of Cambridge, 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.621575.
Testo completoFoster-Greenwood, Briana A. "Hochschild Cohomology and Complex Reflection Groups". Thesis, University of North Texas, 2012. https://digital.library.unt.edu/ark:/67531/metadc149591/.
Testo completoAnwar, Muhammad F. "Representations and cohomology of algebraic groups". Thesis, University of York, 2011. http://etheses.whiterose.ac.uk/2032/.
Testo completoLibri sul tema "Cohomology of condensed groups"
Adem, Alejandro, e R. James Milgram. Cohomology of Finite Groups. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-662-06280-7.
Testo completoAdem, Alejandro, e R. James Milgram. Cohomology of Finite Groups. Berlin, Heidelberg: Springer Berlin Heidelberg, 1994. http://dx.doi.org/10.1007/978-3-662-06282-1.
Testo completoCogdell, James W., Günter Harder, Stephen Kudla e Freydoon Shahidi, a cura di. Cohomology of Arithmetic Groups. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-95549-0.
Testo completoJames, Milgram R., a cura di. Cohomology of finite groups. 2a ed. Berlin: Springer, 2004.
Cerca il testo completoJames, Milgram R., a cura di. Cohomology of finite groups. Berlin: Springer-Verlag, 1994.
Cerca il testo completoVermani, L. R. Lectures on cohomology of groups. Kurukshetra: Publication Bureau, Kurukshetra University, 1994.
Cerca il testo completoLang, Serge. Topics in Cohomology of Groups. Berlin, Heidelberg: Springer Berlin Heidelberg, 1996. http://dx.doi.org/10.1007/bfb0092624.
Testo completoCarlson, Jon F., Lisa Townsley, Luis Valeri-Elizondo e Mucheng Zhang. Cohomology Rings of Finite Groups. Dordrecht: Springer Netherlands, 2003. http://dx.doi.org/10.1007/978-94-017-0215-7.
Testo completoMaulik, Davesh. Quantum groups and quantum cohomology. Paris: Société Mathématique de France, 2019.
Cerca il testo completoLang, Serge. Topics in cohomology of groups. Berlin: Springer, 1996.
Cerca il testo completoCapitoli di libri sul tema "Cohomology of condensed groups"
Jantzen, Jens. "Cohomology". In Representations of Algebraic Groups, 49–64. Providence, Rhode Island: American Mathematical Society, 2007. http://dx.doi.org/10.1090/surv/107/04.
Testo completoBump, Daniel. "Cohomology of Grassmannians". In Lie Groups, 517–27. New York, NY: Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4614-8024-2_48.
Testo completoBump, Daniel. "Cohomology of Grassmannians". In Lie Groups, 428–37. New York, NY: Springer New York, 2004. http://dx.doi.org/10.1007/978-1-4757-4094-3_50.
Testo completoMac Lane, Saunders. "Cohomology of Groups". In Homology, 103–38. Berlin, Heidelberg: Springer Berlin Heidelberg, 1995. http://dx.doi.org/10.1007/978-3-642-62029-4_5.
Testo completoHilton, Peter J., e Urs Stammbach. "Cohomology of Groups". In A Course in Homological Algebra, 184–228. New York, NY: Springer New York, 1997. http://dx.doi.org/10.1007/978-1-4419-8566-8_7.
Testo completoHalter-Koch, Franz. "Cohomology of groups". In Class Field Theory and L Functions, 87–154. Boca Raton: Chapman and Hall/CRC, 2022. http://dx.doi.org/10.1201/9780429506574-2.
Testo completoWedhorn, Torsten. "Lie Groups". In Manifolds, Sheaves, and Cohomology, 123–37. Wiesbaden: Springer Fachmedien Wiesbaden, 2016. http://dx.doi.org/10.1007/978-3-658-10633-1_6.
Testo completoKoch, Helmut. "Cohomology of Profinite Groups". In Springer Monographs in Mathematics, 21–40. Berlin, Heidelberg: Springer Berlin Heidelberg, 2002. http://dx.doi.org/10.1007/978-3-662-04967-9_4.
Testo completoHarari, David. "Cohomology of Profinite Groups". In Galois Cohomology and Class Field Theory, 65–78. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-43901-9_4.
Testo completoSerre, Jean-Pierre. "Cohomology of profinite groups". In Springer Monographs in Mathematics, 1–68. Berlin, Heidelberg: Springer Berlin Heidelberg, 1997. http://dx.doi.org/10.1007/978-3-642-59141-9_1.
Testo completoAtti di convegni sul tema "Cohomology of condensed groups"
Masuoka, Akira. "Hopf cohomology vanishing via approximation by Hochschild cohomology". In Noncommutative Geometry and Quantum Groups. Warsaw: Institute of Mathematics Polish Academy of Sciences, 2003. http://dx.doi.org/10.4064/bc61-0-8.
Testo completoBONANZINGA, V., e L. SORRENTI. "LEXSEGMENT IDEALS AND SIMPLICIAL COHOMOLOGY GROUPS". In Selected Contributions from the 8th SIMAI Conference. WORLD SCIENTIFIC, 2007. http://dx.doi.org/10.1142/9789812709394_0016.
Testo completoVenkataramana, T. N. "Cohomology of Arithmetic Groups and Representations". In Proceedings of the International Congress of Mathematicians 2010 (ICM 2010). Published by Hindustan Book Agency (HBA), India. WSPC Distribute for All Markets Except in India, 2011. http://dx.doi.org/10.1142/9789814324359_0100.
Testo completoKhalkhali, M., e B. Rangipour. "Cyclic cohomology of (extended) Hopf algebras". In Noncommutative Geometry and Quantum Groups. Warsaw: Institute of Mathematics Polish Academy of Sciences, 2003. http://dx.doi.org/10.4064/bc61-0-5.
Testo completoVENKATESH, AKSHAY. "COHOMOLOGY OF ARITHMETIC GROUPS - FIELDS MEDAL LECTURE". In International Congress of Mathematicians 2018. WORLD SCIENTIFIC, 2019. http://dx.doi.org/10.1142/9789813272880_0014.
Testo completoSAKANE, YUSUKE, e TAKUMI YAMADA. "HARMONIC COHOMOLOGY GROUPS ON COMPACT SYMPLECTIC NILMANIFOLDS". In Proceedings of the International Conference on Modern Mathematics and the International Symposium on Differential Geometry. WORLD SCIENTIFIC, 2002. http://dx.doi.org/10.1142/9789812776419_0014.
Testo completoSOMA, TERUHIKO. "THE THIRD BOUNDED COHOMOLOGY AND KLEINIAN GROUPS". In Proceedings of the 37th Taniguchi Symposium. WORLD SCIENTIFIC, 1996. http://dx.doi.org/10.1142/9789814503921_0015.
Testo completoLI, JIAN-SHU, e JOACHIM SCHWERMER. "AUTOMORPHIC REPRESENTATIONS AND COHOMOLOGY OF ARITHMETIC GROUPS". In Proceedings of the International Conference on Fundamental Sciences: Mathematics and Theoretical Physics. WORLD SCIENTIFIC, 2001. http://dx.doi.org/10.1142/9789812811264_0005.
Testo completoSharygin, G. I. "Hopf-type Cyclic Cohomology via the Karoubi Operator". In Noncommutative Geometry and Quantum Groups. Warsaw: Institute of Mathematics Polish Academy of Sciences, 2003. http://dx.doi.org/10.4064/bc61-0-14.
Testo completoCallegaro, Filippo, Davide Moroni e Mario Salvetti. "Cohomology of Artin groups of type \tildeAn, Bn and applications". In Groups, homotopy and configuration spaces, in honour of Fred Cohen's 60th birthday. Mathematical Sciences Publishers, 2008. http://dx.doi.org/10.2140/gtm.2008.13.85.
Testo completoRapporti di organizzazioni sul tema "Cohomology of condensed groups"
Holod, Petro I. Geometric Quantization, Cohomology Groups and Intertwining Operators. GIQ, 2012. http://dx.doi.org/10.7546/giq-1-2000-95-104.
Testo completo