Tesi sul tema "Coadjoint orbits"
Cita una fonte nei formati APA, MLA, Chicago, Harvard e in molti altri stili
Vedi i top-20 saggi (tesi di laurea o di dottorato) per l'attività di ricerca sul tema "Coadjoint orbits".
Accanto a ogni fonte nell'elenco di riferimenti c'è un pulsante "Aggiungi alla bibliografia". Premilo e genereremo automaticamente la citazione bibliografica dell'opera scelta nello stile citazionale di cui hai bisogno: APA, MLA, Harvard, Chicago, Vancouver ecc.
Puoi anche scaricare il testo completo della pubblicazione scientifica nel formato .pdf e leggere online l'abstract (il sommario) dell'opera se è presente nei metadati.
Vedi le tesi di molte aree scientifiche e compila una bibliografia corretta.
Mihov, Diko. "Quantization of nilpotent coadjoint orbits". Thesis, Massachusetts Institute of Technology, 1996. http://hdl.handle.net/1721.1/38410.
Testo completoLi, Zongyi. "Coadjoint orbits and induced representations". Thesis, Massachusetts Institute of Technology, 1993. http://hdl.handle.net/1721.1/43270.
Testo completoAstashkevich, Alexander. "Fedosov's quantization of semisimple coadjoint orbits". Thesis, Massachusetts Institute of Technology, 1995. http://hdl.handle.net/1721.1/38396.
Testo completoDai, Jialing. "Conjugacy classes, characters and coadjoint orbits of Diff⁺S¹". Diss., The University of Arizona, 2000. http://hdl.handle.net/10150/284342.
Testo completoAndré, Carlos Alberto Martins. "Irreducible characters of the unitriangular group and coadjoint orbits". Thesis, University of Warwick, 1992. http://wrap.warwick.ac.uk/110600/.
Testo completoNevins, Monica 1973. "Admissible nilpotent coadjoint orbits of p-adic reductive Lie groups". Thesis, Massachusetts Institute of Technology, 1998. http://hdl.handle.net/1721.1/47467.
Testo completoPlummer, Michael. "Stratified fibre bundles and symplectic reduction on coadjoint orbits of SU(n)". Thesis, University of Surrey, 2008. http://epubs.surrey.ac.uk/842671/.
Testo completoVilla, Patrick Björn [Verfasser], Peter [Akademischer Betreuer] Heinzner e Alan T. [Akademischer Betreuer] Huckleberry. "Kählerian structures of coadjoint orbits of semisimple Lie groups and their orbihedra / Patrick Björn Villa. Gutachter: Peter Heinzner ; Alan T. Huckleberry". Bochum : Ruhr-Universität Bochum, 2015. http://d-nb.info/1079843477/34.
Testo completoDeltour, Guillaume. "Propriétés symplectiques et hamiltoniennes des orbites coadjointes holomorphes". Phd thesis, Université Montpellier II - Sciences et Techniques du Languedoc, 2010. http://tel.archives-ouvertes.fr/tel-00552150.
Testo completoZergane, Amel. "Séparation des représentations des groupes de Lie par des ensembles moments". Thesis, Dijon, 2011. http://www.theses.fr/2011DIJOS086/document.
Testo completoTo a unitary irreducible representation (π,H) of a Lie group G, is associated a moment map Ψπ. The closure of the range of Ψπ is the moment set of π. Generally, this set is Conv(Oπ), if Oπ is the corresponding coadjoint orbit. Unfortunately, it does not characterize π : 2 distincts orbits can have the same closed convex hull. We can overpass this di culty, by considering an overgroup G+ for G and a non linear map ø from g* into (g+)* such that, for generic orbits, ø(O) is an orbit and Conv( ø(O)) characterizes O. In the present thesis, we show that we can choose the pair (G+,ø), with deg ø ≤2 for all the nilpotent groups with dimension ≤6, except one, for all solvable groups with diemnsion ≤4, and for an example of motion group. Then we study the G=SL(n,R) case. For these groups, there exists ø with deg ø =n, if n>2, there is no such ø with deg ø=2, if n=4, there is no such ø with deg ø=3. Finally, we show that the moment map Ψπ is coming from a stronly Hamiltonian G-action on the Frécht symplectic manifold PH∞. We build a functor, which associates to each G an infi nite diemnsional Fréchet-Lie overgroup G̃,and, to each π a strongly Hamiltonian action, whose moment set characterizes π
Guieu, Laurent. "Sur la géométrie des orbites de la représentation coadjointe du groupe de Bott-Virasoro". Aix-Marseille 1, 1994. http://www.theses.fr/1994AIX11022.
Testo completoHeitritter, Kenneth I. J. "Mechanics of the diffeomorphism field". Thesis, University of Iowa, 2019. https://ir.uiowa.edu/etd/6761.
Testo completoKemp, Graham. "Algebra and geometry of Dirac's magnetic monopole". Thesis, Loughborough University, 2013. https://dspace.lboro.ac.uk/2134/12508.
Testo completoTumpach, Barbara. "Structures kählériennes et hyperkählériennes en dimension infinie". Palaiseau, Ecole polytechnique, 2005. http://www.theses.fr/2005EPXX0014.
Testo completoTumpach, Alice Barbara. "Varietes kaehleriennes et hyperkaeleriennes de dimension infinie". Phd thesis, Ecole Polytechnique X, 2005. http://tel.archives-ouvertes.fr/tel-00012012.
Testo completoAlexander, David. "Idéaux minimaux d'algèbres de groupes". Metz, 2000. http://docnum.univ-lorraine.fr/public/UPV-M/Theses/2000/Alexander.David.SMZ0041.pdf.
Testo completoRaffoul, Raed Wissam Mathematics & Statistics Faculty of Science UNSW. "Functional calculus and coadjoint orbits". 2007. http://handle.unsw.edu.au/1959.4/43693.
Testo completoZoghi, Masrour. "The Gromov Width of Coadjoint Orbits of Compact Lie Groups". Thesis, 2010. http://hdl.handle.net/1807/26269.
Testo completoHudon, Valérie. "Study of the coadjoint orbits of the Poincare group in 2 + 1 dimensions and their coherent states". Thesis, 2009. http://spectrum.library.concordia.ca/976538/1/NR63402.pdf.
Testo completoPayette, Jordan. "Les actions de groupes en géométrie symplectique et l'application moment". Thèse, 2014. http://hdl.handle.net/1866/11640.
Testo completoThis Master thesis is concerned with some natural notions of group actions on symplectic manifolds, which are in decreasing order of generality : symplectic actions, weakly hamiltonian actions and hamiltonian actions. A knowledge of group actions and of symplectic geometry is a prerequisite ; two chapters are devoted to a coverage of the basics of these subjects. The case of hamiltonian actions is studied in detail in the fourth chapter : the important moment map is introduced and several results on the orbits of the coadjoint representation are proved, such as Kirillov's and Kostant-Souriau's theorems. The last chapter concentrates on hamiltonian actions by tori, the main result being a proof of Atiyah-Guillemin-Sternberg's convexity theorem. A classification theorem by Delzant and Laudenbach is also discussed. The presentation is intended to be a rather exhaustive introduction to the theory of hamiltonian actions, with complete proofs to almost all the results. Many examples help for a better understanding of the most tricky concepts. Several connected topics are mentioned, for instance geometric prequantization and Marsden-Weinstein reduction.