Letteratura scientifica selezionata sul tema "Coadjoint orbits"
Cita una fonte nei formati APA, MLA, Chicago, Harvard e in molti altri stili
Consulta la lista di attuali articoli, libri, tesi, atti di convegni e altre fonti scientifiche attinenti al tema "Coadjoint orbits".
Accanto a ogni fonte nell'elenco di riferimenti c'è un pulsante "Aggiungi alla bibliografia". Premilo e genereremo automaticamente la citazione bibliografica dell'opera scelta nello stile citazionale di cui hai bisogno: APA, MLA, Harvard, Chicago, Vancouver ecc.
Puoi anche scaricare il testo completo della pubblicazione scientifica nel formato .pdf e leggere online l'abstract (il sommario) dell'opera se è presente nei metadati.
Articoli di riviste sul tema "Coadjoint orbits"
Kurniadi, Edi. "Ruang Fase Tereduksi Grup Lie Aff (1)". Jambura Journal of Mathematics 3, n. 2 (24 giugno 2021): 180–86. http://dx.doi.org/10.34312/jjom.v3i2.10653.
Testo completoGORSKY, A., e A. JOHANSEN. "LIOUVILLE THEORY AND SPECIAL COADJOINT VIRASORO ORBITS". International Journal of Modern Physics A 10, n. 06 (10 marzo 1995): 785–99. http://dx.doi.org/10.1142/s0217751x95000371.
Testo completoLIEDÓ, M. A. "DEFORMATION QUANTIZATION OF COADJOINT ORBITS". International Journal of Modern Physics B 14, n. 22n23 (20 settembre 2000): 2397–400. http://dx.doi.org/10.1142/s0217979200001916.
Testo completoBOŽIČEVIĆ, MLADEN. "A LIMIT FORMULA FOR EVEN NILPOTENT ORBITS". International Journal of Mathematics 19, n. 02 (febbraio 2008): 223–36. http://dx.doi.org/10.1142/s0129167x08004650.
Testo completoArnal, D., M. Cahen e S. Gutt. "Deformations on coadjoint orbits". Journal of Geometry and Physics 3, n. 3 (gennaio 1986): 327–51. http://dx.doi.org/10.1016/0393-0440(86)90013-6.
Testo completoRobinson, P. L. "Equivariant prequantization and admissible coadjoint orbits". Mathematical Proceedings of the Cambridge Philosophical Society 114, n. 1 (luglio 1993): 131–42. http://dx.doi.org/10.1017/s0305004100071462.
Testo completoBožičević, Mladen. "Invariant measures on nilpotent orbits associated with holomorphic discrete series". Representation Theory of the American Mathematical Society 25, n. 24 (18 agosto 2021): 732–47. http://dx.doi.org/10.1090/ert/580.
Testo completoEsposito, Chiara, Philipp Schmitt e Stefan Waldmann. "Comparison and continuity of Wick-type star products on certain coadjoint orbits". Forum Mathematicum 31, n. 5 (1 settembre 2019): 1203–23. http://dx.doi.org/10.1515/forum-2018-0302.
Testo completoVi�a, A. "Cohomological splitting of coadjoint orbits". Archiv der Mathematik 82, n. 1 (1 gennaio 2004): 13–15. http://dx.doi.org/10.1007/s00013-003-4819-5.
Testo completoLe Bruyn, Lieven. "Noncommutative smoothness and coadjoint orbits". Journal of Algebra 258, n. 1 (dicembre 2002): 60–70. http://dx.doi.org/10.1016/s0021-8693(02)00533-1.
Testo completoTesi sul tema "Coadjoint orbits"
Mihov, Diko. "Quantization of nilpotent coadjoint orbits". Thesis, Massachusetts Institute of Technology, 1996. http://hdl.handle.net/1721.1/38410.
Testo completoLi, Zongyi. "Coadjoint orbits and induced representations". Thesis, Massachusetts Institute of Technology, 1993. http://hdl.handle.net/1721.1/43270.
Testo completoAstashkevich, Alexander. "Fedosov's quantization of semisimple coadjoint orbits". Thesis, Massachusetts Institute of Technology, 1995. http://hdl.handle.net/1721.1/38396.
Testo completoDai, Jialing. "Conjugacy classes, characters and coadjoint orbits of Diff⁺S¹". Diss., The University of Arizona, 2000. http://hdl.handle.net/10150/284342.
Testo completoAndré, Carlos Alberto Martins. "Irreducible characters of the unitriangular group and coadjoint orbits". Thesis, University of Warwick, 1992. http://wrap.warwick.ac.uk/110600/.
Testo completoNevins, Monica 1973. "Admissible nilpotent coadjoint orbits of p-adic reductive Lie groups". Thesis, Massachusetts Institute of Technology, 1998. http://hdl.handle.net/1721.1/47467.
Testo completoPlummer, Michael. "Stratified fibre bundles and symplectic reduction on coadjoint orbits of SU(n)". Thesis, University of Surrey, 2008. http://epubs.surrey.ac.uk/842671/.
Testo completoVilla, Patrick Björn [Verfasser], Peter [Akademischer Betreuer] Heinzner e Alan T. [Akademischer Betreuer] Huckleberry. "Kählerian structures of coadjoint orbits of semisimple Lie groups and their orbihedra / Patrick Björn Villa. Gutachter: Peter Heinzner ; Alan T. Huckleberry". Bochum : Ruhr-Universität Bochum, 2015. http://d-nb.info/1079843477/34.
Testo completoDeltour, Guillaume. "Propriétés symplectiques et hamiltoniennes des orbites coadjointes holomorphes". Phd thesis, Université Montpellier II - Sciences et Techniques du Languedoc, 2010. http://tel.archives-ouvertes.fr/tel-00552150.
Testo completoZergane, Amel. "Séparation des représentations des groupes de Lie par des ensembles moments". Thesis, Dijon, 2011. http://www.theses.fr/2011DIJOS086/document.
Testo completoTo a unitary irreducible representation (π,H) of a Lie group G, is associated a moment map Ψπ. The closure of the range of Ψπ is the moment set of π. Generally, this set is Conv(Oπ), if Oπ is the corresponding coadjoint orbit. Unfortunately, it does not characterize π : 2 distincts orbits can have the same closed convex hull. We can overpass this di culty, by considering an overgroup G+ for G and a non linear map ø from g* into (g+)* such that, for generic orbits, ø(O) is an orbit and Conv( ø(O)) characterizes O. In the present thesis, we show that we can choose the pair (G+,ø), with deg ø ≤2 for all the nilpotent groups with dimension ≤6, except one, for all solvable groups with diemnsion ≤4, and for an example of motion group. Then we study the G=SL(n,R) case. For these groups, there exists ø with deg ø =n, if n>2, there is no such ø with deg ø=2, if n=4, there is no such ø with deg ø=3. Finally, we show that the moment map Ψπ is coming from a stronly Hamiltonian G-action on the Frécht symplectic manifold PH∞. We build a functor, which associates to each G an infi nite diemnsional Fréchet-Lie overgroup G̃,and, to each π a strongly Hamiltonian action, whose moment set characterizes π
Libri sul tema "Coadjoint orbits"
André, Carlos Alberto Martins. Irreducible characters of the unitriangular group and coadjoint orbits. [s.l.]: typescript, 1992.
Cerca il testo completo1943-, Seitz Gary M., a cura di. Unipotent and nilpotent classes in simple algebraic groups and lie algebras. Providence, R.I: American Mathematical Society, 2012.
Cerca il testo completoCapitoli di libri sul tema "Coadjoint orbits"
Marsden, Jerrold E., e Tudor S. Ratiu. "Coadjoint Orbits". In Texts in Applied Mathematics, 443–79. New York, NY: Springer New York, 1999. http://dx.doi.org/10.1007/978-0-387-21792-5_14.
Testo completoMarsden, Jerrold E., e Tudor S. Ratiu. "Coadjoint Orbits". In Texts in Applied Mathematics, 399–430. New York, NY: Springer New York, 1994. http://dx.doi.org/10.1007/978-1-4612-2682-6_14.
Testo completoOblak, Blagoje. "Virasoro Coadjoint Orbits". In Springer Theses, 201–40. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-61878-4_7.
Testo completoKirillov, A. "Geometry of coadjoint orbits". In Graduate Studies in Mathematics, 1–29. Providence, Rhode Island: American Mathematical Society, 2004. http://dx.doi.org/10.1090/gsm/064/01.
Testo completoOblak, Blagoje. "Coadjoint Orbits and Geometric Quantization". In Springer Theses, 109–60. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-61878-4_5.
Testo completoDwivedi, Shubham, Jonathan Herman, Lisa C. Jeffrey e Theo van den Hurk. "The Symplectic Structure on Coadjoint Orbits". In SpringerBriefs in Mathematics, 27–29. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-27227-2_5.
Testo completoGraham, William, e David A. Vogan. "Geometric Quantization for Nilpotent Coadjoint Orbits". In Progress in Mathematics, 69–137. Boston, MA: Birkhäuser Boston, 1998. http://dx.doi.org/10.1007/978-1-4612-4162-1_6.
Testo completoAdams, M. R., J. Harnad e J. Hurtubise. "Coadjoint Orbits, Spectral Curves and Darboux Coordinates". In Mathematical Sciences Research Institute Publications, 9–21. New York, NY: Springer US, 1991. http://dx.doi.org/10.1007/978-1-4613-9725-0_2.
Testo completoLozano, Yolanda, Steven Duplij, Malte Henkel, Malte Henkel, Euro Spallucci, Steven Duplij, Malte Henkel et al. "Supersymmetry Methods, particle dynamics on coadjoint orbits". In Concise Encyclopedia of Supersymmetry, 472–73. Dordrecht: Springer Netherlands, 2004. http://dx.doi.org/10.1007/1-4020-4522-0_631.
Testo completoAstashkevich, Alexander. "On Karabegov’s Quantizations of Semisimple Coadjoint Orbits". In Advances in Geometry, 1–18. Boston, MA: Birkhäuser Boston, 1999. http://dx.doi.org/10.1007/978-1-4612-1770-1_1.
Testo completoAtti di convegni sul tema "Coadjoint orbits"
GOLDIN, GERALD A. "QUANTIZATION ON COADJOINT ORBITS OF DIFFEOMORPHISM GROUPS: SOME RESEARCH DIRECTIONS". In Proceedings of XI Workshop on Geometric Methods in Physics. WORLD SCIENTIFIC, 1993. http://dx.doi.org/10.1142/9789814440844_0007.
Testo completoIglesias-Zemmour, Patrick. "Every Symplectic Manifold Is A Coadjoint Orbit". In Frontiers of Fundamental Physics 14. Trieste, Italy: Sissa Medialab, 2016. http://dx.doi.org/10.22323/1.224.0141.
Testo completoOh, Phillial. "Field Theory on Coadjoint Orbit and Self-Dual Chern-Simons Solitons". In Proceedings of the APCTP Winter School. WORLD SCIENTIFIC, 1998. http://dx.doi.org/10.1142/9789814447287_0010.
Testo completoRapporti di organizzazioni sul tema "Coadjoint orbits"
Bernatska, Julia. Geometry and Topology of Coadjoint Orbits of Semisimple Lie Groups. GIQ, 2012. http://dx.doi.org/10.7546/giq-9-2008-146-166.
Testo completo