Letteratura scientifica selezionata sul tema "Classification probabiliste"
Cita una fonte nei formati APA, MLA, Chicago, Harvard e in molti altri stili
Consulta la lista di attuali articoli, libri, tesi, atti di convegni e altre fonti scientifiche attinenti al tema "Classification probabiliste".
Accanto a ogni fonte nell'elenco di riferimenti c'è un pulsante "Aggiungi alla bibliografia". Premilo e genereremo automaticamente la citazione bibliografica dell'opera scelta nello stile citazionale di cui hai bisogno: APA, MLA, Harvard, Chicago, Vancouver ecc.
Puoi anche scaricare il testo completo della pubblicazione scientifica nel formato .pdf e leggere online l'abstract (il sommario) dell'opera se è presente nei metadati.
Articoli di riviste sul tema "Classification probabiliste"
Mselati, Benoit. "Classification et représentation probabiliste des solutions positives d'une équation elliptique semi-linéaire". Comptes Rendus Mathematique 335, n. 9 (novembre 2002): 733–38. http://dx.doi.org/10.1016/s1631-073x(02)02557-8.
Testo completoGarbolino, Emmanuel, Patrice De Ruffray, Henry Brisse e Gilles Grandjouan. "Les phytoclimats de France : classification probabiliste de 1874 bio-indicateurs du climat". Comptes Rendus Biologies 331, n. 11 (novembre 2008): 881–95. http://dx.doi.org/10.1016/j.crvi.2008.08.009.
Testo completoStan, Emanuela, Camelia-Oana Muresan, Raluca Dumache, Veronica Ciocan, Stefania Ungureanu, Dan Costachescu e Alexandra Enache. "Sex Estimation from Computed Tomography of Os Coxae—Validation of the Diagnose Sexuelle Probabiliste (DSP) Software in the Romanian Population". Applied Sciences 14, n. 10 (13 maggio 2024): 4136. http://dx.doi.org/10.3390/app14104136.
Testo completoGamboa, Luis Fernando. "Strategic Uses of Mobile Phones in the BoP: Some Examples in Latin American Countries". Lecturas de Economía, n. 71 (23 febbraio 2010): 209–34. http://dx.doi.org/10.17533/udea.le.n71a4820.
Testo completoYerokhin, A. L., e O. V. Zolotukhin. "Fuzzy probabilistic neural network in document classification tasks". Information extraction and processing 2018, n. 46 (27 dicembre 2018): 68–71. http://dx.doi.org/10.15407/vidbir2018.46.068.
Testo completoSelianinau, Mikhail. "Podejście probabilistyczne do klasyfikacji cyfrowych obrazów twarzy". Prace Naukowe Akademii im. Jana Długosza w Częstochowie. Technika, Informatyka, Inżynieria Bezpieczeństwa 6 (2018): 563–74. http://dx.doi.org/10.16926/tiib.2018.06.40.
Testo completoGouiouez, Mounir. "Probabilistic Graphical Model based on BablNet for Arabic Text Classification". Journal of Advanced Research in Dynamical and Control Systems 12, SP7 (25 luglio 2020): 1241–50. http://dx.doi.org/10.5373/jardcs/v12sp7/20202224.
Testo completoYang, Na, e Yongtao Zhang. "A Gaussian Process Classification and Target Recognition Algorithm for SAR Images". Scientific Programming 2022 (20 gennaio 2022): 1–10. http://dx.doi.org/10.1155/2022/9212856.
Testo completoVilla, Joe Luis, Ricard Boqué e Joan Ferré. "Calculation of the probability of correct classification in probabilistic bagged k-Nearest Neighbours". Chemometrics and Intelligent Laboratory Systems 94, n. 1 (novembre 2008): 51–59. http://dx.doi.org/10.1016/j.chemolab.2008.06.007.
Testo completoShi, Li Jun, Xian Cheng Mao e Zheng Lin Peng. "Method for Classification of Remote Sensing Images Based on Multiple Classifiers Combination". Applied Mechanics and Materials 263-266 (dicembre 2012): 2561–65. http://dx.doi.org/10.4028/www.scientific.net/amm.263-266.2561.
Testo completoTesi sul tema "Classification probabiliste"
Ambroise, Christophe. "Approche probabiliste en classification automatique et contraintes de voisinage". Compiègne, 1996. http://www.theses.fr/1996COMPD917.
Testo completoThis thesis proposes new clustering algorithms well suited for data analysis problems where natural constraints appear: preservation of a topology, spatial data. Gaussian mixture models and the estimation of parameters by the EM algorithm constitute the background of the work. The Kohonen Map algorithm introduces the idea of constraint in clustering. We show the relationship between this neural approach and Gaussian mixture models. This leads us to propose a variant of the EM algorithm which has similar behaviour as the Kohonen algorithm and whose convergence is proven. When dealing with spatial data, we consider the following constraint: two objects which are neighbours are more likely to belong to the same class than two objects which are spatially far away. Original algorithms based on the EM algorithm are proposed for taking into account this spatial constraint. These algorithms may be used for seeking a partition of objects which have a geographical location. This encompasses the problem of unsupervised image segmentation. A theoretical link between our approach and Markov random field models is established. The proposed methods are compared and illustrated by means of applications based on real data
Bzioui, Mohamed. "Classification croisée et modèle". Compiègne, 1999. http://www.theses.fr/1999COMP1226.
Testo completoTouzani, Abderrahmane. "Classification automatique par détection des contours des modes des fonctions de densité de probabilité multivariables et étiquetage probabiliste". Grenoble 2 : ANRT, 1987. http://catalogue.bnf.fr/ark:/12148/cb37610380w.
Testo completoAznag, Mustapha. "Modélisation thématique probabiliste des services web". Thesis, Aix-Marseille, 2015. http://www.theses.fr/2015AIXM4028.
Testo completoThe works on web services management use generally the techniques of information retrieval, data mining and the linguistic analysis. Alternately, we attend the emergence of the probabilistic topic models originally developed and utilized for topics extraction and documents modeling. The contribution of this thesis meets the topics modeling and the web services management. The principal objective of this thesis is to study and propose probabilistic algorithms to model the thematic structure of web services. First, we consider an unsupervised approach to meet different tasks such as web services clustering and discovery. Then we combine the topics modeling with the formal concept analysis to propose a novel method for web services hierarchical clustering. This method allows a novel interactive discovery approach based on the specialization and generalization operators of retrieved results. Finally, we propose a semi-supervised method for automatic web service annotation (automatic tagging). We concretized our proposals by developing an on-line web services search engine called WS-Portal where we incorporate our research works to facilitate web service discovery task. Our WS-Portal contains 7063 providers, 115 sub-classes of category and 22236 web services crawled from the Internet. In WS- Portal, several technologies, i.e., web services clustering, tags recommendation, services rating and monitoring are employed to improve the effectiveness of web services discovery. We also integrate various parameters such as availability and reputation of web services and more generally the quality of service to improve their ranking and therefore the relevance of the search result
Touzani, Abderrahmane. "Classification automatique par détection des contours des modes des fonctions de densité de probabilité multivariables et étiquetage probabiliste". Lille 1, 1987. http://www.theses.fr/1987LIL10058.
Testo completoBassolet, Cyr Gabin. "Approches connexionnistes du classement en Osiris : vers un classement probabiliste". Université Joseph Fourier (Grenoble), 1998. http://www.theses.fr/1998GRE10086.
Testo completoPRICE, DAVID. "Classification probabiliste par reseaux de neurones ; application a la reconnaissance de l'ecriture manuscrite". Paris 6, 1996. http://www.theses.fr/1996PA066344.
Testo completoDong, Yuan. "Modélisation probabiliste de classifieurs d’ensemble pour des problèmes à deux classes". Thesis, Troyes, 2013. http://www.theses.fr/2013TROY0013/document.
Testo completoThe objective of this thesis is to improve or maintain the performance of a decision-making system when the environment can impact some attributes of the feature space at a given time or depending on the geographical location of the observation. Inspired by ensemble methods, our approach has been to make decisions in representation sub-spaces resulting of projections of the initial space, expecting that most of the subspaces are not impacted. The final decision is then made by fusing the individual decisions. In this context, three classification methods (one-class SVM, Kernel PCA and Kernel ECA) were tested on a textured images segmentation problem which is a perfectly adequate application support because of texture pattern changes at the border between two regions. Then, we proposed a new fusion rule based on a likelihood ratio test for a set of independent classifiers. Compared to the majority vote, this fusion rule showed better performance against the alteration of the performance space. Finally, we modeled the decision system using a joint model for all decisions based on the assumption that decisions of individual classifiers follow a correlated Bernoulli law. This model is intended to link the performance of individual classifiers to the performance of the overall decision rule and to investigate and control the impact of changes in the original space on the overall performance
Mselati, Benoît. "Classification et représentation probabiliste des solutions positives de delta u = u2 dans un domaine". Paris 6, 2002. http://www.theses.fr/2002PA066496.
Testo completoCharon, Clara. "Classification probabiliste pour la prédiction et l'explication d'événements de santé défavorables et évitables en EHPAD". Electronic Thesis or Diss., Sorbonne université, 2024. https://accesdistant.sorbonne-universite.fr/login?url=https://theses-intra.sorbonne-universite.fr/2024SORUS200.pdf.
Testo completoNursing homes, which provide housing for dependent elderly people,are an option used by a large and growing population when, for a variety of reasons, including health, it is no longer possible for them to live at home.With the development of new information technologies in the health sector, an increasing number of health care facilities are equipped with information systems that group together administrative and medical data of patients as well as information on the care they receive. Among these systems, electronic health records (EHRs) have emerged as essential tools, providing quick and easy access to patient information in order to improve the quality and safety of care.We use the anonymized data of the EHRs from NETSoins, a software widely used in nursing homes in France, to propose and analyze classifiers capable of predicting several adverse health events in the elderly that are potentially modifiable by appropriate health interventions. Our approach focuses in particular on the use of methods that can provide explanations, such as probabilistic graphical models, including Bayesian networks.After a complex preprocessing step to adapt event-based data into data suitable for statistical learning while preserving their medical coherence, we have developed a learning method applied in three probabilistic classification experiments using Bayesian networks, targeting different events: the risk of occurrence of the first pressure ulcer, the risk of emergency hospitalization upon the resident's entry into the nursing home, and the risk of fracture in the first months of housing.For each target, we have compared the performance of our Bayesian network classifier according to various criteria with other machine learning methods as well as with the practices currently used in nursing homes to predict these risks. We have also compared the results of the Bayesian networks with clinical expertise.This study demonstrates the possibility of predicting these events from the data already collected in routine by caregivers, thus paving the way for new predictive tools that can be integrated directly into the software already used by these professionals
Libri sul tema "Classification probabiliste"
Hack, Henri Robert George Kenneth. Slope stability probability classification: SSPC = Helling stabiliteit classificatie : SSPC. Delft: International Institute for Aerospace Survey and Earth Sciences, 1996.
Cerca il testo completoSpray, Judith A. Multiple-category classification using a sequential probability ratio test. Iowa City, Iowa: American College Testing Program, 1993.
Cerca il testo completoSpray, Judith A. Multiple-category classification using a sequential probability ratio test. Iowa City, Iowa: American College Testing Program, 1993.
Cerca il testo completoSpray, Judith A. Multiple-category classification using a sequential probability ratio test. Iowa City, Iowa: American College Testing Program, 1993.
Cerca il testo completo1967-, Meira Wagner, a cura di. Demand-driven associative classification. London: Springer, 2011.
Cerca il testo completoLin, Chuan-Ju. Effects of item-selection criteria on classification testing with the sequential probability ratio test. Iowa City, Iowa: ACT, Inc., 2000.
Cerca il testo completoLin, Chuan-Ju. Effects of item-selection criteria on classification testing with the sequential probability ratio test. Iowa City, Iowa: ACT, Inc., 2000.
Cerca il testo completoLin, Chuan-Ju. Effects of item-selection criteria on classification testing with the sequential probability ratio test. Iowa City, Iowa: ACT, Inc., 2000.
Cerca il testo completoBaram, Yoram. Estimation and classification by sigmoids based on mutual information. [Washington, D.C: National Aeronautics and Space Administration, 1994.
Cerca il testo completoClassification Group of SIS. Meeting. Classification and data analysis: Theory and application : proceedings of the biannual meeting of the Classification Group of Societa Italia di Statistica (SIS), Pescara, July 3-4, 1997. A cura di Vichi Maurizio 1959- e Opitz Otto. New York: Springer, 1999.
Cerca il testo completoCapitoli di libri sul tema "Classification probabiliste"
Gower, John C., e Gavin J. S. Ross. "Non-probabilistic Classification". In Studies in Classification, Data Analysis, and Knowledge Organization, 21–28. Berlin, Heidelberg: Springer Berlin Heidelberg, 1998. http://dx.doi.org/10.1007/978-3-642-72253-0_3.
Testo completoBock, Hans H. "Probability Models for Convex Clusters". In Classification and Knowledge Organization, 3–14. Berlin, Heidelberg: Springer Berlin Heidelberg, 1997. http://dx.doi.org/10.1007/978-3-642-59051-1_1.
Testo completoFuhr, Norbert. "Representations, Models and Abstractions in Probabilistic Information Retrieval". In Information and Classification, 259–67. Berlin, Heidelberg: Springer Berlin Heidelberg, 1993. http://dx.doi.org/10.1007/978-3-642-50974-2_26.
Testo completoPompe, Uroš, e Igor Kononenko. "Probabilistic first-order classification". In Inductive Logic Programming, 235–42. Berlin, Heidelberg: Springer Berlin Heidelberg, 1997. http://dx.doi.org/10.1007/3540635149_52.
Testo completoBernardo, José M. "Bayesian Linear Probabilistic Classification". In Statistical Decision Theory and Related Topics IV, 151–62. New York, NY: Springer New York, 1988. http://dx.doi.org/10.1007/978-1-4613-8768-8_19.
Testo completoVovk, Vladimir, Alexander Gammerman e Glenn Shafer. "Probabilistic Classification: Venn Predictors". In Algorithmic Learning in a Random World, 157–79. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-06649-8_6.
Testo completoBock, Hans H. "Probabilistic Aspects in Classification". In Studies in Classification, Data Analysis, and Knowledge Organization, 3–21. Tokyo: Springer Japan, 1998. http://dx.doi.org/10.1007/978-4-431-65950-1_1.
Testo completoAggarwal, Charu C. "Classification: A Probabilistic View". In Probability and Statistics for Machine Learning, 353–91. Cham: Springer Nature Switzerland, 2024. http://dx.doi.org/10.1007/978-3-031-53282-5_8.
Testo completoGuo, Gongde, Hui Wang, David Bell e Zhining Liao. "Contextual Probability-Based Classification". In Lecture Notes in Computer Science, 313–26. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-540-30464-7_25.
Testo completoGodehardt, Erhard. "Probability Models of Classification". In Graphs as Structural Models, 97–114. Wiesbaden: Vieweg+Teubner Verlag, 1988. http://dx.doi.org/10.1007/978-3-322-96310-9_5.
Testo completoAtti di convegni sul tema "Classification probabiliste"
Gorguluarslan, Recep M., e Seung-Kyum Choi. "Predicting Reliability of Structural Systems Using Classification Method". In ASME 2013 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/detc2013-13323.
Testo completoHorte, T., R. Skjong, P. Friis-Hansen, A. P. Teixeira e F. Viejo de Francisco. "Probabilistic Methods Applied To Structural Design And Rule Development". In Developments in Classification & International Regulation 2007. RINA, 2007. http://dx.doi.org/10.3940/rina.dcir.2007.07.
Testo completoBailer-Jones, Coryn A. L., Kester W. Smith e Coryn A. L. Bailer-Jones. "Finding rare objects and building pure samples: Probabilistic quasar classification with Gaia". In CLASSIFICATION AND DISCOVERY IN LARGE ASTRONOMICAL SURVEYS: Proceedings of the International Conference: “Classification and Discovery in Large Astronomical Surveys”. AIP, 2008. http://dx.doi.org/10.1063/1.3059079.
Testo completoCardelli, Luca, Marta Kwiatkowska, Luca Laurenti, Nicola Paoletti, Andrea Patane e Matthew Wicker. "Statistical Guarantees for the Robustness of Bayesian Neural Networks". In Twenty-Eighth International Joint Conference on Artificial Intelligence {IJCAI-19}. California: International Joint Conferences on Artificial Intelligence Organization, 2019. http://dx.doi.org/10.24963/ijcai.2019/789.
Testo completoPereira, Rafael S., e Fabio Porto. "Deep Learning Application for Plant Classification on Unbalanced Training Set". In XIII Brazilian e-Science Workshop. Sociedade Brasileira de Computação - SBC, 2019. http://dx.doi.org/10.5753/bresci.2019.10023.
Testo completoPereira, Rafael S., e Fabio Porto. "Deep Learning Application for Plant Classification on Unbalanced Training Set". In XIII Brazilian e-Science Workshop. Sociedade Brasileira de Computação - SBC, 2019. http://dx.doi.org/10.5753/bresci.2019.6304.
Testo completoAlbini, Emanuele, Antonio Rago, Pietro Baroni e Francesca Toni. "Relation-Based Counterfactual Explanations for Bayesian Network Classifiers". In Twenty-Ninth International Joint Conference on Artificial Intelligence and Seventeenth Pacific Rim International Conference on Artificial Intelligence {IJCAI-PRICAI-20}. California: International Joint Conferences on Artificial Intelligence Organization, 2020. http://dx.doi.org/10.24963/ijcai.2020/63.
Testo completoКосян, Рубен, Ruben Kosyan, Viacheslav Krylenko e Viacheslav Krylenko. "DEVELOPMENT OF THE BASIC CRITERIA FOR RUSSIAN COASTS TYPIFICATION". In Managing risks to coastal regions and communities in a changing world. Academus Publishing, 2017. http://dx.doi.org/10.31519/conferencearticle_5b1b94080e4924.02334863.
Testo completoКосян, Рубен, Ruben Kosyan, Viacheslav Krylenko e Viacheslav Krylenko. "DEVELOPMENT OF THE BASIC CRITERIA FOR RUSSIAN COASTS TYPIFICATION". In Managing risks to coastal regions and communities in a changing world. Academus Publishing, 2017. http://dx.doi.org/10.21610/conferencearticle_58b431526b37b.
Testo completoWang, Eric, Pasha Khosravi e Guy Van den Broeck. "Probabilistic Sufficient Explanations". In Thirtieth International Joint Conference on Artificial Intelligence {IJCAI-21}. California: International Joint Conferences on Artificial Intelligence Organization, 2021. http://dx.doi.org/10.24963/ijcai.2021/424.
Testo completoRapporti di organizzazioni sul tema "Classification probabiliste"
Zeitouni, Ofer, e Sanjeev R. Kulkarni. A General Classification Rule for Probability Measures. Fort Belvoir, VA: Defense Technical Information Center, agosto 1993. http://dx.doi.org/10.21236/ada455893.
Testo completoZio, Enrico, e Nicola Pedroni. Uncertainty characterization in risk analysis for decision-making practice. Fondation pour une culture de sécurité industrielle, maggio 2012. http://dx.doi.org/10.57071/155chr.
Testo completoSOHN, HOON, DAVID W. ALLEN, KEITH WORDEN e CHARLES R. FARRAR. STATISTICAL DAMAGE CLASSIFICATION USING SEQUENTIAL PROBABILITY RATIO TESTS. Office of Scientific and Technical Information (OSTI), febbraio 2002. http://dx.doi.org/10.2172/808089.
Testo completoPouliot, D., R. Latifovic e W. Parkinson. Influence of sample distribution and prior probability adjustment on land cover classification. Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 2016. http://dx.doi.org/10.4095/297517.
Testo completode Luis, Mercedes, Emilio Rodríguez e Diego Torres. Machine learning applied to active fixed-income portfolio management: a Lasso logit approach. Madrid: Banco de España, settembre 2023. http://dx.doi.org/10.53479/33560.
Testo completode Dieu Niyigena, Jean, Innocent Ngaruye, Joseph Nzabanita e Martin Singull. Approximation of misclassification probabilities using quadratic classifier for repeated measurements with known covariance matrices. Linköping University Electronic Press, agosto 2024. http://dx.doi.org/10.3384/lith-mat-r-2024-02.
Testo completoEckert, Richard. PR-186-184509-R01 Guideline for Erosional Velocity. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), febbraio 2020. http://dx.doi.org/10.55274/r0011655.
Testo completoBragdon, Sophia, Vuong Truong e Jay Clausen. Environmentally informed buried object recognition. Engineer Research and Development Center (U.S.), novembre 2022. http://dx.doi.org/10.21079/11681/45902.
Testo completoLee, W. S., Victor Alchanatis e Asher Levi. Innovative yield mapping system using hyperspectral and thermal imaging for precision tree crop management. United States Department of Agriculture, gennaio 2014. http://dx.doi.org/10.32747/2014.7598158.bard.
Testo completoBurns, Malcom, e Gavin Nixon. Literature review on analytical methods for the detection of precision bred products. Food Standards Agency, settembre 2023. http://dx.doi.org/10.46756/sci.fsa.ney927.
Testo completo