Tesi sul tema "Circadian"
Cita una fonte nei formati APA, MLA, Chicago, Harvard e in molti altri stili
Vedi i top-50 saggi (tesi di laurea o di dottorato) per l'attività di ricerca sul tema "Circadian".
Accanto a ogni fonte nell'elenco di riferimenti c'è un pulsante "Aggiungi alla bibliografia". Premilo e genereremo automaticamente la citazione bibliografica dell'opera scelta nello stile citazionale di cui hai bisogno: APA, MLA, Harvard, Chicago, Vancouver ecc.
Puoi anche scaricare il testo completo della pubblicazione scientifica nel formato .pdf e leggere online l'abstract (il sommario) dell'opera se è presente nei metadati.
Vedi le tesi di molte aree scientifiche e compila una bibliografia corretta.
Zhang, Yuan. "Circadian clocks and cancer : The implication of BMAL1 (brain and muscle Arnt-like protein-1) in colorectal and breast carcinoma development and treatment". Thesis, Université Paris-Saclay (ComUE), 2019. http://www.theses.fr/2019SACLS422.
Testo completoBMAL1 is a core circadian clock protein, forming a heterodimer with CLOCK to initiate the transcription of circadian and output genes. Among canonical clock genes, only BMAL1 knockout results in complete loss of rhythmicity in both the SCN and peripheral tissues. My thesis work focuses on exploring the important role of BMAL1 in human breast and colon cancer progression and treatment. My work is divided into three main parts:1. Dosing time dependent in vitro pharmacodynamics of Everolimus despite a defective circadian clock (Zhang et al., 2018)(Zhang, Levi and Chang, 2018) Everolimus (EV) is an inhibitor of mammalian target of Rapamycin (mTOR) and is used to treat estrogen positive (ER+) breast cancer. Here, we investigated whether EV efficacy varied according to administration timing by using the ER+ breast cancer cell line MCF-7 as a model system. Serum shock synchronization induced a circadian oscillation in mTOR activity in MCF-7 cells, which rhythmically regulated the synthesis or phosphorylation of key G1 progression proteins, such as Cyclin D1 and phosphorylated RB, ultimately resulting in different G0/G1 blockage efficiency according to different EV administration timing. Thus, the different delivery schedule of EV presented different efficacy in G0/G1 phase blockage in serum shocked MCF-7 cells.This investigation revealed that, even in a breast cancer cell system with disrupted circadian organization, modulating drug administration according to other protein rhythms could still increase drug efficacy. This principle may be applied to many other cancer systems and treatment types to optimize cancer chronotherapy.2. Knockdown BMAL1 triggered different colon carcinoma cells fates by altering the delicate equilibrium between AKT/mTOR and P21/P53 pathways (Article in preparation)We tried to evaluate in vitro how knockdown BMAL1 (BMAL1-KD) by shRNA influences human colorectal cancer cell (CRC) behavior.The results revealed that BMAL1-KD triggered different CRC cell fates based on distinct p53 status in different cell lines. First, after BMAL1 knockdown, two primary CRC cell lines (HCT116 and SW480) presented a more evident AKT/mTOR activation than the metastatic colon carcinoma cell line, SW620. Furthermore, although both primary CRC cell lines presented a significant increase of AKT/mTOR activity, they had different P53 status (WT or mutant) and activation pattern. Under these context, SW480 BMAL1-KD cells exhibited increased senescence but HCT116 BMAL1-KD cells showed firstly a transient apoptosis and then higher proliferation rate.Thus, our work uncovered the crucial role of BMAL1 to balance a central metabolism regulator AKT/mTOR and a stress response pathway P53/P21 in CRC cell lines, which highlighted the importance of BMAL1 in CRC development and aging progression.3. BMAL1 knockdown leans epithelial–mesenchymal balance toward epithelial properties and decreased the chemoresistance of colon carcinoma cell (Article in preparation)Epithelial-mesenchymal transition (EMT) is a critical early event in the invasion and metastasis of carcinoma, including colorectal cancer (CRC). In this work, we studied how BMAL1-KD alters the delicate equilibrium between epithelial and mesenchymal properties of three colon carcinoma cell lines (HCT116, SW480 and SW620).The results showed the molecular alterations after BMAL1-KD promote mesenchymal-to-epithelial transition-like changes mostly appeared in two primary CRC cell lines (HCT116 and SW480) compared to the metastatic cell line SW620. Subsequently, BMAL1-KD HCT116 and SW480 cells harbored a decreased migration, invasiveness and drug resistance capacities relative to their scramble counterpart cells. All these data suggested the importance of BMAL1 on EMT inducing in colon carcinoma cells
Cervela, Cardona Luis Manuel. "Functional studies on the circadian regulation of mitochondrial activity in Arabidopsis thaliana". Doctoral thesis, Universitat Autònoma de Barcelona, 2019. http://hdl.handle.net/10803/669786.
Testo completoCircadian clocks are molecular timekeeping mechanisms that translate environmental cues, mostly light and temperature, into temporal information to generate ~24h rhythms in metabolism and physiology. The temporal coordination by the clock enables organisms to predict and anticipate periodic changes in the environment. Despite its importance for plant fitness and survival, the possible role of the circadian clock directly regulating plant mitochondrial activity and energy homeostasis has remained elusive. In this Doctoral Thesis, we have followed a comprehensive approach to demonstrate the molecular mechanism by which the key clock component TOC1 (TIMING OF CAB EXPRESSION 1) sets the time of mitochondrial activity. To that end, we have followed the in vivo dynamics of cytosolic ATP production using a FRET-based ATP biosensor. We have also performed transcriptomic analyses and examined their correlation with actual changes in metabolite content using plants miss-expressing TOC1. We have identified the molecular mechanism by which TOC1 regulates the mitochondrial activity through direct binding to the promoter of the tricarboxylic acid cycle related gene FUMARASE 2. Our genetic interaction studies have validated this mechanism, as over-expression of FUMARASE 2 in TOC1 over-expressing plants alleviates the reduced biomass and the starvation-like phenotypes observed in TOC1 overexpressing plants. Overall, ours studies uncover the role of the circadian clock controlling the cell energetic demands in synchronization with the environment.
Chen, Weiwei. "Characterization of the movement of a circadian protein in the temperature-dependent root synchronization of Arabidopsis thaliana". Doctoral thesis, Universitat Autònoma de Barcelona, 2020. http://hdl.handle.net/10803/670449.
Testo completoEl reloj circadiano está sincronizado por señales medioambientales externas, principalmente la luz y la temperatura. Entender cómo responde el reloj circadiano de la planta a las oscilaciones de temperatura es crucial para comprender la capacidad de respuesta de la planta al medio ambiente. En esta Tesis Doctoral, encontramos una función prevalente dependiente de la temperatura del componente del reloj de Arabidopsis EARLY FLOWERING 4 (ELF4) en el reloj circadiano de la raíz. En plantas en las que el ápice aéreo se ha eliminado, el reloj puede funcionar correctamente en las raíces, aunque exhibe un período más corto y una fase avanzada en comparación con las raíces de plantas completas. Los ensayos de microinjerto muestran que ELF4 se mueve desde el ápice aéreo para regular los ritmos en las raíces. El movimiento de la proteína ELF4 no transmite información fotoperiódica, sino que es esencial para controlar el período del reloj circadiano en la raíz de una manera dependiente de la temperatura. Las bajas temperaturas favorecen la movilidad de ELF4, lo que resulta en un reloj de de ritmo lento, mientras que las altas temperaturas disminuyen el movimiento, lo que lleva a un reloj más rápido. Por lo tanto, el movimiento de la proteína ELF4 móvil proporciona información sobre la temperatura y ayuda a establecer un diálogo entre el ápice aéreo y la raíz de la planta para controlar el ritmo circadiano en la raíz.
The circadian clock is synchronized by external environment cues, mostly through light and temperature. Explaining how the plant circadian clock responds to temperature oscillations is crucial to understanding plant responsiveness to the environment. In this thesis, we found a prevalent temperature-dependent function of the Arabidopsis clock component EARLY FLOWERING 4 (ELF4) in the root clock. The clocks in roots are able to run properly in the absence of shoots although shoot excision leads to a shorter period and advanced phase in excised roots compared to entire roots. Micrografting assays show that ELF4 moves from shoots to regulate rhythms in roots. ELF4 movement does not convey photoperiodic information, but trafficking is essential for controlling the period of the root clock in a temperature-dependent manner. Low temperatures favour ELF4 mobility, resulting in a slow paced root clock, whereas high temperatures decrease movement, leading to a faster clock. Hence, the mobile ELF4 delivers temperature information and establishes a shoot-to-root dialogue that sets the pace of the clock in roots.
Universitat Autònoma de Barcelona. Programa de Doctorat en Biologia i Biotecnologia Vegetal
Murphy, Barbara Anne. "INVESTIGATIONS OF CIRCADIAN REGULATION AND IMMUNE-CIRCADIAN INTERACTION IN THE HORSE". UKnowledge, 2007. http://uknowledge.uky.edu/gradschool_diss/546.
Testo completoJaeger, Cassie Danielle. "Chronic Circadian Misalignment Disrupts the Circadian Clock and Promotes Metabolic Syndrome". OpenSIUC, 2015. https://opensiuc.lib.siu.edu/dissertations/1081.
Testo completoGegnaw, Shumet T. "The connection between circadian clock impairment and retinal disease". Electronic Thesis or Diss., Strasbourg, 2023. http://www.theses.fr/2023STRAJ120.
Testo completoThis thesis investigated how circadian clock misregulation, which has not been clearly associated with retinal genetic disease so far, could contribute to degeneration and influence development and function in the retina. The rod-specific knockout of Bmal1 clock gene (rod-Bmal1KO) from the mouse line carrying the P23H mutation of rhodopsin exacerbated the retinal degeneration phenotypes, such as reduction in ERG response and rods loss, induced by the P23H mutation alone. These observations were corroborated by RNA-Seq analysis, where we found major changes in expression of genes related to phototransduction and metabolic processes, between the (rod-Bmal1KO/P23H) double mutant and P23H retinas. We showed that during development, Per1 and Per2 clock genes deficiency in mice significantly affects gene expression of phototransduction and cell cycle components. We found that adult mice deficient for Per1 and Per2 genes lack a daily modulation of light sensitivity, under scotopic and mesopic conditions. We also found an impaired daily modulation of light sensitivity in mice deficient for Bmal1 clock gene in rods. Additionally, we investigated how rod degeneration could impact on the global rhythmic capacity of the retina by measuring PER2::LUC bioluminescence rhythms in P23H mice. We showed that the retinal clock in P23H/+ heterozygous mice displays circadian rhythms with significantly increased robustness and amplitude. These effects likely involve activation of glial cells
Cretenet, Gaspard. "Coordination par l'horloge circadienne de l'activation rythmique du stress du RE et de la traduction dans le foie de souris". Thesis, Montpellier 2, 2010. http://www.theses.fr/2010MON20115/document.
Testo completoIn one hand, The mammalian circadian clock plays a fundamental role in the liver by regulating fatty acid, glucose, and xenobiotic metabolism. Impairment of this rhythm has been shown to lead to diverse pathologies, including metabolic syndrome. Currently, it is supposed that the circadian clock regulates metabolism mostly by regulating expression of liver enzymes at the transcriptional level. We show that the circadian clock also controls hepatic metabolism by synchronizing a secondary 12 hr period rhythm characterized by rhythmic activation of the IRE1a pathway in the endoplasmic reticulum. The absence of circadian clock perturbs this secondary clock and provokes deregulation of endoplasmic reticulum localized enzymes. This leads to impaired lipid metabolism, resulting in aberrant activation of the sterol-regulated SREBP transcription factors. The resulting aberrant circadian lipid metabolism in mice devoid of the circadian clock could be inv olved in the appearance of the associated metabolic syndrome.In a second hand, the tissue growth in animals is principally regulated by nutrient sensing and principally by the protein kinase TOR. In mice one gene is identified as TOR kinase and the association of Tor protein associated with 2 different complex of protein (TORC1 and TORC2). TORC1 is the major rapamycin sensitive form and is the primary mediator of energy and amino acid sensing for growth control. This control consists in the regulation of translation through the phosphorylation of S6 Kinase (ribosomal S6 kinase) and 4E-BP (Eif4E binding protein) and the control of ribosome biogenesis. We are interested to show if the circadian clock regulate TOR translation regulation in mice liver
Gon?alves, Bruno da Silva Brand?o. "Estudo da organiza??o funcional do sistema circadiano por meio de ferramentas computacionais e matem?ticas". Universidade Federal do Rio Grande do Norte, 2013. http://repositorio.ufrn.br:8080/jspui/handle/123456789/17232.
Testo completoConselho Nacional de Desenvolvimento Cient?fico e Tecnol?gico
Circadian rhythms are variations in physiological processes that help living beings to adapt to environmental cycles. These rhythms are generated and are synchronized to the dark light cycle through the suprachiasmatic nucleus. The integrity of circadian rhythmicity has great implication on human health. Currently it is known that disturbances in circadian rhythms are related to some problems of today such as obesity, propensity for certain types of cancer and mental disorders for example. The circadian rhythmicity can be studied through experiments with animal models and in humans directly. In this work we use computational models to gather experimental results from the literature and explain the results of our laboratory. Another focus of this study was to analyze data rhythms of activity and rest obtained experimentally. Here we made a review on the use of variables used to analyze these data and finally propose an update on how to calculate these variables. Our models were able to reproduce the main experimental results in the literature and provided explanations for the results of experiments performed in our laboratory. The new variables used to analyze the rhythm of activity and rest in humans were more efficient to describe the fragmentation and synchronization of this rhythm. Therefore, the work contributed improving existing tools for the study of circadian rhythms in mammals
Os ritmos circadianos s?o varia??es em processos fisiol?gicos que auxiliam os seres vivos na adapta??o aos ciclos ambientais. Esses ritmos s?o gerados e se sincronizam ao ciclo claro escuro por meio do n?cleo supraquiasm?tico. A integridade da ritmicidade circadiana tem grande implica??o na sa?de dos seres humanos. Atualmente sabe-se que dist?rbios nos ritmos circadianos est?o relacionados com alguns problemas da atualidade como a obesidade, propens?o a determinados tipos de c?ncer e transtornos mentais por exemplo. A ritmicidade circadiana pode ser estudada por meio de experimentos com modelos animais e diretamente nos seres humanos. Nesse trabalho utilizamos modelos computacionais para reunir resultados experimentais da literatura e explicar resultados de nosso laborat?rio. Outro foco desse trabalho foi na an?lise de dados de ritmos de atividade e repouso obtidos experimentalmente. Aqui fizemos uma revis?o sobre o uso de vari?veis utilizadas para analisar esses dados e por ?ltimo propomos uma atualiza??o na forma de calcular essas vari?veis. Os nossos modelos foram capazes de reproduzir os principais resultados experimentais da literatura e nos forneceram explica??es para resultados de experimentos realizados em nosso laborat?rio. As novas vari?veis utilizadas para analisar o ritmo de atividade e repouso em humanos se mostraram mais eficiente para descrever a fragmenta??o e sincroniza??o desse ritmo. Assim esse trabalho contribuiu aperfei?oando as ferramentas existentes para o estudo da ritmicidade circadiana nos mam?feros
Reilly, Thomas P. "Circadian rhythms and exercise". Thesis, Liverpool John Moores University, 1997. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.297911.
Testo completoBrettschneider, Christian. "The cyanobacterial circadian clock". Doctoral thesis, Humboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät I, 2011. http://dx.doi.org/10.18452/16385.
Testo completoBiological activities in cyanobacteria are coordinated by an internal clock. The rhythm of the cyanobacterium Synechococcus elongatus PCC 7942 originates from the kai gene cluster and its corresponding proteins. In a test tube, the proteins KaiA, KaiB and KaiC form complexes of various stoichiometry and the average phosphorylation level of KaiC exhibits robust circadian oscillations in the presence of ATP. The characteristic cycle of individual KaiC proteins is determined by phosphorylation of serine 431 and threonine 432. Differently phosphorylated KaiC synchronize due to an interaction with KaiA and KaiB. However, the details of this interaction are unknown. Here, I quantitatively investigate the experimentally observed characteristic phosphorylation cycle of the KaiABC clockwork using mathematical modeling. I thereby predict the binding properties of KaiA to both KaiC and KaiBC complexes by analyzing the two most important experimental constraints for the model. In order to reproduce the KaiB-induced dephosphorylation of KaiC a highly non-linear feedback loop has been identified. This feedback originates from KaiBC complexes, which are exclusively phosphorylated at the serine residue. The observed robustness of the KaiC phosphorylation level to concerted changes of the total protein concentrations demands an inclusion of two KaiC binding sites to KaiA in the mathematical model. Besides the formation of KaiAC complexes enhancing the autophosphorylation activity of KaiC, the model accounts for a KaiC binding site, which constantly sequestrates a large fraction of free KaiA. These theoretical predictions have been confirmed by the novel method of native mass spectrometry, which was applied in collaboration with the Heck laboratory. The mathematical model elucidates the mechanism by which the circadian clock satisfies three defining principles. First, the highly non-linear feedback loop assures a rapid and punctual switch to dephosphorylation which is essential for a precise period of approximately 24 h (free-running rhythm). Second, the dissociation of the protein complexes increases with increasing temperatures. These perturbations induce opposing phase shifts, which exactly compensate during one period (temperature compensation). Third, a shifted external rhythm of low and high temperature affects only a part of the three compensating phase perturbations, which leads to phase shifts (phase entrainment). An in silico evolution analysis shows that the existing second phosphorylatable residue of KaiC is not necessary for the existence of sustained oscillations but provides an evolutionary benefit. The analysis demonstrates that the distribution of four phosphorylated states of KaiC is optimized in order for the organism to uniquely distinguish between dusk and dawn. Consequently, this thesis emphasizes the importance of the four phosphorylated states of KaiC, which assure the outstanding performance of the core oscillator.
Galvanin, Silvia. "Circadian Clock Study Through Frequency-Encoded Entrainment Stimulations". Doctoral thesis, Università degli studi di Padova, 2018. http://hdl.handle.net/11577/3422301.
Testo completoI ritmi circadiani sono meccanismi biologici di organizzazione temporale intrinseci e autosostenuti, che consentono agli organismi di anticipare i cambiamenti ambientali e permettono loro di adattare il loro comportamento e la loro fisiologia nell’arco della giornata. L’orologio circadiano è sincronizzato dai cicli luce/buio e dall’ora dei pasti. La funzione biologica essenziale del ritmo circadiano è mantenere lo stato fisiologico dell’organismo e la sua sincronia comportamentale e metabolica con l’ambiente esterno. Recentemente è stato dimostrato che l’orologio circadiano garantisce il mantenimento dell’omeostasi metabolica, e che una distruzione del ritmo circadiano è causa di numerose malattie. L’approccio sperimentale convenzionale per lo studio dell’orologio circadiano in vitro è basato su una singola stimolazione di un solo metabolita o ormone, mentre in vivo i tessuti sono esposti in continuo a stimoli oscillatori periodici di una grande vastità di metaboliti e ormoni, le cui variazioni sono spesso interconnesse, come nel caso di glucosio e insulina. Inoltre, nell’analisi sperimentale convenzionale, sono studiati solo uno o pochi geni noti per essere implicati nell’orologio circadiano, mentre è noto che un elevato numero di geni sono espressi in modo circadiano. Lo scopo di questo progetto di ricerca è quindi sviluppare tecnologie e metodi di analisi per studiare l’effetto di stimoli metabolici in frequenza sull’orologio circadiano di tessuti periferici. Questi stimoli riproducono infatti in vitro le oscillazioni metaboliche a cui i tessuti sono esposti in vivo. Tecnologie, e più nello specifico, microtecnologie sono state sviluppate per studiare gli effetti di stimoli metabolici oscillatori, ed è stato dimostrato che in fibroblasti murini l’espressione di Per2 (uno dei geni principali del meccanismo molecolare dell’orologio circadiano) è sincronizzata da stimoli metabolici oscillatori. Inoltre, è stato dimostrato che le oscillazioni metaboliche sono di per sé sufficienti per allineare l’orologio circadiano nei tessuti periferici. Per sviluppare un modello che riproducesse in vitro condizioni sia fisiologiche che patologiche, raggiungendo un controllo spazio-temporale preciso del microambiente cellulare, le stimolazioni in frequenza sono state automatizzate in un dispositivo microfluidico progettato in modo dedicato per studi del ritmo circadiano. Infine, per estendere lo studio ai geni espressi con un pattern temporale circadiano, un nuovo metodo di analisi è stato proposto e caratterizzato. Il metodo permette di identificare geni circadiani da dati di trascrittomica, di suddividere i geni basandosi sulla fase della loro espressione, di visualizzare dati di trascrittomica nel loro complesso e di individuare rapidamente e in modo semplice modifiche a livello trascrizionale da una condizione biologica ad un’altra.
Palacios, Jordán Héctor. "Metabolomics strategy to comprehend the interactions between circadian rhythms and flavanol activity on the hepatic metabolism". Doctoral thesis, Universitat Rovira i Virgili, 2019. http://hdl.handle.net/10803/668962.
Testo completoEl extracto de proantocianidinas procedente de la semilla de uva (GSPE) se ha asociado a un amplio rango de efectos beneficiosos para la prevención o tratamiento de las alteraciones metabólicas hepáticas causadas por la obesidad, p.ej. resistencia a la insulina o esteatosis. Además, el GPSE es capaz de modular los ritmos circadianos hepáticos, los cuales son alterados por la obesidad. Por lo tanto, esto sugiere que el GPSE puede regular parcialmente el metabolismo lipídico y glucídico a través de la modulación de los ritmos circadianos. La metabolòmica basada en RMN es una técnica adecuada para el estudio de las interacciones entre los efectos de las proantocianidinas i los ritmos circadianos del metabolismo hepático. El objetivo de esta tesis es evaluar si los efectos del GSPE son diferentes dependiendo del momento del día de administración en animales que padecen síndrome metabólico. También se han estudiado las alteraciones en los ritmos circadianos del metabolismo hepático provocadas por una dieta obesogénica para determinar si, dicha alteración, es diferente en función el género. Las ratas hembra obesas mostraron una mayor resistencia y flexibilidad en los ritmos circadianos del metabolismo hepático. La administración crónica de GSPE presentó diferentes efectos en ratas macho obesas en función del momento de su administración. La mayoría de los efectos beneficiosos fueron hallados cuando el GSPE fue dado al inicio de la fase lumínica. Solo en dichos animales se observó un posible efecto antioxidante y una mejora en la sensibilidad a la insulina en el hígado. Los resultados de esta tesis eluciden la importancia del momento de administración del GSPE. Además, esta tesis demuestra una mayor flexibilidad en los ritmos circadianos en ratas hembra obesas.
A grape seed proanthocyanidin extract (GSPE) has been associated with a widely range of beneficial effects for the prevention and treatment of hepatic metabolic disturbances induced by obesity, such as insulin resistance or steatosis. Moreover, GSPE is capable to modulate the clock system in the liver, which is also disrupted in an obesity status, thus suggesting that GSPE can partially regulate lipid and glucose metabolism by modulating the hepatic circadian rhythms. NMR-based metabolomics strategy is an adequate approach to study the interaction between the proanthocyanidin effects and the circadian rhythmicity of the hepatic metabolism. In this regard, this thesis aims to evaluate whether a grape seed proanthocyanidin extract (GSPE) has different effects on the hepatic metabolism depending on the administration time, in a metabolic syndrome situation. The circadian rhythm disruption of the hepatic metabolism, caused by obesity, was studied in both genders in order to elucidate whether this disruption is gender-dependent. Female animals showed to be more resistance and flexible against an obesogenic diet. The chronic administration of GSPE presented different effects in obese male rats depending on its administration time. A large amount of its beneficial effects were found when GSPE was given at the beginning of the light phase. Possible antioxidant effects and an improvement in hepatic insulin sensitivity were only observed in those animals. The results of this thesis elucidate the importance of the administration time of GSPE. Additionally, this thesis shows the better circadian rhythm flexibility of obese female rats.
Silva, Patrícia Tachinardi Andrade. "To be diurnal or nocturnal: the interplay of energy balance and time of activity in subterranean rodents (Ctenomys aff. knighti) and laboratory mice (Mus musculus)". Universidade de São Paulo, 2017. http://www.teses.usp.br/teses/disponiveis/41/41135/tde-25072017-110626/.
Testo completoEstudos que apontam discrepâncias entre atividade noturna e diurna, respectivamente, sob condições de laboratório e de campo, estão cada vez mais comuns em roedores e sugerem que a definição de nicho temporal é muito mais plástica do que se suspeitava inicialmente. Recentemente, foi proposto que fatores que desafiam o balanço energético do animal desempenham um papel importante em mudanças de nicho temporal. A disponibilidade de alimento e as temperaturas ambientais poderiam ser algumas das diferenças fundamentais entre campo e laboratório, os quais poderiam alterar o padrão temporal de atividade diária. No laboratório, os animais são alimentados ad libitum, enquanto na natureza eles precisam gastar energia para forrageamento. A \"hipótese circadiana termoenergética\" sugere que a atividade diurna pode ser uma resposta aos altos custos energéticos do forrageamento, permitindo que o animal economize energia durante as horas mais frias da noite, descansando e se abrigando em tocas onde as temperaturas são mais altas do que na superfície. Nesta tese, exploramos a interação entre a plasticidade da definição noturnalidade/diurnalidade e o metabolismo energético em duas espécies de roedores, o tuco-tucos (Ctenomys aff. knighti) e o camundongo de laboratório (Mus musculus). Tuco-tucos são roedores subterrâneos que enfrentam desafios energéticos peculiares em seu habitat e verificamos que são diurnos em campo e noturnos em laboratório. Nós caracterizamos a variação de seu gasto energético ao longo do dia e da noite e descrevemos o achado peculiar de que algum fator presente no interior da câmara metabólica pode ser um gatilho para a mudança de noturnalidade para diurnalidade. Além disso, estimamos a quantidade de energia que os tuco-tucos economizariam ao serem diurnos em campo, combinando medidas de taxa metabólica em várias temperaturas ambientes com registros dessa temperatura no habitat natural do tuco-tuco. Descrevemos também investigações adicionais sobre a plasticidade circadiana na atividade locomotora e na temperatura corporal de camundongos submetidos à restrição alimentar, em condições seminaturais. Os achados desses três estudos forneceram evidências valiosas para a discussão do papel dos fatores ambientais, particularmente os desafios energéticos, na plasticidade dos ritmos diários
Chassard, David. "Implication du système circadien dans la fonction de reproduction chez la souris femelle". Thesis, Strasbourg, 2015. http://www.theses.fr/2015STRAJ060/document.
Testo completoThe kisspeptin (Kp) neurons in the anteroventral periventricular nucleus (AVPV) are essential for the preovulatory LH surge, which is gated by circulating estradiol (E2) and the time of day. We investigated whether AVPV Kp neurons in intact female mice may be the site in which both E2 and daily signals are integrated and whether these neurons may host a circadian oscillator involved in the timed LH surge. In the afternoon of proestrous day, Kp immunoreactivity displayed a marked and transient decrease 2 hours before the LH surge. In contrast, Kp content was stable throughout the day of diestrus, when LH levels are constantly low. AVPV Kp neurons expressed the clock protein period1 (PER1) with a daily rhythm that is phase delayed compared with the PER1 rhythm measured in the main clock of the suprachiasmatic nuclei (SCN). PER1 rhythm in the AVPV, but not in the SCN,exhibited a significant phase delay of 2.8 hours in diestrus as compared with proestrus. Isolated Kp expressing AVPV explants from PER2::LUCIFERASE mice displayed sustained circadian oscillations of bioluminescence with a circadian period (23.2 h) significantly shorter than that of SCN explants(24.5 h). Furthermore, in AVPV explants incubated with E2 (10 nM to 1 μM), the circadian period was lengthened by 1 hour, whereas the SCN clock remained unaltered. In conclusion, these findings indicate that AVPV Kp neurons display an E2-dependent daily rhythm, which may possibly be driven by an intrinsic circadian clock acting in combination with the SCN timing signal
Otway, Daniella Theresia. "Circadian rhythms in adipose tissue". Thesis, University of Surrey, 2009. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.511108.
Testo completoVijayan, Vikram. "Circadian Gene Expression in Cyanobacteria". Thesis, Harvard University, 2012. http://dissertations.umi.com/gsas.harvard:10665.
Testo completoCoyle, Kieran. "Circadian variation in cognitive functioning". Thesis, Cardiff University, 1989. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.293015.
Testo completoSmith, Karen Lynn. "Entrainment of the circadian clock". Thesis, University of Cambridge, 1999. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.624358.
Testo completoTopacio, Tracey Karen B. "Circadian Disruption, Diet, and Exercise". Kent State University / OhioLINK, 2013. http://rave.ohiolink.edu/etdc/view?acc_num=kent1382122230.
Testo completoJasper, Isabelle. "Circadian rhythms in sensorimotor control". Tönning Lübeck Marburg Der Andere Verl, 2009. http://d-nb.info/997031034/04.
Testo completoCrosby, Priya. "Metabolic regulation of circadian timekeeping". Thesis, University of Cambridge, 2017. https://www.repository.cam.ac.uk/handle/1810/269019.
Testo completoBusza, Ania. "Molecular and Behavioral Analysis of Drosophila Circadian Photoreception and Circadian Thermoreception: A Dissertation". eScholarship@UMMS, 2007. https://escholarship.umassmed.edu/gsbs_diss/343.
Testo completoFung, Uceda Jorge Alberto. "Characterization of the circadian clock function in the control of cell cycle progression to modulate growth in Arabidopsis thaliana". Doctoral thesis, Universitat Autònoma de Barcelona, 2018. http://hdl.handle.net/10803/664286.
Testo completoThe circadian function is essential for plant growth and its adaptation to the environment. The molecular machinery responsible for the establishment of the circadian rhythmicity relies on the rhythmic oscillation of differentially expressed genes with different peaks of expression along the day and night. The rhythms in gene expression are translated into oscillations of physiological and developmental processes. Plant growth is controlled by a plethora of different processes that ultimately work through the control of cell proliferation and differentiation. Cell proliferation relies on the proper progression of the mitotic cycle, which is divided in 4 phases: S (DNA synthesis), M (Mitosis) and two gap phases G1 and G2, that take place before S and M phases, respectively. Cell differentiation coincides with the entry into the endocycle, a variant of the mitotic cycle in which genomic DNA duplicates without further division or mitosis. Even though the circadian clock and cell cycle as separate pathways have been well documented in plants, the possible direct interplay between these two cyclic processes has not been previously addressed. The work performed during this Thesis has focused on the characterization of the role of the circadian clock in the control of the cell cycle during plant growth. We found that plants with slower than Wild-Type circadian clocks slow down the progression of the cell cycle, while plants with faster clocks speed it up. The core clock component TIMING OF CAB EXPRESSION 1 (TOC1) controls the G1 to S-phase transition, thereby regulating the rhythm of the mitotic cycle during the early stages of leaf development. Likewise, TOC1 controls somatic ploidy during later stages of leaf development and of hypocotyl cell elongation. The use of flow cytometry analyses and of leaf growth kinetics showed that in plants over-expressing TOC1, the S-phase is shorter, which correlates with the diurnal repression of the CELL DIVISION CONTROL 6 (CDC6) gene. This gene encodes an essential component of the pre-replication complex, which is responsible for the specification of DNA origins of replication. Chromatin immunoprecipitation assays showed that the diurnal repression of CDC6 most likely relies on the direct binding of TOC1 to the CDC6 promoter. Genetic interaction analyses showeed that the reduced growth and altered somatic ploidy phenotypes observed in plants over-expressing TOC1 were reverted when CDC6 was over-expressed. Thus, our results confirm that TOC1 regulation of the cell cycle occurs through CDC6 repression. The slow cell cycle progression in plants over-expressing TOC1 has an impact not only in organ development but also on tumor growth in stems and inflorescences. Thus, TOC1 sets the time of the DNA pre-replicative machinery to control plant growth in resonance with the environment.
Val, Casals Maria 1993. "Circadian regulation of macrophages in homeostasis and disease". Doctoral thesis, Universitat Pompeu Fabra, 2020. http://hdl.handle.net/10803/669532.
Testo completoCircadian rhythms are daily oscillations in physiological parameters required for organisms to adapt their activity to cycles of light and darkness. At the molecular level, the circadian machinery consists of cell-autonomous transcription-translation oscillation loops led by the activity of BMAL1 and CLOCK proteins. The circadian machinery regulates the activity of diverse immune cell types, including macrophages. Specifically, BMAL1 can control the daily magnitude of macrophage inflammatory responses. In the present work we characterize the circadian regulation of macrophages in yet unexplored contexts. We have analyzed the expression and oscillatory patterns of clock components in macrophage populations, and also assessed the potential role of clocks in macrophage functions. We present results identifying aspects of clock function in macrophages that can help understand the influence of circadian rhythms in the modulation of innate immune responses.
Ragsdale, Raven, Colin Shone, Madeleine Miller, Andrew Shields, Thomas C. Jones e Darrell Moore. "Circadian Resonance and Entrainment in Three Spider Species (Frontinella communis, Metazygia wittfeldae, and Cyclosa turbinata)". Digital Commons @ East Tennessee State University, 2019. https://dc.etsu.edu/asrf/2019/schedule/140.
Testo completoSimões, Ana Leda Bertoncini. "Estudo comparativo e variabilidade circadiana das temperaturas timpanica, oral e axilar em adultos hospitalizados". [s.n.], 2005. http://repositorio.unicamp.br/jspui/handle/REPOSIP/311342.
Testo completoDissertação (mestrado) - Universidade Estadual de Campinas, Faculdade de Ciencias Medicas
Made available in DSpace on 2018-08-04T03:29:08Z (GMT). No. of bitstreams: 1 Simoes_AnaLedaBertoncini_M.pdf: 1152293 bytes, checksum: 939294f259cff182dfd66288e6a3ac44 (MD5) Previous issue date: 2005
Resumo: Esta pesquisa teve como objetivo verificar a variabilidade circadiana das temperaturas timpânica, oral e axilar; correlacionar as medidas da temperatura timpânica considerando o ângulo de posicionamento e comparar as medidas entre si, em pacientes adultos hospitalizados. Participaram, 15 pacientes do sexo masculino sem sinais de processos infecciosos, com idade entre 22 a 75 anos com diversos diagnósticos clínico e cirúrgico, internados nas enfermarias de Cardiologia, Gastroclínica e Enfermaria Geral de Adultos (EGA). Foram medidas as temperaturas ao longo do período de vigília, iniciando às 6 horas da manhã e a última às 22 horas, com um total de nove medidas. Verificou-se também a temperatura ambiente nas enfermarias durante o período das 5h30, às 14 horas e às 20 horas. Os resultados mostraram que houve diferença significativa entre as médias dos termômetros; as médias dos horários medidos; às médias entre as temperaturas dos termômetros no período noturno e entre as médias nos períodos matutino e vespertino (p-value=0,0001). Não houve diferença significativa entre os horários medidos no período noturno (p-value=0,8) e entre as médias das temperaturas nos períodos matutino e vespertino (p-value=0,4), quando utilizada a técnica paramétrica de análise de variância e o teste de Tukey para comparações múltiplas. O nível de significância adotado foi ? = 0,05. O termômetro timpânico registrou a variabilidade circadiana dos pacientes e seus valores de temperatura foram maiores em relação aos outros locais de medida
Resumo: Esta pesquisa teve como objetivo verificar a variabilidade circadiana das temperaturas timpânica, oral e axilar; correlacionar as medidas da temperatura timpânica considerando o ângulo de posicionamento e comparar as medidas entre si, em pacientes adultos hospitalizados. Participaram, 15 pacientes do sexo masculino sem sinais de processos infecciosos, com idade entre 22 a 75 anos com diversos diagnósticos clínico e cirúrgico, internados nas enfermarias de Cardiologia, Gastroclínica e Enfermaria Geral de Adultos (EGA). Foram medidas as temperaturas ao longo do período de vigília, iniciando às 6 horas da manhã e a última às 22 horas, com um total de nove medidas. Verificou-se também a temperatura ambiente nas enfermarias durante o período das 5h30, às 14 horas e às 20 horas. Os resultados mostraram que houve diferença significativa entre as médias dos termômetros; as médias dos horários medidos; às médias entre as temperaturas dos termômetros no período noturno e entre as médias nos períodos matutino e vespertino (p-value=0,0001). Não houve diferença significativa entre os horários medidos no período noturno (p-value=0,8) e entre as médias das temperaturas nos períodos matutino e vespertino (p-value=0,4), quando utilizada a técnica paramétrica de análise de variância e o teste de Tukey para comparações múltiplas. O nível de significância adotado foi ? = 0,05. O termômetro timpânico registrou a variabilidade circadiana dos pacientes e seus valores de temperatura foram maiores em relação aos outros locais de medida
Abstract: The aim of this research was to verify the daily variation of the tympanic, oral and axillary temperatures, and correlate measurements of the Tympanic temperature considering the positioning angle and to compare the set of measurements in adult volunteer patients during treatment in the Clinics Hospital of Universidade Estadual de Campinas, São Paulo. The results refer to fifteen male in patients, 22 to 75 years old with no signal of infectious processes, having different clinical and cirurgic diagnostics in the Cardiology, Gastroclinics, and Adult General Nursery. The temperatures were measured nine times between 6 am and 10 pm. The ambient nurserys temperature was also monitored, at 5:30 am, 2 pm, and 8 pm. The results show that there was a significant difference between: the mean measured temperatures in different positions; the mean values of the different scheduled times; the mean values of the morning and afternoon periods (p-value=0,0001). When using the parametric technique of analysis of variance and the Tukey¿s test of multiple comparation, there was no significant difference between the measured values (p-value=0,8). The significance level adopted was ? = 0,05. The tympanic thermometer has registered the daily variation of the patients¿ temperature and its values were bigger than the measured by the other places of measurement
Abstract: The aim of this research was to verify the daily variation of the tympanic, oral and axillary temperatures, and correlate measurements of the Tympanic temperature considering the positioning angle and to compare the set of measurements in adult volunteer patients during treatment in the Clinics Hospital of Universidade Estadual de Campinas, São Paulo. The results refer to fifteen male in patients, 22 to 75 years old with no signal of infectious processes, having different clinical and cirurgic diagnostics in the Cardiology, Gastroclinics, and Adult General Nursery. The temperatures were measured nine times between 6 am and 10 pm. The ambient nurserys temperature was also monitored, at 5:30 am, 2 pm, and 8 pm. The results show that there was a significant difference between: the mean measured temperatures in different positions; the mean values of the different scheduled times; the mean values of the morning and afternoon periods (p-value=0,0001). When using the parametric technique of analysis of variance and the Tukey¿s test of multiple comparation, there was no significant difference between the measured values (p-value=0,8). The significance level adopted was ? = 0,05. The tympanic thermometer has registered the daily variation of the patients¿ temperature and its values were bigger than the measured by the other places of measurement
Mestrado
Enfermagem e Trabalho
Mestre em Enfermagem
Peschel, Nicolai. "New insights into circadian photoreception and the molecular regulation of the resetting of Drosophilas circadian clock". kostenfrei, 2008. http://www.opus-bayern.de/uni-regensburg/volltexte/2009/1063/.
Testo completoMartínez, Nicolás Antonio. "Interrelación entre los sincronizadores y el sistema circadiano humano= Crosstalk between synchronizers and the human circadian system". Doctoral thesis, Universidad de Murcia, 2014. http://hdl.handle.net/10803/277216.
Testo completoOBJECTIVES To establish distal skin temperature pattern as marker rhythm for human circadian system assessing. For this, the following specific objectives were approached: 1. To obtain the endogenous circadian pattern of wrist temperature rhythm by mathematical removing and quantifying masking. 2. To describe and differentiate distal skin temperature during maturation and aging. 3. To characterize human light exposure and its influence on the circadian system assessed by wrist temperature. 4. To analyze the effect of temperature exposure on thermophysiological and cardiophysiological variables. 5. To assess lifestyle, chronodisruption and synchronizers exposure in healthy elders comparing with young people and to propose a method for assessing circadian system aging without taking into account the biological age. 6. To study the influence of day/night contrast in lifestyle and synchronizers, on human circadian system. 7. To create a healthy circadian lighting design. MATERIALS AND METHODS The present thesis accomplishes the bioethical principles for human research. 456 volunteers were recruited (99 babies, 250 undergraduate students, 27 middle-aged adults and 80 elderly people) and properly informed about the study. Skin temperature was recorded using a temperature data logger (Thermochron iButton DS1921H, Maxim Integrated Products, Sunnyvale, California, USA). Activity and position were recorder by an actimeter (HOBO Pendant G Acceleration Data Logger UA-004-64, Onset Computer, Bourne, Massachusetts, USA). Light exposure and environmental temperature were recorded by a luxometer (HOBO Pendant Temperature/Light Data Logger UA-002-64, Onset Computer, Bourne, Massachusetts, USA). Cardiovascular variables were recorded by an automated oscillometric ambulatory system (Mobil-O-Graph NG, IEM GmbH, Stolberg, Germany). In addition, temperature, activity and position were integrated in a new variable (TAP). Rhythm characteristics were extracted by time series analysis using Cosinor or El Temps (Antoni Díez-Noguera, Universitat de Barcelona, 1999) or different versions of Excel. Statistical analysis was performed using SPSS (Inc. Chicago, Illinois, USA) or R, while decision trees were performed in WEKA 3.0.0 (University of Waikato, New Zealand). CONCLUSIONS The main conclusions of the present thesis are: 1. Wrist temperature rhythm has a strong endogenous component, in spite of the influence of other variables, which affect in a phase-dependent manner. 2. Distal skin temperature maturation is associated with an increase in circadianity, whereas aging is related to a phase advance. 3. Day-night contrast and light quality are related with more robust distal skin temperature and sleep patterns, whereas night-time light is associated with worse circadian patterns. 4. Variations in environmental temperature affect arterial blood pressure by changes produced in distal skin temperature. 5. Aged circadian system is characterized by less contrast in synchronizing variables, a generalized phase advance and internal order impairment; these differences allow discerning between a young and elderly people. 6. Temperature rhythm impairment is associated with low contrast between day and night. Mathematical modelling demonstrates that increasing contrast in lifestyle should improve temperature rhythm. 7. A healthy circadian lighting device was patented. GENERAL CONCLUSION Wrist temperature has demonstrated to be a comfortable and reliable marker rhythm with a strong endogenous component that allows evaluating circadian system robustness and ageing.
Harper, David G. "Circadian rhythm disturbances in advanced dementia /". Thesis, Connect to Dissertations & Theses @ Tufts University, 2000.
Cerca il testo completoAdviser: David Harder. Submitted to the Dept. of Psychology. Includes bibliographical references (leaves 90-116). Access restricted to members of the Tufts University community. Also available via the World Wide Web;
Dowling, Glenna Annette. "Women with Parkinson's disease : circadian function /". Thesis, Connect to this title online; UW restricted, 1989. http://hdl.handle.net/1773/7326.
Testo completoSeifert, Erin. "Circadian patterns of breathing and thermoregulation". Thesis, McGill University, 2002. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=37657.
Testo completoThe present study investigates aspects of the 24-h organization of breathing, and its chemical control, and of thermoregulation in mammals. Pulmonary ventilation (V˙E), oxygen consumption ( V&d2;O2 ), body temperature (Tb), and locomotor activity were monitored by non-invasive means, in freely-moving male adult rats. Rats are nocturnal, and it is well known that their Tb, activity and metabolic rate are highest during the dark hours of the day.
Hypoxia inhibits thermogenesis, and the Tb and V&d2;O2 circadian patterns are contributed to by changes in thermogenesis, implying that hypoxia blunts the daily oscillations of these variables. Indeed, the amplitude of both oscillations was smaller, due to a decrease in the dark phase values. Evidence supports an action of hypoxia on the hypothalamic thermoregulatory mechanisms, rather than on the clock itself.
Metabolism is well known to be a major determinant of V˙E, and of the V˙E response to changes in inspired gases. Using a custom-designed system to monitor breathing continuously, during air breathing, V˙ E was found to oscillate, with higher values during the dark compared to the light hours of the day; these changes were almost in proportion to those of V&d2;O2 , and did not depend on those of activity.
The depressant effect of hypoxia on the high values of the V&d2;O2 oscillation predict that the hypoxic V˙E response would be blunted at this time. Indeed, the response was lower during the dark compared to the light hours; however, the daily changes in the V˙E response were in proportion to those of V&d2;O2 , such that the hyperventilatory response (% increase in V˙ E/ V&d2;O2 ) was similar throughout the day. The V˙E/ V&d2;O2 response was also similar throughout the day in hypercapnia, even though the metabolic response to hypercapnia differed from that in hypoxia.
Globally taken, these results indicate that (1) breathing and its control mechanisms accompany the daily oscillations of many physiological variables, and (2) the advantages of a biological clock do not compromise the adequacy of the hyperventilatory responses to chemical challenges.
Shaw, Linda Marie. "Characterisation of ENU-induced circadian mutants". Thesis, University of Oxford, 2007. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.497452.
Testo completoGesto, João Silveira Moledo. "Circadian clock genes and seasonal behaviour". Thesis, University of Leicester, 2011. http://hdl.handle.net/2381/10266.
Testo completoValekunja, Utham Kashyap. "The mammalian circadian transcriptome and epigenome". Thesis, University of Cambridge, 2015. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.709142.
Testo completoCurran, Jack. "Ageing and the Drosophila circadian clock". Thesis, University of Bristol, 2019. http://hdl.handle.net/1983/7b02ec7c-f6a2-4640-b50f-ce97a66a5a11.
Testo completoBeynon, Amy Louise. "Neuroimmune modulation of the circadian clock". Thesis, Swansea University, 2011. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.678517.
Testo completoKushniryk, O. V. "Impact of seasons on circadian rhythm". Thesis, БДМУ, 2020. http://dspace.bsmu.edu.ua:8080/xmlui/handle/123456789/18035.
Testo completoSantos, Carlo Steven. "Circadian Control of Cell Cycle Progression". Thesis, Virginia Tech, 2009. http://hdl.handle.net/10919/76987.
Testo completoMaster of Science
Wang, Louisa Mei-Chen. "Circadian Regulation of learning and memory". Diss., Restricted to subscribing institutions, 2008. http://proquest.umi.com/pqdweb?did=1695050971&sid=1&Fmt=2&clientId=1564&RQT=309&VName=PQD.
Testo completoPearson, Kristen A. "Circadian rhythms, fatigue, and manpower scheduling". Thesis, Monterey, Calif. : Springfield, Va. : Naval Postgraduate School ; Available from National Technical Information Service, 2004. http://library.nps.navy.mil/uhtbin/hyperion/04Dec%5FPearson.pdf.
Testo completoSra, Sana. "Circadian Variations and Risky Decision Making". Scholarship @ Claremont, 2019. https://scholarship.claremont.edu/scripps_theses/1291.
Testo completoMORBIATO, ELISA. "Modulation of circadian rhythms by glucocorticoids". Doctoral thesis, Università degli studi di Ferrara, 2020. http://hdl.handle.net/11392/2478787.
Testo completoBehavior is conceived as a stimulus-response dependent relationship between a sensory input and a motor output. While moving from an input to an output, internal homeostasis is continuously shaped to maintain an optimal energies expenditure balance. The ultimate purpose of enabling animals to adjust their homeostasis with the surrounding world is by producing adaptive behaviors in order to increase their fitness in light of natural selection. The environment can be either predictable or unpredictable. The former condition led to the evolution of the circadian rhythm to promote an active behavior at the time you mostly benefit from, while the latter take advantage of glucocorticoids axis to face sudden challenges. Thus, a crosstalk between the circadian and the glucocorticoid systems allows a fine tuning of animal’s activity. My goal is to understand the circadian-glucocorticoids dialogue by monitoring the locomotor daily/circadian behavior and its molecular oscillation counterpart under differentially phased light and feeding cycle. My model species is the zebrafish, particularly, I utilized a CRISPR/Cas9 mutant lacking the capability to coordinate glucocorticoids transcription because it lacks functional receptors which permit a correct ligand-receptor interaction. As a result, level of circulating glucocorticoids stays raised conferring an anxiety-related phenotype to the mutant. Zebrafish gr-/- has been built and kindly provided by Dr. Luisa Dalla Valle, University of Padua. Systematic behavioral analysis in gr-/- larvae and adults showed that the light entrainable locomotor activity is synchronized to the zeitgeber and maintain its oscillatory properties in absence of any cue. The onset of daily locomotor activity occurred one day later in mutants with respects to the wild type. This delay is linked to the slower striated muscle development in the gr-/- which recover regular fiber density at 6 days post fertilization. Furthermore, gr-/- larvae showed differences in the expression levels or in the peak phase of positive (arntl1a and clock1a) and negative (per1, per2a and cry1a) elements of the molecular clock. Outside the core clock network, an analysis on gr-/- adult livers reported an abolished daily expression of pck2, a gene involved in gluconeogenesis. In addition, srebp1 expression level has an anticipated acrophase in gr-/-. Feeding entrainment fails to occur in the mutants. Larvae and adults produced abnormal profiles of circadian locomotor activity. Further molecular investigation revealed this behavioral disruption wasn’t associated with a breakdown of molecular rhythms in the core clock genes. Nevertheless, the molecular phenotypes observed during feeding entrainment underlined a cry1a lack of rhythmicity. These data suggest the existence of a blurred boundary between the circadian-glucocorticoids crosstalk. A complex organization of the two produces an altered behavioral output in a food entrained schedule in gr-/- zebrafish. The proximate cause of input and output misalignment underlying food entrained locomotion has not been provided, but a step towards a more exhaustive comprehension about the circadian-glucocorticoids interaction paves the way for an in-depth investigation.
Southern, Megan Morgan. "Mutants in the Arabidopsis circadian clock : genetic approaches to explore circadian mechanisms in the model higher plant". Thesis, University of Warwick, 2005. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.425525.
Testo completoGil, Rodríguez Sergio. "Functional characterization of the connection between the circadian clock and the DNA damage and repair response in Arabidopsis thaliana". Doctoral thesis, Universitat Autònoma de Barcelona, 2019. http://hdl.handle.net/10803/669601.
Testo completoIn most organisms examined to date, the circadian clock sustains rhythms in physiology, metabolism and development in tune with the environmental changes that occur during the day and night cycle. In plants, the circadian clock controls the proper timing of many essential processes including among others plant responses to a number of abiotic and biotic stresses. In this Doctoral Thesis, we aimed to study the connection between the circadian clock and the DNA Damage and Repair (DDR) response triggered by DNA double strand breaks (DSBs). We found that the circadian clock rhythmically regulates molecular and biological responses to DSBs. We also identified the blue-light photoreceptor CRYPTOCHROME 2 (CRY2) as an important regulator of the DDR response. Upon DSB formation by the drug bleomycin, our comet assays performed at different times during the diurnal cycle showed that DSBs are decreased at night compared to DSBs during the day. In addition, the promoter activity and mRNA expression of key DDR genes followed robust rhythmic oscillations with a peak during the night. The results suggest that DNA repair mechanisms might be enhanced at night. The circadian function not only controls transcription but also post-translational modifications such as protein parylation. Our studies showed that over-expression and mutation of a number of circadian clock genes alter the rhythms of the DDR response. However, with some exceptions, the expression of most key clock genes is not importantly affected by bleomycin treatment. Our studies also showed that miss-expression of the photoreceptor CRY2 affects the degree of DSB formation and the transcriptional expression of key DDR response genes including the POLY-(ADP-RIBOSE) POLYMERASE 2 (PARP2) and RAD ASSOCIATED WITH DIABETES 51 (RAD51). The regulation might occur through direct binding as chromatin immunoprecipitation assays revealed the enrichment of CRY2 protein at several key DDR loci including PARP2 and POLY-(ADP-RIBOSE) GLYCOHYDROLASE 1 (PARG1 or TEJ). Proper expression and function of CRY2 is also important for the formation of a particular class of DNA secondary structure or DNA-RNA hybrids known as R-loops. The results connecting CRY2 with DNA-RNA hybrids at the DDR response genes are relevant as R-loops have been previously connected with DSB localization and repairing. By using plants miss-expressing CRY2 we also found that programmed cell death and true leaf emergence in response to DSBs also require proper expression and activity of CRY2. Altogether, our results demonstrate an important role for the circadian clock regulating the timing of the DDR response in Arabidopsis thaliana. This regulation might be relevant for protecting the DNA at a very sensitive time such as during replication, which in several organisms including plants is timed to occur at dusk or during the night. Our studies also suggest that CRY2 function in the DDR response might occur through changes in chromatin compaction and R-loop formation.
Trujillo, Jennifer L. "Relationships between circadian rhythms and ethanol intake in mice". Diss., [La Jolla] : University of California, San Diego, 2009. http://wwwlib.umi.com/cr/ucsd/fullcit?p3359855.
Testo completoTitle from first page of PDF file (viewed July 23, 2009). Available via ProQuest Digital Dissertations. Vita. Includes bibliographical references (p. 127-136).
Han, Linqu. "Molecular and genetic analysis of a novel F-box protein, ZEITLUPE, in the Arabidopsis circadian clock". Columbus, Ohio : Ohio State University, 2006. http://rave.ohiolink.edu/etdc/view?acc%5Fnum=osu1155569207.
Testo completoBailey, Michael J. "Functional genomics of the avian circadian system". Texas A&M University, 2004. http://hdl.handle.net/1969.1/3318.
Testo completoLamba, Pallavi. "Neuronal circuitry controlling circadian photoreception in Drosophila". eScholarship@UMMS, 2017. http://escholarship.umassmed.edu/gsbs_diss/925.
Testo completoAbdou, Jeanne Anne. "Circadian rhythm disruption and post-surgical recovery". FIU Digital Commons, 1998. http://digitalcommons.fiu.edu/etd/1252.
Testo completoWalmsley, Lauren. "Sensory processing in the mouse circadian system". Thesis, University of Manchester, 2016. https://www.research.manchester.ac.uk/portal/en/theses/sensory-processing-in-the-mouse-circadian-system(bd32ea60-48a8-46d4-b5db-dd83d0326d87).html.
Testo completo