Tesi sul tema "Chirped pulse microwave spectroscopy"

Segui questo link per vedere altri tipi di pubblicazioni sul tema: Chirped pulse microwave spectroscopy.

Cita una fonte nei formati APA, MLA, Chicago, Harvard e in molti altri stili

Scegli il tipo di fonte:

Vedi i top-15 saggi (tesi di laurea o di dottorato) per l'attività di ricerca sul tema "Chirped pulse microwave spectroscopy".

Accanto a ogni fonte nell'elenco di riferimenti c'è un pulsante "Aggiungi alla bibliografia". Premilo e genereremo automaticamente la citazione bibliografica dell'opera scelta nello stile citazionale di cui hai bisogno: APA, MLA, Harvard, Chicago, Vancouver ecc.

Puoi anche scaricare il testo completo della pubblicazione scientifica nel formato .pdf e leggere online l'abstract (il sommario) dell'opera se è presente nei metadati.

Vedi le tesi di molte aree scientifiche e compila una bibliografia corretta.

1

Kadiwar, Gautam. "Chirped-Pulse Fourier Transform Microwave Spectroscopy of Fluoroiodoacetonitrile and Chloropentafluoroacetone". Thesis, University of North Texas, 2010. https://digital.library.unt.edu/ark:/67531/metadc84230/.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
Abstract (sommario):
This work focuses on finding the complete iodine and nitrogen nuclear electric quadrupole coupling tensors for fluoroiodoacetonitrile using chirped-pulse Fourier transform microwave spectroscopy. Fluoroiodoacetonitrile contains two hyperfine nuclei, iodine (I=5/2) and nitrogen (I=1) and the spectra were observed with great resolution. A total of 499 transitions were observed for this molecule. The a, b and c rotational constants were obtained. A study of chloropentafluoroacetone was also done using chirped-pulse Fourier transform microwave spectroscopy. The two chlorine isotopes for this molecule, Cl-35 and Cl-37 were observed and 326 and 170 transitions were recorded, respectively.
2

Grubbs, Garry Smith II. "Investigating Molecular Structures: Rapidly Examining Molecular Fingerprints Through Fast Passage Broadband Fourier Transform Microwave Spectroscopy". Thesis, University of North Texas, 2011. https://digital.library.unt.edu/ark:/67531/metadc67988/.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
Abstract (sommario):
Microwave spectroscopy is a gas phase technique typically geared toward measuring the rotational transitions of Molecules. The information contained in this type of spectroscopy pertains to a molecules structure, both geometric and electronic, which give insight into a molecule's chemistry. Typically this type of spectroscopy is high resolution, but narrowband ≤1 MHz in frequency. This is achieved by tuning a cavity, exciting a molecule with electromagnetic radiation in the microwave region, turning the electromagnetic radiation o, and measuring a signal from the molecular relaxation in the form of a free induction decay (FID). The FID is then Fourier transformed to give a frequency of the transition. "Fast passage" is defined as a sweeping of frequencies through a transition at a time much shorter (≤10 s) than the molecular relaxation (≈100 s). Recent advancements in technology have allowed for the creation of these fast frequency sweeps, known as "chirps", which allow for broadband capabilities. This work presents the design, construction, and implementation of one such novel, high-resolution microwave spectrometer with broadband capabilities. The manuscript also provides the theory, technique, and motivations behind building of such an instrument. In this manuscript it is demonstrated that, although a gas phase technique, solids, liquids, and transient species may be studied with the spectrometer with high sensitivity, making it a viable option for many molecules wanting to be rotationally studied. The spectrometer has a relative correct intensity feature that, when coupled with theory, may ease the difficulty in transition assignment and facilitate dynamic chemical studies of the experiment. Molecules studied on this spectrometer have, in turn, been analyzed and assigned using common rotational spectroscopic analysis. Detailed theory on the analysis of these molecules has been provided. Structural parameters such as rotational constants and centrifugal distortion constants have been determined and reported for most molecules in the document. Where possible, comparisons have been made amongst groups of similar molecules to try and get insight into the nature of the bonds those molecules are forming. This has been achieved the the comparisons of nuclear electric quadrupole and nuclear magnetic coupling constants, and the results therein have been determined and reported.
3

Powoski, Robert A. "Molecular Structure Analyses of Asymmetric Hydrocarbon Liquid Compounds in the Gas Phase Using Chirped-pulse Fourier Transform Microwave Spectroscopy: Acyl Chlorides and Perfluorinated Acyl Chlorides". Thesis, University of North Texas, 2011. https://digital.library.unt.edu/ark:/67531/metadc103374/.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
Abstract (sommario):
Examinations of the effects of (a.) alkyl carbon chain length and (b.) perfluorination of acyl chlorides; propionyl chloride, butyryl chloride, valeroyl chloride, and perfluorinated acyl chlorides; perfluoropropionyl chloride and perfluorobutyryl chloride, are reported and compared using CP-FTMW spectroscopy. All of these molecules are already published in various journals except for valeroyl chloride. The chapters are organized by molecule alkyl chain length and include some background theory. Conformational stability, internal rotation, helicity, and ionic character of the C-Cl bond via the nuclear electric quadrupole coupling constant (χzz) are analyzed. Results show syn, syn-anti/syn-gauche, and syn-anti-anti/syn-gauche-anti stable conformations. Internal rotation was only seen in propionyl chloride. Helicity was not observed. (χzz) was observed to be inert to alkyl chain length, ~ 60 MHz and ~ 65 MHz for the nonfluorinated and fluorinated acyl chlorides. Partial fluorination and varying functional groups are recommended.
4

Osseiran, Noureddin. "Spectroscopic characterization of molecules of atmospheric interest : internal dynamics and microsolvation with hydrogen sulfide (H2S)". Electronic Thesis or Diss., Université de Lille (2018-2021), 2021. http://www.theses.fr/2021LILUR062.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
Abstract (sommario):
Les composés organiques volatils biogéniques (COVBs), et en particulier les monoterpènes (C10H16), sont des molécules naturellement présentes dans l’atmosphère, qui sont liées à la formation d’aérosols organiques secondaires (SOA). Ils peuvent altérer les propriétés physiques et chimiques de l’atmosphère, avoir des effets négatifs sur la santé humaine et contribuer aux changements climatiques. Une forte relation existe entre la structure d’un système moléculaire et les interactions inter- et intramoléculaires présentes à l’échelle moléculaire. Par conséquent, l’accès aux informations sur la structure, en phase gazeuse, et la dynamique interne pourrait être essentiel pour prédire les voies possibles de réaction ou de la formation de complexes et d’agrégats.La spectroscopie micro-ondes à transformée de Fourier (FTMW) une fois combinée aux calculs de chimie quantique, sont une approche fiable pour étudier le paysage conformationnel, la structure et la dynamique interne de plusieurs types des molécules, et notamment les molécules d’intérêt atmosphérique, leurs produits d’oxydation et leurs complexes associés.Dans le cadre de cette thèse, nous avons appliqué cette approche théorique-expérimentale pour caractériser les complexes de deux monoterpénoïdes : le fenchol (C10H18O) et la fenchone (C10H16O) avec un autre contaminant atmosphérique, à savoir le H2S. Les conformations stables en phase gazeuse ont été identifiées dans le spectre de rotation pure à l’aide des calculs ab initio et DFT. Une analyse comparative des complexes observés avec leurs analogues hydratés a confirmé la présence d’une liaison hydrogène plus faible. En plus, nous avons observé un mouvement de grande amplitude, décrit qualitativement. Les interactions non covalentes stabilisantes des deux complexes ont également été évaluées.De manière similaire, et dans le même contexte général, nous avons également caractérisé le paysage conformationnel et la rotation interne du groupe méthyle dans le cas de la limona cétone (C9H14O), qui est un BVOC issu de l’oxydation du limonène. La hauteur de barrière expérimentale de la torsion du méthyle a montré un certain écart par rapport aux valeurs calculées, ce qui nous a poussé vers une investigation plus approfondie, qui a révélé la présence d’une interaction intermoléculaire.La deuxième partie de cette thèse a été consacrée à la construction et à l’évaluation d’un nouveau spectromètre FTMW à dérive de fréquence, large bande (6-18 GHz). Une description technique détaillée du spectromètre est donnée dans ce manuscrit. De plus, les tests préliminaires effectués pour évaluer les performances du spectromètre sont rapportés
Biogenic volatile organic compounds (BVOCs), and especially monoterpenes (C10H16), are molecules naturally occurring in the atmosphere, which have been linked to the formation of secondary organic aerosol (SOA). They can alter the physical and chemical properties in the atmosphere, have negative effects on human health and contribute to climate change. There exists a strong relationship between the structure of a molecular system and the inter- and intramolecular interactions present on the molecular scale.Hence, having in-depth information about the gas phase structure and internal dynamics of these molecules, or their molecular complexes, is important to better understand their reaction pathways and complexation patterns.The synergic combination of quantum chemical calculations and Fourier transform microwave (FTMW) spectroscopy has been shown to be a reliable approach to examine the conformational landscape, structure and internal dynamics of several types of molecules of atmospheric interest, their oxidation products and their complexes. In the framework of this thesis, we have applied this theoretical-experimental approach to characterize the complexes of two monoterpenoids: fenchol (C10H18O) and fenchone (C10H16O) with another atmospheric contaminant: the H2S molecule. The gas phase stable conformations were identified in the pure rotational spectrum with the supportof ab initio and DFT calculations. A comparative analysis of the observed complexes with their water analogues confirmed the presence of weaker hydrogen bonds. On top of that, we observed a large amplitude motion, that was qualitatively described. The stabilizing non-covalent interactions of the two complexes were also evaluated.In a similar manner, and within the same general context, we also characterized the conformational landscape and methyl internal rotation in the case of limona ketone (C9H14O), which is a biogenic volatile organic compounds (BVOC) originating from the oxidation limonene. The experimental barrier height of the methyl torsion showed some deviation from the calculated values, which pushed toward a more thorough examination, that revealed the presence of an intermolecular interaction.The second part of this thesis was dedicated to the construction and evaluation of a broadband chirped pulse FTMW spectrometer, operating in the range 6-18 GHz. A detailed technical description of the spectrometer is given herein. Moreover, the preliminary tests performed to evaluate the performance of the spectrometer are reported
5

Colombo, Anthony P. (Anthony Paul). "Chirped-pulse millimeter-wave spectroscopy, dynamics, and manipulation of Rydberg-Rydberg Transitions". Thesis, Massachusetts Institute of Technology, 2013. http://hdl.handle.net/1721.1/82169.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
Abstract (sommario):
Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Chemistry, 2013.
This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
Cataloged from student-submitted PDF version of thesis.
Includes bibliographical references (p. 131-138).
The chirped-pulse millimeter-wave (CPmmW) technique is applied to transitions between Rydberg states, and calcium atoms are used as the initial test system. The unique feature of Rydberg{Rydberg transitions is that they have enormous electric dipole transition moments: ~5 kiloDebye at n* ~45, where n* is the eective principal quantum number. After polarization by a mm-wave pulse in the 70{84 GHz frequency region, the excited transitions re-radiate free induction decay (FID) at their resonant frequencies, and the FID is heterodyne-detected by the CPmmW spectrometer. Data collection and averaging are performed in the time domain. The spectral resolution is ~100 kHz. Because of the large transition dipole moments, the available mm-wave power is sucient to polarize the entire bandwidth of the spectrometer (12 GHz) in each pulse, and high-resolution survey spectra may be collected. Both absorptive and emissive transitions are observed, and they are distinguished by the phase of their FID relative to that of the excitation pulse. With the combination of the large transition dipole moments and direct monitoring of transitions, dynamics are observed, such as transient nutations from the interference of the excitation pulse with the polarization that it induces in the sample. Transient nutations also provide information about the sample, such as the dipole moment and the number density of Rydberg states. Since the waveform produced by the mm-wave source may be precisely controlled, states with high angular momentum may be populated by a sequence of pulses while recording the results of these manipulations in the time domain. Also, the superradiant decay of the Rydberg sample is probed both directly through FID and indirectly using photon echoes. Prospects for further manipulations, such as adiabatic rapid passage, composite pulses, and optical/mm-wave stimulated Raman adiabatic passage, are evaluated. The application of the CPmmW technique to transitions between Rydberg states of molecules is discussed.
by Anthony P. Colombo.
Ph.D.
6

Klein, Ethan Avram. "A buffer gas cooled molecular beam apparatus for chirped pulse millimeter wave spectroscopy". Thesis, Massachusetts Institute of Technology, 2015. http://hdl.handle.net/1721.1/98781.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
Abstract (sommario):
Thesis: S.B., Massachusetts Institute of Technology, Department of Chemistry, 2015.
Cataloged from PDF version of thesis.
Includes bibliographical references (pages 34-36).
An apparatus that utilizes buffer gas cooling to produce slow atomic (Ba, Ca) and molecular (BaF, CaF) beams is constructed. In-cell temperatures of 20 ± 0.25K are achieved with chamber cooldown times of under two hours. Laser Induced Fluorescence (LIF) spectra of BaF and CaF confirmed thermalization of the molecular beam to the temperature of the buffer gas and additional hydrodynamic cooling to rotational and translational temperatures under 10K. Laser fluence effects on the intensity of barium and calcium ablation were studied and used to optimize laser parameters for maximum ablation of the desired species. A chirped pulse millimeter wave (CPmmW) setup was combined with the buffer gas cooling apparatus for combined laser and millimeter wave spectroscopy experiments of Rydberg states. LabVIEW programming is used for an internal temperature feedback system, raster scanning of the ablation target, as well as millimeter wave FID signal digital acquisition. Use of the apparatus for chirped pulse microwave spectroscopy of buffer gas cooled beams have led to orders of magnitude improvement in both the resolution and the reduction of time required to record molecular Rydberg spectra.
by Ethan Avram Klein.
S.B.
7

Shaver, Rachel Glyn. "The use of chirped pulse millimeter-wave spectroscopy in chemical dynamics and kinetics". Thesis, Massachusetts Institute of Technology, 2013. http://hdl.handle.net/1721.1/79274.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
Abstract (sommario):
Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Chemistry, 2013.
Cataloged from PDF version of thesis.
Includes bibliographical references (p. 51-53).
.Chirped-pulse millimeter wave (CPmmW) spectroscopy is a revolutionary technique that has taken advantage of advances in electronics to give high signal to noise broadband rotational spectra in a very short period of time that provides meaningful line intensities. We have implemented this technique in the 58 - 102 GHz range to study the rotational spectra of molecules with two heavy atoms. Photolysis (at 193 nm) and pyrolysis of vinyl cyanide have produced differing HCN and HNC vibrational population distributions. The photolysis experiment does not sample a collisional regime and the resulting spectra show excited states of HCN and HNC, whereas the pyrolysis experiment, which does sample a collisional regime, results in spectra that are devoid of vibrational satellites. This indicates that the intensities of vibrational satellite transitions sample the photolysis reaction only and not post-photolysis collisional effects. Mono-deuterated vinyl cyanide was photolyzed at 193 nm, in which all HCN/HNC are produced via a four-center mechanism and all DCN/DNC are produced via a three-center mechanism. The HCN and HNC products dominate, demonstrating the greater importance of the three-center mechanism. CPmmW spectroscopy is also a valuable tool in studying unimolecular and bimolecular reactions. We have studied the unimolecular decomposition of deuterated methyl nitrite which produces DNO products and bimolecular hydrogen abstraction reaction of NO with acetaldehyde resulting in HNO products. These reactions demonstrate the potential use of nitric oxide radical as a gas-phase catalyst to perform cracking of hydrocarbons and sugars.
by Rachel Glyn Shaver.
S.M.
8

Ganz, Thomas. "Supercontinuum generation by chirped pulse compression for ultrafast spectroscopy and broadband near-field microscopy". Diss., lmu, 2011. http://nbn-resolving.de/urn:nbn:de:bvb:19-148551.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
9

Liu, Weilin. "Real-time Interrogation of Fiber Bragg Grating Sensors Based on Chirped Pulse Compression". Thèse, Université d'Ottawa / University of Ottawa, 2011. http://hdl.handle.net/10393/20289.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
Abstract (sommario):
Theoretical and experimental studies of real-time interrogation of fiber Bragg grating (FBG) sensors based on chirped pulse compression with increased interrogation resolution and signal-to-noise ratio are presented. Two interrogation systems are proposed in this thesis. In the first interrogation system, a linearly chirped FBG (LCFBG) is employed as the sensing element. By incorporating the LCFBG in an optical interferometer as the sensor encoding system, employing wavelength-to-time mapping and chirped pulse compression technique, the correlation of output microwave waveform with a chirped reference waveform would provide an interrogation result with high speed and high resolution. The proposed system can provide an interrogation resolution as high as 0.25 μ at a speed of 48.6 MHz. The second interrogation system is designed to achieve simultaneous measurement of strain and temperature. In this system, a high-birefringence LCFBG (Hi-Bi LCFBG) is employed as a sensing element.
10

BRAGA, PEDRO TOVAR. "TIME-RESOLVED OPTICAL SPECTROSCOPY FOR LASER CHIRP CHARACTERIZATION AND SELF-HETERODYNE GENERATION OF LFM AND NLFM MICROWAVE PULSES". PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO, 2018. http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=35528@1.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
Abstract (sommario):
PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO
COORDENAÇÃO DE APERFEIÇOAMENTO DO PESSOAL DE ENSINO SUPERIOR
PROGRAMA DE EXCELENCIA ACADEMICA
Este trabalho apresenta a geração de pulsos de microondas linearmente e não-linearmente modulados em frequência (LFM e NLFM) através da técnica fotônica de auto-heterodinagem. Ao utilizar eletrônica de baixa frequência para modular um diodo laser de feedback distribuído, a variação da portadora óptica no tempo (chirp) é observada, o que é causado predominantemente por efeito térmico. Este efeito, combinado com batimento auto-heteródino, foi capaz de produzir pulsos LFM com alto produto largura de banda-tempo (TBWP). Uma outra abordagem é necessária para geração de pulsos NLFM. Primeiro, é introduzida a técnica Espectroscopia Óptica Resolvida no Tempo para caracterização do chirp de um diodo laser. Em seguida, um estímulo de corrente em formato de função degrau é aplicado ao diodo laser para aquisição da função de transferência de seu chirp, H(s). Com a posse de H(s), uma simulação numérica foi usada para descobrir o estímulo necessário de corrente i(t) para obtenção de pulsos de microondas NLFM através da técnica de auto-heterodinagem. Os resultados experimentais coincidem com a simulação.
This work reports the photonic generation of both linear and non-linear frequency modulation (LFM and NLFM) microwave pulses through a self-heterodyne scheme. By using low-frequency electronics to drive a distributed feedback laser diode, optical chirping is generated predominantly by thermal effect. Combining laser chirping and self-heterodyning, LFM pulses with high time-bandwidth product (TBWP) were achieved. A different approach is required for generation of NLFM microwave pulses. First, for characterization of the laser diode chirp, it is introduced a technique named Time- Resolved Optical Spectroscopy. Then, by using a step-shaped current stimulus, the laser chirp transfer function H(s) was obtained. With knowledge on H(s), a numerical simulation produced the suitable current stimulus i(t) needed to generate NLFM microwave pulses through self-heterodyning. Experimental results agreed with the numerical simulations.
11

Ganz, Thomas [Verfasser], e Ferenc [Akademischer Betreuer] Krausz. "Supercontinuum generation by chirped pulse compression for ultrafast spectroscopy and broadband near-field microscopy / Thomas Ganz. Betreuer: Ferenc Krausz". München : Universitätsbibliothek der Ludwig-Maximilians-Universität, 2011. http://d-nb.info/102665355X/34.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
12

Sampson, Zaiyaan Begum. "Tungsten Telluride Quantum dot-based Biosensor for Alpha-Methylacyl CoA Racemase – An Emerging Prostate Cancer Biomarker". University of the Western Cape, 2019. http://hdl.handle.net/11394/7709.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
Abstract (sommario):
>Magister Scientiae - MSc
Prostate cancer, commonly referred to as adenocarcinoma of the prostate, is the leading cause of cancer death in men in 46 countries, and it was estimated that by the end of 2018 there would approximately be 1.3 million new cases of prostate cancer worldwide. Currently, the Food and Drug Administration (FDA) approved biomarker for prostate cancer disease diagnostics Prostate Specific Antigen (PSA) is not specific to the disease itself but extends to other cases such as Benign Prostate Hyperplasia (BPH) a condition in which the prostate grows uncontrollably. This biomarker is then detected in blood samples via conventional methods which require a qualified individual to operate and are often time consuming. Examples of these methods are spectrophotometry and High Performance Liquid Chromatography (HPLC). Hence, a more efficient biomarker and method of detection is needed for prostate cancer disease diagnostics, as early detection of the disease means early treatment, which could ultimately save lives. Currently, an emerging biomarker for prostate cancer known as Alpha-Methyl CoA Racemase (AMACR) has shown to be more specific to the disease with advantages such as being a non-invasive biomarker. AMACR has been reported to be present in urine, and thus may be detected via a non-invasive method. This study proposed an economical, non-invasive electrochemical biosensor for the rapid detection of AMACR based on mercaptosuccinic acid capped tungsten telluride (MSA-WTe3) quantum dots (QDs). Nanomaterial has shown promise in terms of increasing the sensitivity and specificity of sensors. MSA-WTe3 QDs was successfully synthesized using easy, inexpensive method and was studied by various techniques such as High Resolution Transmission Electron Microscopy (HR-TEM) where the size was confirmed to be within the nanometer scale and was reported to be 2.65 nm with a good crystallinity. X-ray diffraction (XRD) confirmed the structural properties and chemical composition of the QDs and it is reported that the QDs are rich in both tellurium and tungsten and comprise of a hexagonal structure. Scanning Electron Microscopy (SEM) confirmed the successful immobilization of aptamer sequence specific to AMACR onto the electrode surface by showing a distinct conformational change when aptamers were introduced to the QDs under study. This study reports the successful detection of AMACR using an MSA-WTe3 QDs based aptasensor immobilized onto a screen printed glassy carbon electrode, with a detection limit of 0.35651 ng/mL and a limit of quantification calculated to be 1.08033 ng/mL.
13

Mead, Griffin John. "Chirped Pulse Microwave and Single-Shot Terahertz Spectroscopy Studies of Intermolecular Interactions". Thesis, 2021. https://thesis.library.caltech.edu/14018/4/mead_griffin_2020_thesis.pdf.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
Abstract (sommario):

While the glow of a sodium vapor lamp or the crisp reds in autumn leaves are eye-catching examples of transitions between atomic and molecular energy levels (hv ~2-3 eV), it is arguably the much lower energy, thermally populated intermolecular "bath" states (hv ~10⁻⁵-10⁻² eV) that contribute most directly to the physical properties of matter. Although invisible to the human eye, in this thesis we study fundamentals of these low-energy interactions with two complementary techniques: chirped pulse microwave spectroscopy and nonlinear single-shot terahertz (THz) Kerr effect spectroscopy.

In the first section, we apply chirped pulse-Fourier transform microwave (CP-FTMW) spectroscopy from 8-16 GHz to study fundamental hydrogen bonding motifs in gas phase alcohol water dimers. Hydrogen bonding is ubiquitous in nature and directly contributes to a range of phenomena from phase transitions in water to solvation of ions to enzymatic activity. Our focus on gas phase dimers reduces the spectral ambiguity arising in condensed phase samples, where inhomogeneous and homogeneous broadening can hamper observation of conserved intermolecular interaction motifs. The hydrogen bonding conformation of two alcohol-water dimers, n-propanol-water and isopropanol-water, were characterized. Both were found to adopt a shared water donor-alcohol acceptor conformation.

The following sections use nonlinear THz spectroscopy from 0.1-10 THz to investigate molecular dynamics in the condensed phase. We focus on halogenated methane liquids, whose intense intramolecular vibrational modes are commensurate in energy to the intermolecular bath states. One central goal of this section was developing a technique to more rapidly collect nonlinear, multi-dimensional data from liquid systems. To that end, we developed a single-shot measurement approach using a reflective nickel echelon mirror and a high frame rate camera. With this new device we achieved an order of magnitude reduction in experimental integration times. High resolution, nonlinear multi-dimensional THz studies of several halogenated methane liquids and materials were produced as a result. From these data, we identified important spectral contributions from the experimental instrument response function.

14

(5929736), Alicia O. Hernandez-Castillo. "BROADBAND MICROWAVE SPECTROSCOPY OF LIGNIN, BIOFUELS AND THEIR PYROLYSIS INTERMEDIATES". Thesis, 2019.

Cerca il testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
Abstract (sommario):
The chemical complexity of hydrocarbon fuels and the fast-expanding list of potential plantderived biofuels pose a challenge to the scientific community seeking to provide a molecular understanding of their combustion. More refined spectroscopic tools and methodologies must be developed to selectively detect and characterize the widening array of fuel components and combustion reactive intermediates. The direct relationship between molecular structure and rotational frequencies makes rotational spectroscopy highly structural specific; therefore, it offers a powerful means of characterizing pyrolysis ntermediates. This thesis describes experimental work using broadband microwave spectroscopy to address a number of challenging problems in the spectroscopy of gas complex mixtures.

Usually, the observed rotational spectra contain contributions from many distinct species, creating a complicated spectrum with interleaved transitions that make spectral assignment challenging. To assist with the process, a protocol called “strong-field coherence breaking” (SFCB) has been developed. It exploits multi-resonance effects that accompany sweeping the microwave radiation under strong-field conditions to output a set of transitions that can confidently be assigned to a single component in a mixture, thereby reducing the spectral assignment time.

The broadband chirped pulse Fourier transform microwave (CP-FTMW) spectra of guaiacol, syringol, 4-methyl guaiacol, 4-vinyl guaiacol were recorded under jet- cooled conditions over the 2-18 GHz frequency range. Using data from the 13C isotopomers the r0 structure of guaiacol was determined by means of a Kraitchman analysis. The tunneling due to OH hindered rotation was observed in syringol and the V2 barrier was deduced to be 50% greater than phenol’s barrier. This is due to the intramolecular H-bonding between the hydroxy and the methoxy groups. The internal rotation barrier for the methyl group for 4-methyl guaiacol was also determined. Moreover, the spectral assignment of the two conformers of 4-vinyl guaiacol was sped-up by using SFCB. The main structural insight from these lignin-related molecules was that polar substituents dictate the magnitude and type of structural shift that occurs relative to that of the unsubstituted aromatic ring.

In the next part of my work, the pyrolysis of 2-methoxy furan was carried out over the 300-1600 K temperature range, with microwave detection in the 2-18 GHz frequency range, using hightemperature flash pyrolysis micro-reactor coupled with a supersonic expansion. The SFCB technique was used to analyze and speed up the line assignment. The 2-furanyloxy radical, a primary, resonance-stabilized radical formed by loss of a methyl group in the pyrolysis of 2-methoxy furan, was detected and its molecular parameters were determined.

Finally, a unique setup that combines the high-resolution spectroscopic data provided by chirped pulse Fourier transform microwave (CP-FTMW) spectroscopy with photoionization mass spectra from a vacuum ultraviolet (VUV) time-of-flight mass spectrometer (TOF-MS) was used to find optimal conditions to detect reactive intermediates and make full assignments for the microwave spectra of phenoxy radical and o-hydroxy phenoxy radical over the 2-18 GHz range. Phenoxy radical was generated through the pyrolysis of anisole and allyl phenyl ether. Using a combination of data from 13C isotopomers and fully deuterated phenoxy radical, in combination with high level ab initio calculations, a near-complete r0 structure for the radical was obtained. The structural data point to the radical being a primarily carbon-centered rather than oxygencentered radical. Using guaiacol as precursor, we studied the spectroscopy of the o-hydroxy phenoxy radical, whose structural data is compared with that of phenoxy to understand the role played by the hydroxyl group in modifying the resonance stabilization of the radical.

15

(8028629), Piyush Mishra. "Jet-Cooled Molecular Spectroscopy from the Microwave to the Ultraviolet". Thesis, 2019.

Cerca il testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
Abstract (sommario):
The present thesis shows how versatile and important the field of gas-phase spectroscopy under supersonic expansion conditions can be to understand fundamental intermolecular and intramolecular interactions. We have employed spectroscopic techniques over a very broad range spanning from microwave (2-18 GHz), through infrared (2600-4000 cm-1) and ultraviolet (350-250 nm) region, studying therotational, vibrational and electronic properties,respectively. These techniques use either chirped-pulse based (broadband rotational spectroscopy) or laser based methods (vibrational and electronic spectroscopy), and their usage depends on the types of information of particular interest and the chemical system requirements of specific techniques. The analytes are brought into the gas phase and supersonically cooled to their zero-point vibrational level to perform rotational and vibrationallyresolved IR/UV spectroscopy, including conformer-specific techniques. The variety of small organic molecular systemsstudied include phenyl-containing hydrocarbons, water containing clusters, heteroatom containing organic molecules with and without phenyl ring, fused aromatic molecules, bichromophoric molecules and pyrolysis reaction intermediates. Apart from gaining invaluable fundamental knowledge of the various interactions, we also observe interesting quantum-physical phenomena like tunneling and large amplitude motions that provide further insight into the molecular world.

Vai alla bibliografia