Tesi sul tema "Ceramics, multidimensional data analysis"
Cita una fonte nei formati APA, MLA, Chicago, Harvard e in molti altri stili
Vedi i top-50 saggi (tesi di laurea o di dottorato) per l'attività di ricerca sul tema "Ceramics, multidimensional data analysis".
Accanto a ogni fonte nell'elenco di riferimenti c'è un pulsante "Aggiungi alla bibliografia". Premilo e genereremo automaticamente la citazione bibliografica dell'opera scelta nello stile citazionale di cui hai bisogno: APA, MLA, Harvard, Chicago, Vancouver ecc.
Puoi anche scaricare il testo completo della pubblicazione scientifica nel formato .pdf e leggere online l'abstract (il sommario) dell'opera se è presente nei metadati.
Vedi le tesi di molte aree scientifiche e compila una bibliografia corretta.
Passuti, Sara. "Electrοn crystallοgrathy οf nanοdοmains in functiοnal materials". Electronic Thesis or Diss., Normandie, 2024. http://www.theses.fr/2024NORMC230.
Testo completoThe investigation of functional materials has increasingly focused on samplescharacterized by nanodomains (ranging from submicron sizes to tens of nanometers) due totheir interesting physical properties, such as those observed in thin films and ceramic materials.When unknown phases need to be determined or detailed information on the crystallinestructure of these materials is required, this presents challenges for both X-ray diffraction andtransmission electron microscopy (TEM). To address this, a novel electron diffraction (ED) technique,Scanning Precession Electron Tomography (SPET), has been employed. SPET combinesthe established precession-assisted 3D ED data acquisition method (a.k.a. Precession ElectronDiffraction Tomography – PEDT) with a scan of the electron beam on a region of interest (ROI)of the specimen at each tilt step. This procedure allows to collect 3D ED data from multipleROIs with a single acquisition, facilitating structure solution and accurate structure refinementsof multiple nanodomains or distinct areas within a single domain, at once. In this thesis, thepotentialities of SPET are explored on both oxide thin films and ceramic thermoelectric materialsprepared as TEM lamellae. Additionally, a novel methodology was developed to efficientlyanalyze the large amount of data collected. This method involves sorting the diffraction patternsaccording to their region of origin, reconstructing the diffraction tilt series of the ROI, andautomatically processing the obtained tilt series for structure solution and accurate refinements.This work demonstrates the potential of SPET for the fine crystallographic characterization ofcomplex nanostructured materials. This approach appears to be complementary to what can bedone in imaging or spectroscopy by (S)TEM or, in diffraction, by the so-called 4D-STEM andACOM approaches
Westerlund, Per. "Business Intelligence: Multidimensional Data Analysis". Thesis, Umeå universitet, Institutionen för datavetenskap, 2008. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-138758.
Testo completoDuch, Brown Amàlia. "Design and Analysis of Multidimensional Data Structures". Doctoral thesis, Universitat Politècnica de Catalunya, 2004. http://hdl.handle.net/10803/6647.
Testo completoLes estructures de dades multidimensionals també es poden utilitzar com a indexos d'estructures de dades que emmagatzemen, possiblement en memòria externa, dades més complexes que els punts.
Les estructures de dades multidimensionals han d'oferir la possibilitat de realitzar operacions d'inserció i esborrat de claus dinàmicament, a més de permetre realitzar cerques anomenades associatives. Exemples d'aquest tipus de cerques són les cerques per rangs ortogonals (quins punts cauen dintre d'un hiper-rectangle donat?) i les cerques del veí més proper (quin és el punt més proper a un punt donat?).
Podem dividir les contribucions d'aquesta tesi en dues parts:
La primera part està relacionada amb el disseny d'estructures de dades per a punts multidimensionals. Inclou el disseny d'arbres binaris $K$-dimensionals al·leatoritzats (Randomized $K$-d trees), el d'arbres quaternaris al·leatoritzats (Randomized quad trees) i el d'arbres multidimensionals amb punters de referència (Fingered multidimensional trees).
La segona part analitza el comportament de les estructures de dades multidimensionals. En particular, s'analitza el cost mitjà de les cerques parcials en arbres $K$-dimensionals relaxats, i el de les cerques per rang en diverses estructures de dades multidimensionals.
Respecte al disseny d'estructures de dades multidimensionals, proposem algorismes al·leatoritzats d'inserció i esborrat de registres per als arbres $K$-dimensionals i per als arbres quaternaris. Aquests algorismes produeixen arbres aleatoris, independentment de l'ordre d'inserció dels registres i desprès de qualsevol seqüència d'insercions i esborrats. De fet, el comportament esperat de les estructures produïdes mitjançant els algorismes al·leatoritzats és independent de la distribució de les dades d'entrada, tot i conservant la simplicitat i la flexibilitat dels arbres $K$-dimensionals i quaternaris estàndard. Introduïm també els arbres multidimensionals amb punters de referència. Això permet que les estructures multidimensionals puguin aprofitar l'anomenada localitat de referència en cerques associatives altament correlacionades.
I respecte de l'anàlisi d'estructures de dades multidimensionals, primer analitzem el cost esperat de las cerques parcials en els arbres $K$-dimensionals relaxats. Seguidament utilitzem aquest resultat com a base per a l'anàlisi de les cerques per rangs ortogonals, juntament amb arguments combinatoris i geomètrics. D'aquesta manera obtenim un estimat asimptòtic precís del cost de les cerques per rangs ortogonals en els arbres $K$-dimensionals aleatoris. Finalment, mostrem que les tècniques utilitzades es poden estendre fàcilment a d'altres estructures de dades i per tant proporcionem una anàlisi exacta del cost mitjà de cerques per rang en estructures de dades com són els arbres $K$-dimensionals estàndard, els arbres quaternaris, els tries quaternaris i els tries $K$-dimensionals.
Esta tesis está dedicada al diseño y al análisis de estructuras de datos multidimensionales; es decir, estructuras de datos específicas para almacenar registros $K$-dimensionales que suelen representarse como puntos en el espacio $[0,1]^K$. Estas estructuras de datos tienen aplicaciones en diversas áreas de la informática como son: los sistemas de información geográfica, la robótica, el procesamiento de imágenes, la world wide web o data mining, entre otras.
Las estructuras de datos multidimensionales suelen utilizarse también como índices de estructuras que almacenan, posiblemente en memoria externa, datos complejos.
Las estructuras de datos multidimensionales deben ofrecer la posibilidad de realizar operaciones de inserción y borrado de llaves de manera dinámica, pero además deben permitir realizar búsquedas asociativas en los registros almacenados. Ejemplos de búsquedas asociativas son las búsquedas por rangos ortogonales (¿qué puntos de la estructura de datos están dentro de un hiper-rectángulo dado?) y las búsquedas del vecino más cercano (¿cuál es el punto de la estructura de datos más cercano a un punto dado?).
Las contribuciones de esta tesis se dividen en dos partes:
La primera parte está dedicada al diseño de estructuras de datos para puntos multidimensionales, que incluye el diseño de los árboles binarios $K$-dimensionales aleatorios (Randomized $K$-d trees), el de los árboles cuaternarios aleatorios (Randomized quad trees), y el de los árboles multidimensionales con punteros de referencia (Fingered multidimensional trees).
La segunda parte contiene contribuciones al análisis del comportamiento de las estructuras de datos para puntos multidimensionales. En particular, damos el análisis del costo promedio de las búsquedas parciales en los árboles $K$-dimensionales relajados y el de las búsquedas por rango en varias estructuras de datos multidimensionales.
Con respecto al diseño de estructuras de datos multidimensionales, proponemos algoritmos aleatorios de inserción y borrado de registros para los árboles $K$-dimensionales y los árboles cuaternarios que producen árboles aleatorios independientemente del orden de inserción de los registros y después de cualquier secuencia de inserciones y borrados intercalados. De hecho, con la aleatorización garantizamos un buen rendimiento esperado de las estructuras de datos resultantes, que es independiente de la distribución de los datos de entrada, conservando la flexibilidad y la simplicidad de los árboles $K$-dimensionales y de los árboles cuaternarios estándar. También proponemos los árboles multidimensionales con punteros de referencia, una técnica que permite que las estructuras de datos multidimensionales exploten la localidad de referencia en búsquedas asociativas que se presentan altamente correlacionadas.
Con respecto al análisis de estructuras de datos multidimensionales, comenzamos dando un análisis preciso del costo esperado de las búsquedas parciales en los árboles $K$-dimensionales relajados. A continuación, utilizamos este resultado como base para el análisis de las búsquedas por rangos ortogonales, combinándolo con argumentos combinatorios y geométricos. Como resultado obtenemos un estimado asintótico preciso del costo de las búsquedas por rango en los árboles $K$-dimensionales relajados. Finalmente, mostramos que las técnicas utilizadas pueden extenderse fácilmente a otras estructuras de datos y por tanto proporcionamos un análisis preciso del costo promedio de búsquedas por rango en estructuras de datos como los árboles $K$-dimensionales estándar, los árboles cuaternarios, los tries cuaternarios y los tries $K$-dimensionales.
This thesis is about the design and analysis of point multidimensional data structures: data structures that store $K$-dimensional keys which we may abstract as points in $[0,1]^K$. These data structures are present in many applications of geographical information systems, image processing or robotics, among others. They are also frequently used as indexes of more complex data structures, possibly stored in external memory.
Point multidimensional data structures must have capabilities such as insertion, deletion and (exact) search of items, but in addition they must support the so called {em associative queries}. Examples of these queries are orthogonal range queries (which are the items that fall inside a given hyper-rectangle?) and nearest neighbour queries (which is the closest item to some given point?).
The contributions of this thesis are two-fold:
Contributions to the design of point multidimensional data structures: the design of randomized $K$-d trees, the design of randomized quad trees and the design of fingered multidimensional search trees;
Contributions to the analysis of the performance of point multidimensional data structures: the average-case analysis of partial match queries in relaxed $K$-d trees and the average-case analysis of orthogonal range queries in various multidimensional data structures.
Concerning the design of randomized point multidimensional data structures, we propose randomized insertion and deletion algorithms for $K$-d trees and quad trees that produce random $K$-d trees and quad trees independently of the order in which items are inserted into them and after any sequence of interleaved insertions and deletions. The use of randomization provides expected performance guarantees, irrespective of any assumption on the data distribution, while retaining the simplicity and flexibility of standard $K$-d trees and quad trees.
Also related to the design of point multidimensional data structures is the proposal of fingered multidimensional search trees, a new technique that enhances point multidimensional data structures to exploit locality of reference in associative queries.
With regards to performance analysis, we start by giving a precise analysis of the cost of partial matches in randomized $K$-d trees. We use these results as a building block in our analysis of orthogonal range queries, together with combinatorial and geometric arguments and we provide a tight asymptotic estimate of the cost of orthogonal range search in randomized $K$-d trees. We finally show that the techniques used apply easily to other data structures, so we can provide an analysis of the average cost of orthogonal range search in other data structures such as standard $K$-d trees, quad trees, quad tries, and $K$-d tries.
Schroeder, Michael Philipp 1986. "Analysis and visualization of multidimensional cancer genomics data". Doctoral thesis, Universitat Pompeu Fabra, 2014. http://hdl.handle.net/10803/301436.
Testo completoEl cancer és una malaltia complexa causada per alteracions somàtiques del genoma i epigenoma de les cèl•lules tumorals. Un augment d’inversions i l'accés a tecnologies de baix cost ha provocat un increment important en la generació de dades genòmiques de càncer. La disponibilitat d’aquestes dades ofereix noves possibilitats per entendre millor les propietats moleculars del càncer. En aquest àmbit, presento dos mètodes que aprofiten aquesta gran disponibilitat de dades genòmiques de càncer: OncodriveROLE, un procediment per a classificar gens “drivers” del càncer segons si el seu mode d’acció ésl'activació o la pèrdua de funció del producte gènic; i MutEx, un estadístic per a mesurar la tendència de les mutacions somàtiques a l’exclusió mútua. Tanmateix, la manca de precedents d’aquesta gran dimensió de dades fa sorgir nous problemes en quant a la seva accessibilitat i exploració, els quals intentem solventar amb noves eines de visualització: i) Heatmaps interactius de Gitools amb dades genòmiques de càncer a gran escala, a punt per ser explorades, ii) jHeatmap, un heatmap interactiu per la web capaç de mostrar dades genòmiques de cancer multidimensionals i dissenyat per la seva inclusió a portals web; i iii) SVGMap, un servidor web per traslladar dades en figures SVG customitzades, útil per a la transl•lació de mesures experimentals en un model visual.
Nam, Beomseok. "Distributed multidimensional indexing for scientific data analysis applications". College Park, Md. : University of Maryland, 2007. http://hdl.handle.net/1903/6795.
Testo completoThesis research directed by: Computer Science. Title from t.p. of PDF. Includes bibliographical references. Published by UMI Dissertation Services, Ann Arbor, Mich. Also available in paper.
Palmas, Gregorio. "Visual Analysis of Multidimensional Data for Biomechanics and HCI". Doctoral thesis, KTH, Beräkningsvetenskap och beräkningsteknik (CST), 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-193713.
Testo completoQC 20161011
Odondi, Maurice Jacob. "Multidimensional analysis of successive categories (rating) data by dual scaling". Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1997. http://www.collectionscanada.ca/obj/s4/f2/dsk2/ftp02/NQ28031.pdf.
Testo completoWeherage, Pradeep Peiris. "BigDataCube: Distributed Multidimensional Data Cube Over Apache Spark : An OLAP framework that brings Multidimensional Data Analysis to modern Distributed Storage Systems". Thesis, KTH, Skolan för informations- och kommunikationsteknik (ICT), 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-215696.
Testo completoMultidimensional Data Analysis är en viktig del av Data Analytic paradigm. Data Cube tillhandahåller den grundläggade abstraktionen för Multidimensional Data Analysis och hjälper till att hitta användningsbara observationer av ett dataset. OnLine Analytical Processing (OLAP) lyfter det till nästa nivå och stödjer resultat från analytiska frågor i realtid med en underliggande teknik som materliserar Data Cubes. Data Cube Materialization är signifikant för OLAP, men är en kostsam uppgift vad gäller processa och lagra datat.De flesta av tidiga beslutssystem uppfyller Multidimensional Data Analysis med en standarddataarkitektur som extraherar, transformerar och läser data från flera datakällor in I en central databas, s.k. Data Warehouse, som exekveras av OLAP och tillhandahåller en Data Cube-abstraktion. Men denna arkitektur och tradionella OLAP-motorer klarar inte att hantera moderna högbelastade datasets. Idag har vi system med distribuerad datalagring, som har data på ett kluster av datornoder, med distribuerade dataprocesser, så som MapReduce, Spark, Storm etc. Dessa tillåter en mer ad-hoc dataanalysfunktionalitet. Än så länge så finns det ingen korrekt angreppsätt tillgänlig för Multidimensional Data Analysis eller någon distribuerad OLAP-motor som följer Distributed Data Cube Materialization.Det är viktigt att ha en korrekt Distributed Data Cube Materializationmekanism för att stödja Multidimensional Data Analysis för dagens distribuerade lagringssystem. Det finns många forskningarar idag som tittar på MapReduce för Data Cube Materialization. Nyligen har även Apache Spark tillgänglitgjort CUBE-operationer som en del av deras DataFrame API. Detta examensarbete tar upp frågeställningen, vilket som är det bästa angrepssättet för distribuerade system för Data Cube Materialization, MapReduce eller Spark. Arbetet bidrar dessutom med experiment som jämför de två distribuerade systemen i materialiserande datakubar över antalet poster, dimensioner och klusterstorlek. Examensarbetet bidrar även med ett mindre ramverk BigDataCube, som använder Spark DataFramesi bakgrunden för Data Cube Materialization och uppfyller behovet av Multidimensional Data Analysis av distribuerade lagringssystem.
Jernberg, Robert, e Tobias Hultgren. "Flexible Data Extraction for Analysis using Multidimensional Databases and OLAP Cubes". Thesis, KTH, Data- och elektroteknik, 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-123393.
Testo completoBright är ett företag som tillhandahåller undersökningar för kund- och medarbetarnöjdhet, och använder den informationen för att ge återkoppling till sina kunder. Data från undersökningarna sparas i en relationsdatabas och information genereras både genom att direkt fråga databasen såväl som att göra manuell analys på extraherad data. När mängden data ökar så ökar även tiden som krävs för att generera informationen. För att extrahera data krävs en betydande mängd manuellt arbete och i praktiken undviks det. Då detta inte är ett ovanligt problem finns det ett gediget teoretiskt ramverk kring området. Målet med detta examensarbete är att utforska de olika metoderna för att uppnå flexibel och effektiv dataanalys på stora mängder data. Det implementerades genom att använda en multidimensionell databas designad för analys samt en OnLine Analytical Processing (OLAP)-kub byggd med Microsoft SQL Server Analysis Services (SSAS). Kuben designades med möjligheten att extrahera data på en individuell nivå med PivotTables i Excel. Den implementerade prototypen analyserades vilket visade att prototypen konsekvent levererar korrekta resultat flerfaldigt så effektivt som den nuvarande lösningen såväl som att göra nya typer av analys möjliga och lättanvända. Slutsatsen dras att användandet av en OLAP-kub var ett bra val för det aktuella problemet, samt att valet att använda SSAS tillhandahöll de nödvändiga funktionaliteterna för en funktionell prototyp. Slutligen diskuterades rekommendationer av möjliga framtida utvecklingar.
Johnson, Kevin J. "Strategies for chemometric analysis of gas chromatographic data /". Thesis, Connect to this title online; UW restricted, 2003. http://hdl.handle.net/1773/8513.
Testo completoKavasidis, Isaak. "Multifaceted analysis for medical data understanding: from data acquisition to multidimensional signal processing to knowledge discovery". Doctoral thesis, Università di Catania, 2016. http://hdl.handle.net/10761/3925.
Testo completoJansson, Mattias, e Jimmy Johansson. "Interactive Visualization of Statistical Data using Multidimensional Scaling Techniques". Thesis, Linköping University, Department of Science and Technology, 2003. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-1716.
Testo completoThis study has been carried out in cooperation with Unilever and partly with the EC founded project, Smartdoc IST-2000-28137.
In areas of statistics and image processing, both the amount of data and the dimensions are increasing rapidly and an interactive visualization tool that lets the user perform real-time analysis can save valuable time. Real-time cropping and drill-down considerably facilitate the analysis process and yield more accurate decisions.
In the Smartdoc project, there has been a request for a component used for smart filtering in multidimensional data sets. As the Smartdoc project aims to develop smart, interactive components to be used on low-end systems, the implementation of the self-organizing map algorithm proposes which dimensions to visualize.
Together with Dr. Robert Treloar at Unilever, the SOM Visualizer - an application for interactive visualization and analysis of multidimensional data - has been developed. The analytical part of the application is based on Kohonen’s self-organizing map algorithm. In cooperation with the Smartdoc project, a component has been developed that is used for smart filtering in multidimensional data sets. Microsoft Visual Basic and components from the graphics library AVS OpenViz are used as development tools.
Jardim, João Pedro Fernandes. "Airports efficiency evaluation based on MCDA and DEA multidimensional tools". Master's thesis, Universidade da Beira Interior, 2012. http://hdl.handle.net/10400.6/2011.
Testo completoRossi, Rafael Germano. "Análise de componentes principais em data warehouses". Universidade de São Paulo, 2017. http://www.teses.usp.br/teses/disponiveis/45/45134/tde-07012018-182730/.
Testo completoThe Principal Component Analysis (PCA) technique has as the main goal the description of the variance and covariance between a set of variables. This technique is used to mitigate redundancies in the set of variables and as a mean of achieving dimensional reduction in various applications in the scientific, technological and administrative areas. On the other hand, the multidimensional data model is composed by fact and dimension relations (tables) that describe an event using metrics and the relationship between their dimensions. However, the volume of data stored and the complexity of their dimensions usually involved in this model, specially in data warehouse environment, makes the correlation analyses between dimensions very difficult and sometimes impracticable. In this work, we propose the development of an Application Programming Interface (API) for the application of PCA on multidimensional data model in order to facilitate the characterization task and dimension reduction, integrating the technique with Data Warehouses environments. For verifying the effectiveness of this API, a case study was carried out using the scientific production data obtained from the Lattes Platform, the Web of Science, Google Scholar and Scopus, provided by the IT Superintendence at University of São Paulo.
Kucuktunc, Onur. "Result Diversification on Spatial, Multidimensional, Opinion, and Bibliographic Data". The Ohio State University, 2013. http://rave.ohiolink.edu/etdc/view?acc_num=osu1374148621.
Testo completoYe, Jianguo. "Integrating data models, analysis and multidimensional visualizations : a unified construction project management arena". Thesis, University of British Columbia, 2009. http://hdl.handle.net/2429/18030.
Testo completoBiswas, Ayan. "Uncertainty and Error Analysis in the Visualization of Multidimensional and Ensemble Data Sets". The Ohio State University, 2016. http://rave.ohiolink.edu/etdc/view?acc_num=osu1480605991395144.
Testo completoCochoy, Jérémy. "Decomposability and stability of multidimensional persistence". Thesis, Université Paris-Saclay (ComUE), 2018. http://www.theses.fr/2018SACLS566/document.
Testo completoIn a context where huge amounts of data are available, extracting meaningful and non trivial information is getting harder. In order to improve the tasks of classification, regression, or exploratory analysis, the approach provided by topological data analysisis to look for the presence of shapes in data set.In this thesis, we investigate the properties of multidimensional persistence modules in order to obtain a better understanding of the summands and decompositions of such modules. We introduce a functor that embeds the representations category of any quiver whose graph is a rooted tree into the category of ℝ²-indexed persistence modules. We also enrich the structure of persistence module arising from the cohomology of a filtration to a structure of persistence algebra.Finally, we generalize the approach of Crawley Beovey to multipersistence and identify a class of persistencemodules indexed on ℝ² which have simple descriptor and an analog of the decomposition theorem available in one dimensional persistence
Sivertun, Åke. "Geographical Information Systems (GIS) as a tool for analysis and communications of multidimensional data". Doctoral thesis, Umeå universitet, Institutionen för geografi och ekonomisk historia, 1993. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-100703.
Testo completoDiss. (sammanfattning) Umeå : Umeå universitet, 1993, härtill 6 uppsatser.
digitalisering@umu
D’Errico, Marco <1974>. "Assessing poverty with survey data. Uni-dimensional, multidimensional and resilience poverty analysis in Kenya". Doctoral thesis, Alma Mater Studiorum - Università di Bologna, 2011. http://amsdottorato.unibo.it/4194/1/marco_derrico_tesi.pdf.
Testo completoD’Errico, Marco <1974>. "Assessing poverty with survey data. Uni-dimensional, multidimensional and resilience poverty analysis in Kenya". Doctoral thesis, Alma Mater Studiorum - Università di Bologna, 2011. http://amsdottorato.unibo.it/4194/.
Testo completoBetancourt, Catalina. "Persistence heatmaps for knotted data sets". Diss., University of Iowa, 2018. https://ir.uiowa.edu/etd/6369.
Testo completoHall, Kristin Wynn. "Multiple Calibrations in Integrative Data Analysis: A Simulation Study and Application to Multidimensional Family Therapy". Scholar Commons, 2013. http://scholarcommons.usf.edu/etd/4686.
Testo completoXu, Bing. "Multidimensional approaches to performance evaluation of competing forecasting models". Thesis, University of Edinburgh, 2009. http://hdl.handle.net/1842/4081.
Testo completoDepalma, Carlos Mariano A. "The role of the thermal contact conductance in the interpretation of laser flash data in fiber-reinforced composites". Thesis, This resource online, 1993. http://scholar.lib.vt.edu/theses/available/etd-10062009-020306/.
Testo completoNtushelo, Nombasa Sheroline. "Exploratory and inferential multivariate statistical techniques for multidimensional count and binary data with applications in R". Thesis, Stellenbosch : Stellenbosch University, 2011. http://hdl.handle.net/10019.1/17949.
Testo completoENGLISH ABSTRACT: The analysis of multidimensional (multivariate) data sets is a very important area of research in applied statistics. Over the decades many techniques have been developed to deal with such datasets. The multivariate techniques that have been developed include inferential analysis, regression analysis, discriminant analysis, cluster analysis and many more exploratory methods. Most of these methods deal with cases where the data contain numerical variables. However, there are powerful methods in the literature that also deal with multidimensional binary and count data. The primary purpose of this thesis is to discuss the exploratory and inferential techniques that can be used for binary and count data. In Chapter 2 of this thesis we give the detail of correspondence analysis and canonical correspondence analysis. These methods are used to analyze the data in contingency tables. Chapter 3 is devoted to cluster analysis. In this chapter we explain four well-known clustering methods and we also discuss the distance (dissimilarity) measures available in the literature for binary and count data. Chapter 4 contains an explanation of metric and non-metric multidimensional scaling. These methods can be used to represent binary or count data in a lower dimensional Euclidean space. In Chapter 5 we give a method for inferential analysis called the analysis of distance. This method use a similar reasoning as the analysis of variance, but the inference is based on a pseudo F-statistic with the p-value obtained using permutations of the data. Chapter 6 contains real-world applications of these above methods on two special data sets called the Biolog data and Barents Fish data. The secondary purpose of the thesis is to demonstrate how the above techniques can be performed in the software package R. Several R packages and functions are discussed throughout this thesis. The usage of these functions is also demonstrated with appropriate examples. Attention is also given to the interpretation of the output and graphics. The thesis ends with some general conclusions and ideas for further research.
AFRIKAANSE OPSOMMING: Die analise van meerdimensionele (meerveranderlike) datastelle is ’n belangrike area van navorsing in toegepaste statistiek. Oor die afgelope dekades is daar verskeie tegnieke ontwikkel om sulke data te ontleed. Die meerveranderlike tegnieke wat ontwikkel is sluit in inferensie analise, regressie analise, diskriminant analise, tros analise en vele meer verkennende data analise tegnieke. Die meerderheid van hierdie metodes hanteer gevalle waar die data numeriese veranderlikes bevat. Daar bestaan ook kragtige metodes in die literatuur vir die analise van meerdimensionele binêre en telling data. Die primêre doel van hierdie tesis is om tegnieke vir verkennende en inferensiële analise van binêre en telling data te bespreek. In Hoofstuk 2 van hierdie tesis bespreek ons ooreenkoms analise en kanoniese ooreenkoms analise. Hierdie metodes word gebruik om data in gebeurlikheidstabelle te analiseer. Hoofstuk 3 bevat tegnieke vir tros analise. In hierdie hoofstuk verduidelik ons vier gewilde tros analise metodes. Ons bespreek ook die afstand maatstawwe wat beskikbaar is in die literatuur vir binêre en telling data. Hoofstuk 4 bevat ’n verduideliking van metriese en nie-metriese meerdimensionele skalering. Hierdie metodes kan gebruik word om binêre of telling data in ‘n lae dimensionele Euclidiese ruimte voor te stel. In Hoofstuk 5 beskryf ons ’n inferensie metode wat bekend staan as die analise van afstande. Hierdie metode gebruik ’n soortgelyke redenasie as die analise van variansie. Die inferensie hier is gebaseer op ’n pseudo F-toetsstatistiek en die p-waardes word verkry deur gebruik te maak van permutasies van die data. Hoofstuk 6 bevat toepassings van bogenoemde tegnieke op werklike datastelle wat bekend staan as die Biolog data en die Barents Fish data. Die sekondêre doel van die tesis is om te demonstreer hoe hierdie tegnieke uitgevoer word in the R sagteware. Verskeie R pakette en funksies word deurgaans bespreek in die tesis. Die gebruik van die funksies word gedemonstreer met toepaslike voorbeelde. Aandag word ook gegee aan die interpretasie van die afvoer en die grafieke. Die tesis sluit af met algemene gevolgtrekkings en voorstelle vir verdere navorsing.
Nebot, Romero María Victoria. "Scalable methods to analyze Semantic Web data". Doctoral thesis, Universitat Jaume I, 2013. http://hdl.handle.net/10803/396347.
Testo completoEn la actualidad, tanto entre las comunidades científicas como en las empresas, así como en las redes sociales y otros dominios web, se emplean cada vez más datos anotados semánticamente, los cuales contribuyen al desarrollo de la Web Semántica. Dicho crecimiento de este tipo de datos requiere la creación de nuevos métodos y herramientas capaces de aprovechar la semántica subyacente para analizar los datos de forma eficiente. Aunque ya existen aplicaciones capaces de usar y gestionar datos anotados semánticamente, éstas no explotan la semántica para realizar análisis sofisticados.
Ding, Guoxiang. "DERIVING ACTIVITY PATTERNS FROM INDIVIDUAL TRAVEL DIARY DATA: A SPATIOTEMPORAL DATA MINING APPROACH". The Ohio State University, 2009. http://rave.ohiolink.edu/etdc/view?acc_num=osu1236777859.
Testo completoDias, Filipa de Carvalho. "Cluster analysis of financial time series data : evidence for portuguese and spanish stock markets". Master's thesis, Instituto Superior de Economia e Gestão, 2017. http://hdl.handle.net/10400.5/14923.
Testo completoEsta dissertação utilizando a distância de Caiado & Crato (2010) baseada nas autocorrelações, pretende efectuar o agrupamento de séries financeiras temporais. A métrica tenta avaliar o nível de interdependência, tendo por base a previsibilidade dos retornos. A análise de $clusters$ é feita tendo em conta a estrutura hierárquica (dendrograma) e as coordenadas principais calculadas (mapa multidimensional) das séries financeiras. Estas técnicas foram utilizadas para investigar as semelhanças e diferenças entre as empresas dos dois índices ibéricos de mercado de ações: PSI-20 e IBEX-35.
This paper uses the Caiado & Crato (2010) autocorrelation-based distance metric for clustering financial time series. The metric attempts to assess the level of interdependence of time series from the return predictability point of view. The cluster analysis is made by looking to the hierarchical structure tree (or dendrogram) and the computed principal coordinates (multidimensional scaling map). These techniques are employed to investigate the similarities and dissimilarities between the stocks of the two Iberian stock market indexes: PSI-20 and IBEX-35.
info:eu-repo/semantics/publishedVersion
Johansson, Peter. "Plant Condition Measurement from Spectral Reflectance Data". Thesis, Linköping University, Computer Vision, 2010. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-59286.
Testo completoThe thesis presents an investigation of the potential of measuring plant condition from hyperspectral reflectance data. To do this, some linear methods for embedding the high dimensional hyperspectral data and to perform regression to a plant condition space have been compared. A preprocessing step that aims at normalized illumination intensity in the hyperspectral images has been conducted and some different methods for this purpose have also been compared.A large scale experiment has been conducted where tobacco plants have been grown and treated differently with respect to watering and nutrition. The treatment of the plants has served as ground truth for the plant condition. Four sets of plants have been grown one week apart and the plants have been measured at different ages up to the age of about five weeks. The thesis concludes that there is a relationship between plant treatment and their leaves' spectral reflectance, but the treatment has to be somewhat extreme for enabling a useful treatment approximation from the spectrum. CCA has been the proposed method for calculation of the hyperspectral basis that is used to embed the hyperspectral data to the plant condition (treatment) space. A preprocessing method that uses a weighted normalization of the spectrums for illumination intensity normalization is concluded to be the most powerful of the compared methods.
Primerano, Ilaria. "A symbolic data analysis approach to explore the relation between governance and performance in the Italian industrial districs". Doctoral thesis, Universita degli studi di Salerno, 2016. http://hdl.handle.net/10556/2179.
Testo completoNowadays, complex phenomena need to bee analyzed through appropriate statistical methods that allow considering the knowledge hidden behind the classical data structure... [edited by author]
XIII n.s.
YONEDA, Hiroyuki, Ioki HARA, Takeshi FURUHASHI, Tomohiro YOSHIKAWA, Toshikazu FUKAMI, 洋之 米田, 以起 原, 武. 古橋, 大弘 吉川 e 俊和 深見. "可視空間上でのインタラクティブクラスタリングによるマイノリティ発見に関する検討". 日本感性工学会, 2009. http://hdl.handle.net/2237/20849.
Testo completoFURUHASHI, Takeshi, Tomohiro YOSHIKAWA, Yosuke WATANABE, 武. 古橋, 大弘 吉川 e 庸佑 渡邉. "アンケートにおける回答の矛盾度・関心度の定量化およびそれらを考慮した解析手法に関する検討". 日本感性工学会, 2010. http://hdl.handle.net/2237/20851.
Testo completoSiepka, Damian. "Development of multidimensional spectral data processing procedures for analysis of composition and mixing state of aerosol particles by Raman and FTIR spectroscopy". Thesis, Lille 1, 2017. http://www.theses.fr/2017LIL10188/document.
Testo completoSufficiently adjusted, multivariate data processing methods and procedures can significantly improve the process for obtaining knowledge of a sample composition. Spectroscopic techniques have capabilities for fast analysis of various samples and were developed for research and industrial purposes. It creates a great possibility for advanced molecular analysis of complex samples, such as atmospheric aerosols. Airborne particles affect air quality, human health, ecosystem condition and play an important role in the Earth’s climate system. The purpose of this thesis is twofold. On an analytical level, the functional algorithm for evaluation of quantitative composition of atmospheric particles from measurements of individual particles by Raman microspectrocopy (RMS) was established. On a constructive level, the readily accessible analytical system for Raman and FTIR data processing was developed. A potential of a single particle analysis by RMS has been exploited by an application of the designed analytical algorithm based on a combination between a multicurve resolution and a multivariate data treatment for an efficient description of chemical mixing of aerosol particles. The algorithm was applied to the particles collected in a copper mine in Bolivia and provides a new way of a sample description. The new user-friendly software, which includes pre-treatment algorithms and several easy-to access, common multivariate data treatments, is equipped with a graphical interface. The created software was applied to some challenging aspects of a pattern recognition in the scope of Raman and FTIR spectroscopy for coal mine particles, biogenic particles and organic pigments
Siepka, Damian. "Development of multidimensional spectral data processing procedures for analysis of composition and mixing state of aerosol particles by Raman and FTIR spectroscopy". Electronic Thesis or Diss., Lille 1, 2017. http://www.theses.fr/2017LIL10188.
Testo completoSufficiently adjusted, multivariate data processing methods and procedures can significantly improve the process for obtaining knowledge of a sample composition. Spectroscopic techniques have capabilities for fast analysis of various samples and were developed for research and industrial purposes. It creates a great possibility for advanced molecular analysis of complex samples, such as atmospheric aerosols. Airborne particles affect air quality, human health, ecosystem condition and play an important role in the Earth’s climate system. The purpose of this thesis is twofold. On an analytical level, the functional algorithm for evaluation of quantitative composition of atmospheric particles from measurements of individual particles by Raman microspectrocopy (RMS) was established. On a constructive level, the readily accessible analytical system for Raman and FTIR data processing was developed. A potential of a single particle analysis by RMS has been exploited by an application of the designed analytical algorithm based on a combination between a multicurve resolution and a multivariate data treatment for an efficient description of chemical mixing of aerosol particles. The algorithm was applied to the particles collected in a copper mine in Bolivia and provides a new way of a sample description. The new user-friendly software, which includes pre-treatment algorithms and several easy-to access, common multivariate data treatments, is equipped with a graphical interface. The created software was applied to some challenging aspects of a pattern recognition in the scope of Raman and FTIR spectroscopy for coal mine particles, biogenic particles and organic pigments
Nunes, Santiago Augusto. "Análise espaço-temporal de data streams multidimensionais". Universidade de São Paulo, 2015. http://www.teses.usp.br/teses/disponiveis/55/55134/tde-17102016-152137/.
Testo completoData streams are usually characterized by large amounts of data generated continuously in synchronous or asynchronous potentially infinite processes, in applications such as: meteorological systems, industrial processes, vehicle traffic, financial transactions, sensor networks, among others. In addition, the behavior of the data tends to change significantly over time, defining evolutionary data streams. These changes may mean temporary events (such as anomalies or extreme events) or relevant changes in the process of generating the stream (that result in changes in the distribution of the data). Furthermore, these data sets can have spatial characteristics such as geographic location of sensors, which can be useful in the analysis process. The detection of these behavioral changes considering aspects of evolution, as well as the spatial characteristics of the data, is relevant for some types of applications, such as monitoring of extreme weather events in Agrometeorology researches. In this context, this project proposes a technique to help spatio-temporal analysis in multidimensional data streams containing spatial and non-spatial information. The adopted approach is based on concepts of the Fractal Theory, used for temporal behavior analysis, as well as techniques for data streams handling also hierarchical data structures, allowing analysis tasks that take into account the spatial and non-spatial aspects simultaneously. The developed technique has been applied to agro-meteorological data to identify different behaviors considering different sub-regions defined by the spatial characteristics of the data. Therefore, results from this work include contribution to data mining area and support research in Agrometeorology.
Pagliosa, Lucas de Carvalho. "Visualização e exploração de dados multidimensionais na web". Universidade de São Paulo, 2015. http://www.teses.usp.br/teses/disponiveis/55/55134/tde-08042016-103144/.
Testo completoWith the growing number and types of data, the need to analyze and understand what they represent and how they are related has become crucial. Visualization techniques based on multidimensional projections have gained space and interest as one of the possible tools to aid this problem, providing a simple and quick way to identify patterns, recognize trends and extract features previously not obvious in the original set. However, the data set projection in a smaller space may not be sufficient in some cases to answer or clarify certain questions asked by the user, making the posterior projection analysis crucial for the exploration and understanding of the data. Thus, interactivity in the visualization, applied to the users needs, is an essential factor for analysis. In this context, this master projects main objective consists to create visual metaphors based on attributes, through statistical measures and artifacts for detecting noise and similar groups, to assist the exploration and analysis of projected data. In addition, it is proposed to make available, in Web browsers, the multidimensional data visualization techniques developed by the Group of Visual and Geometric Processing at ICMC-USP. The development of the project as a Web platform was inspired by the difficulty of installation and running that certain visualization projects have, mainly due different versions of IDEs, compilers and operating systems. In addition, the fact that the project is available online for execution aims to facilitate the access and dissemination of technical proposals for the general public.
Krajča, Marek. "Město pro byznys: Vícerozměrná statistická analýza a možné návrhy na zdokonalení projektu". Master's thesis, Vysoká škola ekonomická v Praze, 2014. http://www.nusl.cz/ntk/nusl-193815.
Testo completoLin, Peng. "IRT vs. factor analysis approaches in analyzing multigroup multidimensional binary data the effect of structural orthogonality, and the equivalence in test structure, item difficulty, & examinee groups /". College Park, Md.: University of Maryland, 2008. http://hdl.handle.net/1903/8468.
Testo completoThesis research directed by: Dept. of Measurement, Statistics and Evaluation. Title from t.p. of PDF. Includes bibliographical references. Published by UMI Dissertation Services, Ann Arbor, Mich. Also available in paper.
Khan, Arif ul Maula [Verfasser], e R. [Akademischer Betreuer] Mikut. "Development of Robust and Efficient Algorithms for Image Processing and Analysis on Multidimensional Image Data using Feedback Concepts with Challenging Applications / Arif ul Maula Khan ; Betreuer: R. Mikut". Karlsruhe : KIT-Bibliothek, 2017. http://d-nb.info/1136660763/34.
Testo completoBlanchard, Pierre. "Fast hierarchical algorithms for the low-rank approximation of matrices, with applications to materials physics, geostatistics and data analysis". Thesis, Bordeaux, 2017. http://www.theses.fr/2017BORD0016/document.
Testo completoAdvanced techniques for the low-rank approximation of matrices are crucial dimension reduction tools in many domains of modern scientific computing. Hierarchical approaches like H2-matrices, in particular the Fast Multipole Method (FMM), benefit from the block low-rank structure of certain matrices to reduce the cost of computing n-body problems to O(n) operations instead of O(n2). In order to better deal with kernels of various kinds, kernel independent FMM formulations have recently arisen such as polynomial interpolation based FMM. However, they are hardly tractable to high dimensional tensorial kernels, therefore we designed a new highly efficient interpolation based FMM, called the Uniform FMM, and implemented it in the parallel library ScalFMM. The method relies on an equispaced interpolation grid and the Fast Fourier Transform (FFT). Performance and accuracy were compared with the Chebyshev interpolation based FMM. Numerical experiments on artificial benchmarks showed that the loss of accuracy induced by the interpolation scheme was largely compensated by the FFT optimization. First of all, we extended both interpolation based FMM to the computation of the isotropic elastic fields involved in Dislocation Dynamics (DD) simulations. Second of all, we used our new FMM algorithm to accelerate a rank-r Randomized SVD and thus efficiently generate multivariate Gaussian random variables on large heterogeneous grids in O(n) operations. Finally, we designed a new efficient dimensionality reduction algorithm based on dense random projection in order to investigate new ways of characterizing the biodiversity, namely from a geometric point of view
Zhang, Wei. "Directed Evolution of Glutathione Transferases with Altered Substrate Selectivity Profiles : A Laboratory Evolution Study Shedding Light on the Multidimensional Nature of Epistasis". Doctoral thesis, Uppsala universitet, Biokemi, 2011. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-158400.
Testo completoPan, Jie. "Modélisation et exécution des applications d'analyse de données multi-dimentionnelles sur architectures distribuées". Phd thesis, Ecole Centrale Paris, 2010. http://tel.archives-ouvertes.fr/tel-00579125.
Testo completoRichert, Laura. "Trial design and analysis of endpoints in HIV vaccine trials". Thesis, Bordeaux 2, 2013. http://www.theses.fr/2013BOR22048/document.
Testo completoComplex data are frequently recored in recent clinical trials and require the use of appropriate statistical methods. HIV vaccine research is an example of a domaine with complex data and a lack of validated endpoints for early-stage clinical trials. This thesis concerns methodological research with regards to the design and analysis aspects of HIV vaccine trials, in particular the definition of immunogenicity endpoints and phase I-II trial designs. Using cytokine multiplex data, we illustrate the methodological aspects specific to a given assay technique. We then propose endpoint definitions and statistical methods appropriate for the analysis of multidimensional immunogenicity data. We show in particular the value of non-parametric multivariate scores, which allow for summarizing information across different immunogenicity markers and for making statistical comparisons between and within groups. In the aim of contributing to the design of new vaccine trials, we present the construction of an optimized early-stage HIV vaccine design. Combining phase I and II assessments, the proposed design allows for accelerating the clinical development of several vaccine strategies in parallel. The integration of a stopping rule is proposed from both a frequentist and a Bayesian perspective. The methods advocated in this thesis are transposable to other research domains with complex data, such as imaging data or trials of other immune therapies
FERREIRA, MATHEUS C. "Obtenção de fritas vitroceramicas a partir de resíduos sólidos industriais". reponame:Repositório Institucional do IPEN, 2006. http://repositorio.ipen.br:8080/xmlui/handle/123456789/11469.
Testo completoMade available in DSpace on 2014-10-09T14:01:15Z (GMT). No. of bitstreams: 0
Dissertacao (Mestrado)
IPEN/D
Instituto de Pesquisas Energeticas e Nucleares - IPEN/CNEN-SP
Rusch, Thomas, Patrick Mair e Kurt Hornik. "COPS Cluster Optimized Proximity Scaling". WU Vienna University of Economics and Business, 2015. http://epub.wu.ac.at/4465/1/COPS.pdf.
Testo completoSeries: Discussion Paper Series / Center for Empirical Research Methods
FRIMAIO, AUDREW. "Desenvolvimento de um material cerâmico para utilização em proteção radiológica diagnóstica". reponame:Repositório Institucional do IPEN, 2006. http://repositorio.ipen.br:8080/xmlui/handle/123456789/11414.
Testo completoMade available in DSpace on 2014-10-09T14:08:36Z (GMT). No. of bitstreams: 1 11345.PDF: 3947420 bytes, checksum: a67742a2939ab92c6ea3c83950452caf (MD5)
Dissertacao (Mestrado)
IPEN/D
Instituto de Pesquisas Energeticas e Nucleares - IPEN/CNEN-SP
Ferreira, Matheus Chianca. "Obtenção de fritas vitrocerâmicas a partir de resíduos sólidos industriais". Universidade de São Paulo, 2006. http://www.teses.usp.br/teses/disponiveis/85/85134/tde-14052012-111305/.
Testo completoThis work studies the residue obtained from the process of aluminum metal extraction activities, a great interest process, because of Brazil own some of the biggest bauxite mineral reserves in all the world. As a useful choice for no residue generation, and a support for environmentally friendly technologies, this work studies the white dross residue (WDR), from the process of aluminum metal reduction by thermal plasma. The phase equilibrium diagram of Al2O3-Ca O-SiO2 system was used to calculate the compositions. The WDR were incorporated in a ceramic product without modifying its principal characteristics. The fusion and devitrification treatments were studied. XRD (X-ray diffractometry), SEM (scanning electron microscopy) and FTIR (transformed Fourier infrared) were used to investigate the glass and glassceramic samples. These techniques showed that is possible to get glassceramic with up to 30 mass% of WDR after molten at 1300 deg C and annealed at 900 deg C. In addition, the WDR showed to be a promising material in attainment of crystalline phases in less times of heat treatment for annealing.
Voillet, Valentin. "Approche intégrative du développement musculaire afin de décrire le processus de maturation en lien avec la survie néonatale". Thesis, Toulouse, INPT, 2016. http://www.theses.fr/2016INPT0067/document.
Testo completoOver the last decades, some omics data integration studies have been developed to participate in the detailed description of complex traits with socio-economic interests. In this context, the aim of the thesis is to combine different heterogeneous omics data to better describe and understand the last third of gestation in pigs, period influencing the piglet mortality at birth. In the thesis, we better defined the molecular and cellular basis underlying the end of gestation, with a focus on the skeletal muscle. This tissue is specially involved in the efficiency of several physiological functions, such as thermoregulation and motor functions. According to the experimental design, tissues were collected at two days of gestation (90 or 110 days of gestation) from four fetal genotypes. These genotypes consisted in two extreme breeds for mortality at birth (Meishan and Large White) and two reciprocal crosses. Through statistical and computational analyses (descriptive analyses, network inference, clustering and biological data integration), we highlighted some biological mechanisms regulating the maturation process in pigs, but also in other livestock species (cattle and sheep). Some genes and proteins were identified as being highly involved in the muscle energy metabolism. Piglets with a muscular metabolism immaturity would be associated with a higher risk of mortality at birth. A second aspect of the thesis was the imputation of missing individual row values in the multidimensional statistical method framework, such as the multiple factor analysis (MFA). In our context, MFA was particularly interesting in integrating data coming from the same individuals on different tissues (two or more). To avoid missing individual row values, we developed a method, called MI-MFA (multiple imputation - MFA), allowing the estimation of the MFA components for these missing individuals
Roussafi, Ferdaous. "La territorialisation des énergies renouvelables en France". Thesis, Normandie, 2019. http://www.theses.fr/2019NORMC045.
Testo completoThe energy transition to low-carbon energy is now a dominant paradigm in energy-related public policies. It is a central focus of work for the French regions. The evolution of their relationship with energy is both in line with European experiences and in the wake of a national incentive for transition. The objective of this thesis is to study the territorialization of renewable energy (RE) production according to its different origins (biomass, solar, geothermal, wind and hydro). We propose to assess the regions' performance in diversifying the energy mix in 2015 and over the period 1990-2015. Multidimensional data analysis methods were used. A typology of French regions characteristic of the regional development of renewable energies (RE) in France in 2015 is proposed, it highlights the emergence of five typical RE development profiles that are highly contrasted according to the RE sectors. The analysis of evolving data adopted to study regional dynamics in terms of RE promotion over the period 1990-2015 highlights four sub-periods of RE development. The Hierarchical Ascending Classification (HAC) over each sub-period has highlighted three distinct types of RE development profiles and a certain stability in the trajectories of the regions. This very stable structure shows that disparities between regions in the early 1990s persisted throughout the period. Finally, the study of the determinants of RE consumption at the regional level made it possible to identify the main levers favouring their deployment. Indeed, we have shown through the estimation of a VECM model that in the short term, past economic growth measured by the real GDP growth rate positively affects RE consumption, while nuclear and industrial production per capita have a negative impact. In the long term, estimates from the FM-OLS and DOLS models indicate that the level of economic development, measured by the logarithm of GDP per capita, has a positive impact on the share of RE in final energy consumption. The results also show that research and development spending favours the use of REs, which are largely dependent on population density. Finally, we show that at the regional level, the weight of "green" parties has a positive influence on the development of renewable energies