Letteratura scientifica selezionata sul tema "Cementious materials"
Cita una fonte nei formati APA, MLA, Chicago, Harvard e in molti altri stili
Consulta la lista di attuali articoli, libri, tesi, atti di convegni e altre fonti scientifiche attinenti al tema "Cementious materials".
Accanto a ogni fonte nell'elenco di riferimenti c'è un pulsante "Aggiungi alla bibliografia". Premilo e genereremo automaticamente la citazione bibliografica dell'opera scelta nello stile citazionale di cui hai bisogno: APA, MLA, Harvard, Chicago, Vancouver ecc.
Puoi anche scaricare il testo completo della pubblicazione scientifica nel formato .pdf e leggere online l'abstract (il sommario) dell'opera se è presente nei metadati.
Articoli di riviste sul tema "Cementious materials"
Uma Maheshwari, K., e N. Venkat Rao. "Effect of Cementious Materials on Corrsion in Carbonated Concrete". IOP Conference Series: Earth and Environmental Science 1086, n. 1 (1 settembre 2022): 012003. http://dx.doi.org/10.1088/1755-1315/1086/1/012003.
Testo completoXie, Guo Hua, He Qing Du, Shu Jing Zhu e Yong Jie Xue. "Novel Cementious Materials from Industrial Solid Waste for Silt Soil Solidification". Advanced Materials Research 150-151 (ottobre 2010): 711–18. http://dx.doi.org/10.4028/www.scientific.net/amr.150-151.711.
Testo completoWang, Kang, Yu Ping Zhang, Ting Wei Cao, Jie Zhang e Zhong He Shui. "Effect of Modified Metakaolin on Water Content of Hardened Cementitious Materials of Concrete". Key Engineering Materials 599 (febbraio 2014): 29–33. http://dx.doi.org/10.4028/www.scientific.net/kem.599.29.
Testo completoNiu, Hui, Kai Yang, Ke Bin Zhao e Huan Zheng Chi. "Experimental Study on Improving the early Strength of Fly Ash Concrete". Advanced Materials Research 168-170 (dicembre 2010): 1943–46. http://dx.doi.org/10.4028/www.scientific.net/amr.168-170.1943.
Testo completoSharkawi, Aladdin M., Metwally A. Abd-Elaty e Omar H. Khalifa. "Synergistic influence of micro-nano silica mixture on durability performance of cementious materials". Construction and Building Materials 164 (marzo 2018): 579–88. http://dx.doi.org/10.1016/j.conbuildmat.2018.01.013.
Testo completoFUKUSHIMA, Yuta, Takayasu ITO, Masashi OSAKI e Tsuyoshi SAITO. "APPLICATION OF CALCINED CLAY CONTAINING ALLOPHANE AND HALLOYSITE AS A SUPPLYMENTARY CEMENTIOUS MATERIALS". Cement Science and Concrete Technology 77, n. 1 (29 marzo 2024): 550–57. http://dx.doi.org/10.14250/cement.77.550.
Testo completoWang, Xue, e Yuan Chen Guo. "A Summary of Strength Formation Mechanism of Light Wall Material". Applied Mechanics and Materials 217-219 (novembre 2012): 1099–102. http://dx.doi.org/10.4028/www.scientific.net/amm.217-219.1099.
Testo completoWang, Xue, e Yuan Chen Guo. "Experimental Research on Strengthen Mechanism of NaOH on Light Wall Materials Prepared from Crushed Brick Powder". Advanced Materials Research 535-537 (giugno 2012): 1657–60. http://dx.doi.org/10.4028/www.scientific.net/amr.535-537.1657.
Testo completoShe, An Ming, Wu Yao e Wan Cheng Yuan. "Evolution of Various States of Water in Blended Cementitious Materials". Applied Mechanics and Materials 193-194 (agosto 2012): 389–92. http://dx.doi.org/10.4028/www.scientific.net/amm.193-194.389.
Testo completoLi, Xiong Hao, Yong Jie Xue e Min Zhou. "Experimental Study on Utilization FGD Byproducts in Building Bricks". Advanced Materials Research 150-151 (ottobre 2010): 753–57. http://dx.doi.org/10.4028/www.scientific.net/amr.150-151.753.
Testo completoTesi sul tema "Cementious materials"
Danché, Valentine. "Impression 3D par liaison sélective de béton de chanvre". Electronic Thesis or Diss., CY Cergy Paris Université, 2024. http://www.theses.fr/2024CYUN1286.
Testo completo3D printing is experiencing a significant rise in the construction industry, paving the way for the expected digitalization of the sector. As new techniques are explored to combine technical optimization and CO2 emission reduction, this study focuses on powder-bed 3D printing. Despite still being relatively niche, this method could facilitate printing with a high natural fiber content, thus taking a further step towards carbon neutrality. The process is simple, involving three iterative steps : depositing a layer of reactive powder, compacting it, and then injecting water onto the surface.Hence, controlling water penetration into the powder is crucial to improve print quality. The objective is to confine the available water to the desired area, ensuring optimal binder hydration and preventing leaching from previous layers. Several factors may limit penetration depth, including the physical properties of the powder (compactness, permeability) and those of the injected fluid (surface tension, viscosity, yield stress) to study their impact on the kinetics of water propagation on the surface and within the powder. Consequently, we examined the vertical water propagation kinetics in compacted cementitious powder samples. To better simulate the phenomena occurring within the printer, vertical imbibition in both penetration directions was monitored through image analysis and MRI, providing additional insights into the quantity and distribution of water in the samples.Following the development of a versatile setup, we investigated pure powders (such as cement, calcite, metakaolin, sand) and those containing porous aggregates (recycled cement paste or micronized hemp shives) to better understand their impact on water penetration in a bio-sourced printable powder. Indeed, this technique sheds new light with a saturation sensibility and, when combined with MRI, water transfers between the matrix and porous aggregates. Natural porous aggregates like hemp are well-known to affect water distribution as they absorb and swell on contact with water. The results indicate that kinetics do not always slow down over time which opens discussions on the validity of Washburn's Law, commonly used to describe water propagation phenomena in porous media.Finally, the complete development of a powder-bed 3D printer has enabled the printing of cubes, which will facilitate the study of the influence of printing parameter choices (injection type and compactness) on part geometry. We will then be able to consider biobased materials as a possible tool for improving printing precision
Houk, Alexander Nicholas. "SELF-SENSING CEMENTITIOUS MATERIALS". UKnowledge, 2017. https://uknowledge.uky.edu/ce_etds/58.
Testo completoIsaacs, Ben. "Self-healing cementitious materials". Thesis, Cardiff University, 2011. http://orca.cf.ac.uk/54220/.
Testo completoPheeraphan, Thanakorn. "Microwave curing of cementitious materials". Thesis, Massachusetts Institute of Technology, 1993. http://hdl.handle.net/1721.1/12174.
Testo completoPeach, Benjamin. "Laser scabbling of cementitious materials". Thesis, University of Sheffield, 2015. http://etheses.whiterose.ac.uk/11853/.
Testo completoBrown, Nicholas John. "Discrete element modelling of cementitious materials". Thesis, University of Edinburgh, 2013. http://hdl.handle.net/1842/8011.
Testo completoRad, Taghi. "Microstructural characteristics of recycled cementitious materials". Thesis, University of Hertfordshire, 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.340038.
Testo completoBolton, Mark William. "Soil Improvement Using Optimised Cementitous Materilas Design". Thesis, Griffith University, 2014. http://hdl.handle.net/10072/365243.
Testo completoThesis (PhD Doctorate)
Doctor of Philosophy (PhD)
Griffith School of Engineering
Science, Environment, Engineering and Technology
Full Text
Mihai, Iulia. "Micromechanical constitutive models for cementitious composite materials". Thesis, Cardiff University, 2012. http://orca.cf.ac.uk/24624/.
Testo completoValori, Andrea. "Characterisation of cementitious materials by 1H NMR". Thesis, University of Surrey, 2009. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.510562.
Testo completoLibri sul tema "Cementious materials"
Pöllmann, Herbert, a cura di. Cementitious Materials. Berlin, Boston: De Gruyter, 2017. http://dx.doi.org/10.1515/9783110473728.
Testo completoMalhotra, V. M. Pozzolanic and cementitious materials. Amsterdam, The Netherlands: Gordon and Breach, 1996.
Cerca il testo completoDeHayes, SM, e D. Stark, a cura di. Petrography of Cementitious Materials. 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959: ASTM International, 1994. http://dx.doi.org/10.1520/stp1215-eb.
Testo completo1953-, DeHayes Sharon M., Stark D e Symposium on the Petrography of Cementitious Materials (1993 : Atlanta, Ga.), a cura di. Petrography of cementitious materials. Philadelphia, PA: ASTM, 1994.
Cerca il testo completoConference on Advances in Cementitious Materials (1990 Gaithersburg, Md.). Advances in cementitious materials. Westerville, Ohio: American Ceramic Society, 1991.
Cerca il testo completoSoltesz, Steven M. Cementitious materials for thin patches. Salem, OR: Oregon Dept. of Transportation, Research Group, 2001.
Cerca il testo completoPijaudier-Cabot, Gilles. Damage mechanics of cementitious materials. London: ISTE, 2012.
Cerca il testo completo1946-, Mai Y. W., a cura di. Fracture mechanics of cementitious materials. London: Blackie Academic & Professional, 1996.
Cerca il testo completoRahman, Rehab O. Abdel, Ravil Z. Rakhimov, Nailia R. Rakhimova e Michael I. Ojovan. Cementitious Materials for Nuclear Waste Immobilization. Chichester, UK: John Wiley & Sons, Ltd, 2014. http://dx.doi.org/10.1002/9781118511992.
Testo completoDe Schutter, Geert, e Karel Lesage. Active Rheology Control of Cementitious Materials. London: CRC Press, 2023. http://dx.doi.org/10.1201/9781003289463.
Testo completoCapitoli di libri sul tema "Cementious materials"
Gdoutos, Emmanuel E. "Cementitious Materials". In Fracture Mechanics, 387–401. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-35098-7_14.
Testo completoDe la Torre, Ángeles G., Isabel Santacruz, Laura León-Reina, Ana Cuesta e Miguel A. G. Aranda. "1. Diffraction and crystallography applied to anhydrous cements". In Cementitious Materials, a cura di Herbert Pöllmann, 3–30. Berlin, Boston: De Gruyter, 2017. http://dx.doi.org/10.1515/9783110473728-002.
Testo completoAranda, Miguel A. G., Ana Cuesta, A. G. De la Torre, Isabel Santacruz e Laura León-Reina. "2. Diffraction and crystallography applied to hydrating cements". In Cementitious Materials, a cura di Herbert Pöllmann, 31–60. Berlin, Boston: De Gruyter, 2017. http://dx.doi.org/10.1515/9783110473728-003.
Testo completoRaab, Bastian, e Herbert Pöllmann. "3. Synthesis of highly reactive pure cement phases". In Cementitious Materials, a cura di Herbert Pöllmann, 61–102. Berlin, Boston: De Gruyter, 2017. http://dx.doi.org/10.1515/9783110473728-004.
Testo completoLothenbach, Barbara, e Frank Winnefeld. "4. Thermodynamic modelling of cement hydration: Portland cements – blended cements – calcium sulfoaluminate cements". In Cementitious Materials, a cura di Herbert Pöllmann, 103–44. Berlin, Boston: De Gruyter, 2017. http://dx.doi.org/10.1515/9783110473728-005.
Testo completoArtioli, G., M. Secco, A. Addis e M. Bellotto. "5. Role of hydrotalcite-type layered double hydroxides in delayed pozzolanic reactions and their bearing on mortar dating". In Cementitious Materials, a cura di Herbert Pöllmann, 147–58. Berlin, Boston: De Gruyter, 2017. http://dx.doi.org/10.1515/9783110473728-006.
Testo completoKaden, R., e H. Poellmann. "6. Setting control of CAC by substituted acetic acids and crystal structures of their calcium salts". In Cementitious Materials, a cura di Herbert Pöllmann, 159–90. Berlin, Boston: De Gruyter, 2017. http://dx.doi.org/10.1515/9783110473728-007.
Testo completoStöber, S., e H. Pöllmann. "7. Crystallography and crystal chemistry of AFm phases related to cement chemistry". In Cementitious Materials, a cura di Herbert Pöllmann, 191–250. Berlin, Boston: De Gruyter, 2017. http://dx.doi.org/10.1515/9783110473728-008.
Testo completoGao, X., B. Yuan, Q. L. Yu e H. J. H. Brouwers. "8. Chemistry, design and application of hybrid alkali activated binders". In Cementitious Materials, a cura di Herbert Pöllmann, 253–84. Berlin, Boston: De Gruyter, 2017. http://dx.doi.org/10.1515/9783110473728-009.
Testo completoPritzel, Christian, Torsten Kowald, Yilmaz Sakalli e Reinhard Trettin. "9. Binding materials based on calcium sulphates". In Cementitious Materials, a cura di Herbert Pöllmann, 285–310. Berlin, Boston: De Gruyter, 2017. http://dx.doi.org/10.1515/9783110473728-010.
Testo completoAtti di convegni sul tema "Cementious materials"
Tamura, Masaki, e Yumi Ohiwa. "Use-Stage Environmental Performances of Cementious-Woodchip Compound Products Considering Resilience Measures in Disaster Situation". In Fourth International Conference on Sustainable Construction Materials and Technologies. Coventry University, 2016. http://dx.doi.org/10.18552/2016/scmt4s172.
Testo completoHegyi, Andreea. "THE EFFECT OF TIO2 ON THE PROPERTIES OF CEMENTIOUS COMPOSITE MATERIALS �THE CURRENT STATE-OF-THE ART". In 18th International Multidisciplinary Scientific GeoConference SGEM2018. Stef92 Technology, 2018. http://dx.doi.org/10.5593/sgem2018/6.3/s26.051.
Testo completoZhang, Emma Qingnan, Luping Tang e Thomas Zack. "Carbon Fiber as Anode Material for Cathodic Prevention in Cementitious Materials". In International Conference on the Durability of Concrete Structures. Purdue University Press, 2016. http://dx.doi.org/10.5703/1288284316149.
Testo completoGarcía-González, J., P. Lemos, A. Pereira, J. Pozo, M. Guerra-Romero, A. Juan-Valdés e P. Faria. "Biodegradable Polymers on Cementitious Materials". In XV International Conference on Durability of Building Materials and Components. CIMNE, 2020. http://dx.doi.org/10.23967/dbmc.2020.017.
Testo completo"Supplementary Cementitious Materials for Sustainability". In SP-269: Concrete: The Sustainable Material Choice. American Concrete Institute, 2010. http://dx.doi.org/10.14359/51663719.
Testo completo"Influence of Supplementary Cementitious Materials on the Autogenous Self-Healing of Cracks in Cementitious Materials". In SP-320:10th ACI/RILEM International Conference on Cementitious Materials and Alternative Binders for Sustainable Concrete. American Concrete Institute, 2017. http://dx.doi.org/10.14359/51701050.
Testo completoCoulbeck, Teig S. V., Isaac P. G. Hammond, Christopher J. Gooding, James K. Wither, Iasmi Sterianou, Dimitra Soulioti e Evangelos Z. Kordatos. "Development of self-sensing cementitious materials". In Smart Structures and NDE for Industry 4.0, Smart Cities, and Energy Systems, a cura di Kerrie Gath e Norbert G. Meyendorf. SPIE, 2020. http://dx.doi.org/10.1117/12.2558875.
Testo completo"Alternative Cementitious Materials: Challenges And Opportunities". In SP-305: Durability and Sustainability of Concrete Structures. American Concrete Institute, 2015. http://dx.doi.org/10.14359/51688587.
Testo completoNěmeček, J., J. Němečková e J. Němeček. "Micro-Scale Creep of Cementitious Materials". In Engineering Mechanics 2024. Institute of Solid Mechanics, Mechatronics and Biomechanics, Brno University of Technology, Brno, 2024. http://dx.doi.org/10.21495/em2024-214.
Testo completoRam, Prashant, Kurt Smith, Ayesha Shah, Jan Olek e Myungook Kang. "Performance of Non-Cementitious Repair Materials for Concrete Pavement Partial-Depth Repairs in Wisconsin". In 12th International Conference on Concrete Pavements. International Society for Concrete Pavements, 2021. http://dx.doi.org/10.33593/plpdwoy3.
Testo completoRapporti di organizzazioni sul tema "Cementious materials"
Wijaya, Ignasius P. A., Eric Kreiger e Asuf Masud. An elastic-inelastic model and embedded bounce-back control for layered printing with cementitious materials. Engineer Research and Development Center (U.S.), gennaio 2024. http://dx.doi.org/10.21079/11681/48091.
Testo completoGroeneveld, Andrew, e C. Crane. Advanced cementitious materials for blast protection. Engineer Research and Development Center (U.S.), aprile 2023. http://dx.doi.org/10.21079/11681/46893.
Testo completoUcak-Astarlioglu, Mine, Jedadiah Burroughs, Charles Weiss, Kyle Klaus, Stephen Murrell, Samuel Craig, Jameson Shannon, Robert Moser, Kevin Wyss e James Tour. Graphene in cementitious materials. Engineer Research and Development Center (U.S.), dicembre 2023. http://dx.doi.org/10.21079/11681/48033.
Testo completoSugama, T., e T. ,. Lance Brothers, Bour, D. Butcher. Self-degradable Cementitious Sealing Materials. Office of Scientific and Technical Information (OSTI), ottobre 2010. http://dx.doi.org/10.2172/993804.
Testo completoThornell, Travis, Charles Weiss, Sarah Williams, Jennifer Jefcoat, Zackery McClelland, Todd Rushing e Robert Moser. Magnetorheological composite materials (MRCMs) for instant and adaptable structural control. Engineer Research and Development Center (U.S.), novembre 2020. http://dx.doi.org/10.21079/11681/38721.
Testo completoOlek, Jan, e Chaitanya Paleti. Compatibility of Cementitious Materials and Admixtures. Purdue University, dicembre 2012. http://dx.doi.org/10.5703/1288284315025.
Testo completoRoesler, Jeffery, Sachindra Dahal, Dan Zollinger e W. Jason Weiss. Summary Findings of Re-engineered Continuously Reinforced Concrete Pavement: Volume 1. Illinois Center for Transportation, maggio 2021. http://dx.doi.org/10.36501/0197-9191/21-011.
Testo completoFlach, G. P. Degradation of Saltstone Disposal Unit Cementitious Materials. Office of Scientific and Technical Information (OSTI), agosto 2018. http://dx.doi.org/10.2172/1513682.
Testo completoChandler, Mei, William Lawrimore, Micael Edwards, Robert Moser, Jameson Shannon e James O'Daniel. Mesoscale modeling of cementitious materials : phase I. Engineer Research and Development Center (U.S.), giugno 2019. http://dx.doi.org/10.21079/11681/32980.
Testo completoLomboy, Gilson, Douglas Cleary, Seth Wagner, Yusef Mehta, Danielle Kennedy, Benjamin Watts, Peter Bly e Jared Oren. Long-term performance of sustainable pavements using ternary blended concrete with recycled aggregates. Engineer Research and Development Center (U.S.), maggio 2021. http://dx.doi.org/10.21079/11681/40780.
Testo completo