Letteratura scientifica selezionata sul tema "Carboxylic acids Metabolism"
Cita una fonte nei formati APA, MLA, Chicago, Harvard e in molti altri stili
Consulta la lista di attuali articoli, libri, tesi, atti di convegni e altre fonti scientifiche attinenti al tema "Carboxylic acids Metabolism".
Accanto a ogni fonte nell'elenco di riferimenti c'è un pulsante "Aggiungi alla bibliografia". Premilo e genereremo automaticamente la citazione bibliografica dell'opera scelta nello stile citazionale di cui hai bisogno: APA, MLA, Harvard, Chicago, Vancouver ecc.
Puoi anche scaricare il testo completo della pubblicazione scientifica nel formato .pdf e leggere online l'abstract (il sommario) dell'opera se è presente nei metadati.
Articoli di riviste sul tema "Carboxylic acids Metabolism"
Iwami, Y., S. Hata, N. Takahashi e T. Yamada. "Difference in Amounts between Titratable Acid and Total Carboxylic Acids Produced by Oral Streptococci during Sugar Metabolism". Journal of Dental Research 68, n. 1 (gennaio 1989): 16–19. http://dx.doi.org/10.1177/00220345890680010101.
Testo completoGoyal, R., R. Tardif e J. Brodeur. "Influence of a cysteine prodrug, L-2-oxothiazolidine-4-carboxylic acid, on the urinary elimination of mercapturic acids of ethylene oxide, dibromoethane, and acrylonitrile: a dose–effect study". Canadian Journal of Physiology and Pharmacology 67, n. 3 (1 marzo 1989): 207–12. http://dx.doi.org/10.1139/y89-035.
Testo completoSarkar, Omprakash, A. Naresh Kumar, Shikha Dahiya, K. Vamshi Krishna, Dileep Kumar Yeruva e S. Venkata Mohan. "Regulation of acidogenic metabolism towards enhanced short chain fatty acid biosynthesis from waste: metagenomic profiling". RSC Advances 6, n. 22 (2016): 18641–53. http://dx.doi.org/10.1039/c5ra24254a.
Testo completoDarnell, Malin, e Lars Weidolf. "Metabolism of Xenobiotic Carboxylic Acids: Focus on Coenzyme A Conjugation, Reactivity, and Interference with Lipid Metabolism". Chemical Research in Toxicology 26, n. 8 (5 luglio 2013): 1139–55. http://dx.doi.org/10.1021/tx400183y.
Testo completoBeaulieu, Pierre L., René Coulombe, James Gillard, Christian Brochu, Jianmin Duan, Michel Garneau, Eric Jolicoeur et al. "Allosteric N-acetamide-indole-6-carboxylic acid thumb pocket 1 inhibitors of hepatitis C virus NS5B polymerase — Acylsulfonamides and acylsulfamides as carboxylic acid replacements". Canadian Journal of Chemistry 91, n. 1 (gennaio 2013): 66–81. http://dx.doi.org/10.1139/cjc-2012-0319.
Testo completoOmran, Arthur, Cesar Menor-Salvan, Greg Springsteen e Matthew Pasek. "The Messy Alkaline Formose Reaction and Its Link to Metabolism". Life 10, n. 8 (28 luglio 2020): 125. http://dx.doi.org/10.3390/life10080125.
Testo completoKnights, Kathleen M., Matthew J. Sykes e John O. Miners. "Amino acid conjugation: contribution to the metabolism and toxicity of xenobiotic carboxylic acids". Expert Opinion on Drug Metabolism & Toxicology 3, n. 2 (aprile 2007): 159–68. http://dx.doi.org/10.1517/17425255.3.2.159.
Testo completoBock, Susanne, Ulrich A. Sedlmeier e Klaus H. Hoffmann. "Metabolism of absorbed short-chain carboxylic acids by the freshwater oligochaete Tubifex tubifex". Comparative Biochemistry and Physiology Part B: Comparative Biochemistry 92, n. 1 (gennaio 1989): 35–40. http://dx.doi.org/10.1016/0305-0491(89)90309-x.
Testo completoKnights, Kathleen M. "ROLE OF HEPATIC FATTY ACID:COENZYME A LIGASES IN THE METABOLISM OF XENOBIOTIC CARBOXYLIC ACIDS". Clinical and Experimental Pharmacology and Physiology 25, n. 10 (ottobre 1998): 776–82. http://dx.doi.org/10.1111/j.1440-1681.1998.tb02152.x.
Testo completoArun, Viswanath, Takashi Mino e Tomonori Matsuo. "Metabolism of Carboxylic Acids Located in and around the Glycolytic Pathway and the TCA Cycle in the Biological Phosphorus Removal Process". Water Science and Technology 21, n. 4-5 (1 aprile 1989): 363–74. http://dx.doi.org/10.2166/wst.1989.0238.
Testo completoTesi sul tema "Carboxylic acids Metabolism"
Rocha, Sandra Carla. "Avaliação das perspectivas terapêuticas do ácido L-tiazolidina-4-carboxílico, um análogo de prolina, na infecção de camundongos pelo Trypanosoma cruzi". Universidade de São Paulo, 2011. http://www.teses.usp.br/teses/disponiveis/42/42135/tde-16082011-160411/.
Testo completoTrypanosoma cruzi is dependent on proline for a variety of processes such as energy metabolism, host cell invasion, differentiation and resistance to osmotic, metabolic and oxidative stress. L-thiazolidine-4-carboxylic acid (T4C), a proline structural analogue, inhibits the proline uptake and interacts with several stress factors that the parasite undergoes throughout its life cycle. Herein, we evaluated the T4C effects on mice infection by T. cruzi. It was observed a reduction of 49% of the parasitemia peak in infected mice that were treated with a unique dose of T4C (100 mg/Kg). Histological and quantitative PCR analysis of several tissues revealed a significant reduction of parasite load in the intestine (100 or 150 mg/kg). In the other hand, the unique dose of 200 mg/Kg reduced the body weight and survival of non-infected mice. A T4C prolonged treatment (10 mg/Kg day), did not diminish the parasitemia, but increased survival and reduced the parasite load in the intestine. T4C did not affect the gene expression of g-IFN and IL-10 in any of the organs analyzed (heart, spleen, intestine). In conclusion, T4C-treatment contributes to reduce the virulence of T. cruzi infection, but it was toxic in doses over 150 mg/kg.
Li, Chien-Ming. "In Vitro and in Vivo Pharmacology of 4-Substituted Methoxybenzoyl-Aryl-Thiazoles (SMART) and 2-Arylthiazolidine-4-Carboxylic Acid Amides (ATCAA)". The Ohio State University, 2010. http://rave.ohiolink.edu/etdc/view?acc_num=osu1281966183.
Testo completoHermant, Paul. "Les acides hydroxamiques comme molécules bioactives. Conception, synthèse, propriétés pharmacocinétiques et évaluation biologique". Thesis, Lille 2, 2017. http://www.theses.fr/2017LIL2S021.
Testo completoBiologically the hydroxamic acid function is founded in fungus, yeast, bacteria and plant as siderophore agent. This property to bind metals is widely used in medicinal chemistry to develop potent and selective inhibitors of metalloenzymes. Thus, hydroxamic acids are developed in numerous therapeutic areas such as infectiology, parasitology, oncology, cardio-metabolic or inflammatory diseases. The approval of hydroxamic acids inhibitors of HDACs, like vorinostat and belinostat for cutaneous T-cell lymphoma, supports the great therapeutic potential of this kind of molecules.Research exposed in this thesis deals with conception and synthesis of hydroxamic acids to explore on one hand, their in vitro and in vivo pharmacokinetics properties, and on another hand to develop some of them as inhibitors of insulin-degrading enzyme.After a general introduction about the biological properties of hydroxamic acids, we present the first comprehensive structure-plasma stability relationships, using a 57-member library displaying diverse pharmacophores. We have identified the structural motives that favor or block hydrolysis of hydroxamic acids in various biological fluids. Thanks to selective esterase inhibitors, we have evidenced which plasmatic esterases were involved in the hydrolysis of such compounds: arylesterases and carboxylesterases. These results were completed by a molecular modeling study on different hydroxamic acids substrates of these enzymes.Besides, pharmacodynamics and pharmacokinetics properties of hydroxamic acids inhibitors of insulin-degrading enzyme were explored via the development of a 19F NMR ligand-based assay, and the development of a new formulation to enhance the compound’s exposure in vivo. In the last part, we disclose the conception and synthesis of macrocyclic hydroxamic acids. Two new and complementary synthetic pathways were developed. One of them provided macrocyclic hydroxamic acids with size comprising between 24 and 26 atoms
Wu, Cheng-Hsueh, e 吳政學. "Pharmacokinetics of carbadox and determination of its metabolite ( quinoxaline-2-carboxylic acid; QCA ) in pigs following a single dose and multiple in-feed dosing". Thesis, 2008. http://ndltd.ncl.edu.tw/handle/62693073412975175936.
Testo completo國立屏東科技大學
獸醫學系所
96
The tissue distribution and residue depletion of carbadox and its metabolite ( quinoxaline-2-carboxylic acid, QCA ) were investigated in swine after a single oral dose of 3.5 mg/kg body weight of carbadox and multiple dose ( 2 weeks ) in-feed ( 55 ppm ) administration. Plasma, muscle, liver and kidney were sampled pre and post-treatment and subsequently analyzed for carbadox and QCA concentrations using liquid chromatography with tandem mass spectrometry ( LC-MS-MS ). The limits of detection of carbadox and QCA were 0.002 and 0.180 ng/g, the limits of quantitation were 0.005 and 0.606 ng/g for standard solution. Carbadox concentration in plasma was peaked on 2.6 hr after a single oral dose administration, while QCA concentration was still detected in liver ( 1.98 ng/g ) on the fifth week and kidney ( 0.9 ng/g ) on the sixth week after withdrawal. The apparent volume of distribution of carbadox at steady-state ( 4427.39 ± 2070.30 mL/kg ) and areas under the concentration curves ( 2327.58 ± 580.93 hr ng/mL ) indicates that the drug is adequately distributed throughout the body from the blood of pigs. The slow elimination of the carbadox metabolites suggests a need for long withdrawal periods prior to use of dosed swine for human consumption.
Libri sul tema "Carboxylic acids Metabolism"
Winter, Klaus, e J. Andrew C. Smith. Crassulacean Acid Metabolism: Biochemistry, Ecophysiology and Evolution. Springer, 2011.
Cerca il testo completoChalmers, R. A. Organic Acids in Man: The Analytical Chemistry, Biochemistry and Diagnosis of the Organic Acidurias. Springer, 2011.
Cerca il testo completoBeardsley, Grant D. Elimination of 11-nor-delta-9-tetrahydrocannabinol-9-carboxylic acid when normalized to urinary creatinine. 1990.
Cerca il testo completoBeardsley, Grant D. Elimination of 11-nor-delta-9-tetrahydrocannabinol-9-carboxylic acid when normalized to urinary creatinine. 1990.
Cerca il testo completoCapitoli di libri sul tema "Carboxylic acids Metabolism"
Wermuth, Bendicht. "Inhibition of Aldehyde Reductase by Carboxylic Acids". In Enzymology and Molecular Biology of Carbonyl Metabolism 3, 197–204. Boston, MA: Springer US, 1990. http://dx.doi.org/10.1007/978-1-4684-5901-2_22.
Testo completoRogosa, Morrison, Micah I. Krichevsky e Rita R. Colwell. "Carboxylic Acid or Ester Metabolism". In Springer Series in Microbiology, 174–81. New York, NY: Springer New York, 1986. http://dx.doi.org/10.1007/978-1-4612-4986-3_30.
Testo completoYang, Shang Fa. "Metabolism of 1-Aminocyclopropane-1-Carboxylic Acid in Relation to Ethylene Biosynthesis". In Plant Nitrogen Metabolism, 263–87. Boston, MA: Springer US, 1989. http://dx.doi.org/10.1007/978-1-4613-0835-5_8.
Testo completoHonma, M., Y. J. Jia, Y. Kakuta e H. Matsui. "Metabolism of 1-Aminocyclopropane-1-Carboxylic Acid by Penicillium Citrinum". In Biology and Biotechnology of the Plant Hormone Ethylene II, 33–34. Dordrecht: Springer Netherlands, 1999. http://dx.doi.org/10.1007/978-94-011-4453-7_7.
Testo completoPech, Jean-Claude, Mondher Bouzayen, Gilbert Alibert e Alain Latché. "Subcellular Localization of 1-Aminocyclopropane-1-Carboxylic Acid Metabolism in Plant Cells". In Biochemical and Physiological Aspects of Ethylene Production in Lower and Higher Plants, 33–40. Dordrecht: Springer Netherlands, 1989. http://dx.doi.org/10.1007/978-94-009-1271-7_4.
Testo completoSposito, Garrison. "Soil Humus". In The Chemistry of Soils. Oxford University Press, 2016. http://dx.doi.org/10.1093/oso/9780190630881.003.0007.
Testo completoArun, Viswanath, Takashi Mino e Tomonori Matsuo. "METABOLISM OF CARBOXYLIC ACIDS LOCATED IN AND AROUND THE GLYCOLYTIC PATHWAY AND THE TCA CYCLE IN THE BIOLOGICAL PHOSPHORUS REMOVAL PROCESS". In Water Pollution Research and Control Brighton, 363–74. Elsevier, 1988. http://dx.doi.org/10.1016/b978-1-4832-8439-2.50038-9.
Testo completo"The Hydrolysis of Carboxylic Acid Esters". In Hydrolysis in Drug and Prodrug Metabolism, 365–418. Zürich: Verlag Helvetica Chimica Acta, 2006. http://dx.doi.org/10.1002/9783906390444.ch7.
Testo completo"The Hydrolysis of Carboxylic Acid Ester Prodrugs". In Hydrolysis in Drug and Prodrug Metabolism, 419–534. Zürich: Verlag Helvetica Chimica Acta, 2006. http://dx.doi.org/10.1002/9783906390444.ch8.
Testo completoYANG, S. F., Y. LIU, L. SU, G. D. PEISER, N. E. HOFFMAN e T. McKEON. "METABOLISM OF 1-AMINOCYCLOPROPANE-1-CARBOXYLIC ACID". In Ethylene and Plant Development, 9–21. Elsevier, 1985. http://dx.doi.org/10.1016/b978-0-407-00920-2.50006-8.
Testo completoAtti di convegni sul tema "Carboxylic acids Metabolism"
Martynenko, Yulia, e Oleksii Antypenko. "Design of Hydrogenated Isoindolylalkyl(Alkaryl-, Aryl-)Carboxylic Acids with Quinazoline Fragment, that Modify the Carbohydrate Metabolism". In International Youth Science Forum “Litteris et Artibus”. Lviv Polytechnic National University, 2018. http://dx.doi.org/10.23939/lea2018.01.155.
Testo completoDe Clerck, F., R. Van de Wiele, B. Xhonneux, L. Van Gorp, Y. Somers, W. Loots, J. Beetens, J. Van Wauwe, E. Freyne e P. A. J. Janssen. "PLATELET TXA2 SYNTHETASE INHIBITION AND TXA2/PROSTAGLANDIN ENDOPEROXIDE RECEPTOR BLOCKADE COMBINED IN ONE MOLECULE (R 68070)". In XIth International Congress on Thrombosis and Haemostasis. Schattauer GmbH, 1987. http://dx.doi.org/10.1055/s-0038-1643465.
Testo completo