Tesi sul tema "Captage du carbone"
Cita una fonte nei formati APA, MLA, Chicago, Harvard e in molti altri stili
Vedi i top-50 saggi (tesi di laurea o di dottorato) per l'attività di ricerca sul tema "Captage du carbone".
Accanto a ogni fonte nell'elenco di riferimenti c'è un pulsante "Aggiungi alla bibliografia". Premilo e genereremo automaticamente la citazione bibliografica dell'opera scelta nello stile citazionale di cui hai bisogno: APA, MLA, Harvard, Chicago, Vancouver ecc.
Puoi anche scaricare il testo completo della pubblicazione scientifica nel formato .pdf e leggere online l'abstract (il sommario) dell'opera se è presente nei metadati.
Vedi le tesi di molte aree scientifiche e compila una bibliografia corretta.
Favre, Nathalie. "Captage enzymatique du dioxyde de carbone". Phd thesis, Université Claude Bernard - Lyon I, 2011. http://tel.archives-ouvertes.fr/tel-00840947.
Testo completoPellerano, Mario. "Évaluation d'absorbants pour le captage et le transport de CO²". Nantes, 2010. http://archive.bu.univ-nantes.fr/pollux/show.action?id=f10f503c-d210-4296-89f9-32e6e8a2cc79.
Testo completoIn order to reduce greenhouse gases emissions, CO2 release due to human activities should be better controlled. CO2 capture by adsorption is considered as one ot the potential options. In this work, different commercialized activated carbons (AC) were evaluated as a potential adsorbent for CO2 capture by pressure modulation and were compared to commercialised zeolites. Adsorption isotherms, materials aging and gas separation were determined and evaluated. Relations between physical properties and adsorption capacities are founded. These relations were used in order to determine the adsorbent demonstrating the best adsorption regeneration capacities depending on the operating conditions applied. CO2 transportation from production places to storage locations is presently accomplished by liquid or supercritical phase, which generate large costs and emissions. This final part of this work considers the possibility to transport CO2 in adsorbed phase (with considered materials) and analyzes its cost as a function of transported quantities, transport conditions and transportation means. CO2 transport by ship in adsorbed phase on small distances was seen as being competive to ship transportation in liquid phase. The CO2 emissions generated by CO2 transport in adsorbed phase were evaluated in all cases (transportation means, distances, conditions) to be much smaller than the ones generated by liquid phase transport
Almantariotis, Dimitrios. "Captage du dioxyde de carbone par des liquides ioniques partiellement fluorés". Phd thesis, Université Blaise Pascal - Clermont-Ferrand II, 2011. http://tel.archives-ouvertes.fr/tel-00671346.
Testo completoRozmus, Justyna. "Equation d'état électrolyte prédictive pour le captage du CO2". Paris 6, 2012. http://www.theses.fr/2012PA066320.
Testo completoThis thesis is a contribution to the development of a predictive equation of state for the CO2 capture. It is driven by the need for development of new solvents which can be used for CO2 postcombustion capture using aqueous amine-based scrubbing. For this purpose, the PPC-SAFT equation of state is used, coupled with a group contribution method, called GC-PPC-SAFT. This approach is developed and validated in several stages: an accurate description of the pure compounds behaviour, a validation of the binary interactions on mixtures, the evaluation of the effects resulting from ions formation in the aqueous phase, and finally the chemical reactions. To this end, new group parameters have been determined for primary, secondary and tertiary amines and their mixtures with alkanes and alcohols. The bubble point experimental database was complemented with new ebulliometric measurements performed with mixtures containing tertiary amines. The multifunctional molecules such as alkanolamines, diamines and alkanediols have been investigated specifically, in view of their high complexity. Subsequently the primary amine aqueous solutions were studied. Finally, the ions (strong electrolytes) were taken into account by using two additional contributions (MSA and Born) to the Helmholtz free energy. The solvation is described using water-ion association. The accurate behaviour of the model is confirmed by predictions made for numerous properties of all systems of interest in a wide temperature, pressure and concentration range
Coulier, Yohann. "Etude thermodynamique de solutions aqueuses d'amines démixantes pour le captage du dioxyde de carbone". Phd thesis, Université Blaise Pascal - Clermont-Ferrand II, 2011. http://tel.archives-ouvertes.fr/tel-00708552.
Testo completoSissman, Olivier. "Séquestration minérale du CO2 dans les basaltes et les roches ultrabasiques : impact des phases secondaires silicatées sur le processus de carbonatation". Paris, Institut de physique du globe, 2013. http://www.theses.fr/2013GLOB0001.
Testo completoDergal, Fatiha. "Captage du CO2 par les amines demixantes". Thesis, Lyon 1, 2013. http://www.theses.fr/2013LYO10211.
Testo completoNowadays, CO2 capture by amines solvents is the most advanced technology to reduce CO2 industrial emissions. However, this technology presents some concerns. The major problem of this process, using monoethanolamine (MEA), is the high energy needed to regenerate the solvent and makes the process of CO2 capture very expensive. In order to reduce the high cost associated to the energy of regeneration, various breakthrough processes have been studied within the framework of FUI «ACACIA» which include several companies (IFPEN, RHODIA/SOLVAY, ARKEMA, LAFARGE, Gas of France, VEOLIA) and four academic laboratories (LMOPS, LSA, LTIM (ex-LTSP), IRCELyon): - CO2 Capture with gas hydrate formation. - Use of enzymes leading to process of less energy-consuming. - Use of multiamines to increase the quantity of CO2 absorbed or demixing amines which only allow the regeneration of the rich phase in CO2 (low cost for regeneration energy). Our contribution into the consortium has been the study of seven demixing amines or multiamines: - Three commercial amines (the N-Methylpiperidine, 2-Methylpiperidine and the molecule A). - Four « multiamines » with confidentiel structures synthesized by LMOPS and denoted by the initials B, D, E, F. The demixing phenomenon is influenced by many factors such as temperature, the loading of the acid gas and the amine concentration of the solution. The understanding of this phenomenon is one of the objectives of this thesis. The essential data to estimate the potentials efficiency of solvent to capture CO2 is the isotherm of absorption. We have determined these isotherms at temperatures close to the absorber and regenerator units (respectively 40°C and 80°C) at different concentrations of amine ((26%, 30%, 50% and 66%) and pressures of CO2varying between 10 kPa et 200 kPa. The thermodynamic modelling of the isotherms of absorption allows to deduce important operating parameters of the process (cyclic capacity, average enthalpy of reaction, solvent flow...) and to dimension the absorption unit and to estimate its energy consumption. The experimental study has been completed by the determination of vapor-liquid equilibrium of pure amines and of different aqueous solutions of amines with the static method. These data allow anticipating the possible loss in amine in the regenerator. Among the studied amines, the one denoted with the initial « F » is a potential candidate for an industrial application energy-efficient (good CO2 absorption capacity, low regeneration energy, low volatility)
Aouini, Ismaël. "Captage du dioxyde de carbone en postcombustion : Application à un incinérateur de déchets industriels : Etude expérimentale à l’échelle pilote". Thesis, Rouen, INSA, 2012. http://www.theses.fr/2012ISAM0004.
Testo completoThis research is part of a survey designed to establish the viability of the CO2 recovery as a raw material from an industrial waste incinerator.. Several commercial licenses are available to capture CO2 in flue gas, but there are no references for incinerators. This work studies with a pilot the post-combustion CO2 capture from incinerator flue gas using absorption/desorption process with 30 %wt monoethanolamine (MEA). A literature review identifies the technology gaps. Then, the pilot setup was described. A parametric study has evaluated the pilot performance for CO2 capture and energy consumption. Finally, Long runs (5 days) have studied the solvent chemical stability in front of incinerator flue gas. The laboratory experiments show that CO2 capture form incinerator flue gas is possible
Freire, Brantuas Pedro. "Captage du dioxyde de carbone par des semiclathrate hydrates : Modélisation, expérimentation et dimensionnement d'une unité pilote". Phd thesis, Ecole Nationale Supérieure des Mines de Saint-Etienne, 2013. http://tel.archives-ouvertes.fr/tel-00846956.
Testo completoFreire, Brântuas Pedro. "Captage du dioxyde de carbone par des semiclathrate hydrates : Modélisation, expérimentation et dimensionnement d’une unité pilote". Thesis, Saint-Etienne, EMSE, 2013. http://www.theses.fr/2013EMSE0691/document.
Testo completoGas hydrates are a non conventional way of trapping and storing gas molecules trough the crystallization of water under the high pressure and low temperature conditions. Quaternary ammonium salts form hydrates at atmospheric pressure and can also form mixed hydrates in the presence of gas. It’s important to know their thermodynamic properties in order to evaluate their potential applications: one of these applications is the capture of carbon dioxide from flue gas. The semiclathrates studied were made from peralkylamonium salts (TBAB, TBACl, TBAF) and tetrabutyl phosphonium bromide (TBPB) plus several gases: CO2, N2, and CH4. The formation pressure was greatly reduced with regards to the respective gas hydrates. An eNRTL model for determining the activity coefficients of hydrate forming systems with salts has been used. Single and double salts systems were analyzed in the presence of CH4 and the data obtained is in a good agreement with the literature. The TBAB and CH4 semiclathrates system was also investigated with the results being different of those of the literature probably due to a difference on the structure of the semiclathrate. However, the results are promising, and the model gives a good predictionBased on the experimental results, a pilot plant scale process was designed. This new process consists in forming mixed hydrates of TBAB and CO2 in a bubble column. The hydrates are then removed from the column and after expansion, the mixed hydrates transform into TBAB hydrates releasing CO2, which can be returned to the bubble column
Portier, Sandrine. "Solubilité de co2 dans les saumures des bassins sédimentaires : Application au stockage de co2 (gaz à effet de serre)". Université Louis Pasteur (Strasbourg) (1971-2008), 2005. https://publication-theses.unistra.fr/public/theses_doctorat/2005/PORTIER_Sandrine_2005.pdf.
Testo completoGressier, Vincent. "Contribution des producteurs carbonatés phytoplanctoniques à l'évolution isotopiques (delta13C et delta18O ) des carbonates pélagiques des bassins Ouest téthysiens au cours de l'événement Valanginien (Weissert Event)". Paris 6, 2010. http://www.theses.fr/2010PA066630.
Testo completoRillard, Jean. "CO2 perturbation in aquifers : reaction kinetics and metals behavior". Thesis, Lyon 1, 2013. http://www.theses.fr/2013LYO10033/document.
Testo completoThe aim of this thesis was to investigate hydrogeochemical perturbation induced by CO2 in natural aquifers. In a first step, we used chemical data from natural CO2-rich hydrothermal water. We studied variation of fluid chemical composition as a function of CO2 content in order to evaluate reactivity of minerals composing the initial reservoir. Fluid chemical analyses showed decrease in pH, and systematic enrichment in alkalinity and major cations correlated to increase in CO2 content. Chemical reaction was studied by kinetic approach to estimate variation of mineral reactive surface area as function of CO2 perturbation. Results showed that mineral reactive surface area could varied by two to four orders of magnitude as a function of CO2 perturbation. In a second step a field experiment of injection of water saturated with CO2 in aquifer has been carried out. Analysis of groundwater composition before and after injection allowed to study the impact of CO2 perturbation on water-rock interaction processes. A particular focus was made on dissolved metals behavior. Results showed a decrease in pH (from 7.3 to 5.7), involved with enrichment in alkalinity by a factor two, and by approximately one order of magnitude for dissolved metals (Fe, Mn, Zn) and by a factor two for As. Saturation index showed that dissolution of metals oxide such as ferrihydrite was correlated to iron release. These results showed that, in our field experimental conditions, CO2 perturbation induced an enrichment in dissolved elements with more significant effect on dissolved metals. These results highlight the importance of proper physic-chemical characterization of fluid and reservoir rock and in-situ kinetic of reaction in the eventual option of Co2 geological storage
Ben, Attouche Sfaxi Imen. "Étude thermodynamique d'un procédé de captage du CO² par formation d'hydrates appliqué aux fumées de postcombustion". Paris, ENMP, 2011. https://pastel.archives-ouvertes.fr/pastel-00656829.
Testo completoHydrates selectivity towards carbon dioxide is offering a promising route for carbon dioxide removal from flue gases. Hydrate-based CO² capture process could substitute amine facilities widely implemented in gas treatment plants but suffering from oxidative degradation problems and high energy demand. In the framework of this thesis, we focus on phase equilibria that are involved in such process. Experimental dissociation conditions for clathrate hydrates of carbon dioxide and nitrogen, in the presence of some promoting molecules (Tetrahydrofuran, Tetrabutyl ammionium bromide and Tetrabutyl ammionium Fluoride ) are reported in the experimental section of this work. The data generated in this work along with literature data are compared to the model predictions. The developed model is based on the Cubic Plus Association (CPA) equation of state (EoS) for fluid phases combined to the van der Waals and Platteeuw's theory for the hydrate phase
Galfré, Aurélie. "Captage du dioxyde de carbone par cristallisation de clathrate hydrate en présence de cyclopentane : Etude thermodynamique et cinétique". Phd thesis, Ecole Nationale Supérieure des Mines de Saint-Etienne, 2014. http://tel.archives-ouvertes.fr/tel-00993771.
Testo completoBotan, Alexandru. "Modélisation moléculaire d'argile en contact avec un réservoir de CO2". Paris 6, 2011. http://www.theses.fr/2011PA066233.
Testo completoRenard, Stéphane. "Rôle des gaz annexes sur l'évolution géochimique d'un site de stockage de dioxyde de carbone : application à des réservoirs carbonatés". Thesis, Vandoeuvre-les-Nancy, INPL, 2010. http://www.theses.fr/2010INPL025N/document.
Testo completoCapture and geological storage of CO2 are an main option to limit GHEG emissions of industrial poles and power plants. The captured gases are not constituted by pure CO2 but contain a fraction (until 10 %) of other gases : Ar, N2, SOx and NOx. Most of these gases are highly reactive and could have a strong influence on physical and chemical conditions of the milieu and on the environmement if contamination of neighbour aquifers occurs by leakages. Several laboratory experiments investigated the reactivity of carbonated reservoir and cap rocks from the Aquitaine Basin as well as the reactivity of synthetic mineralogical blends in geologically relevant P-T conditions. The rocks, associated to brine, were altered in presence of various gaseous components at 100 bar and 150°C during one month : pure CO2, pure SO2, pure NO and a CO2 mixture containing fractions of Ar, N2, SO2 and O2. Each experiment was compared with a blank in which the initial gas was replaced with pure N2. Pure CO2 show a limited reactivity on the rocks. NO and SO2 show a intrinsic reactivity by disproportionations in aqueous or vapour phases implying a high alteration of rocks by compled acid – base and oxidation mechanisms. The gas mixture show also a double reactivity : SO2 is oxidized in sulphuric acid dissolving carbonates and clay minerals and O2 oxidizes all reduced mineralogical phases. These gases even in limited fractions control the reactivity of rocks. Their presence could change the behaviour of the rock toward gas and induce positive as well as negative transformations. Their implication must be checked for each geological storage as a function of gas composition, mineralogy and petrophysical
Mérel, Jérôme. "Etude du captage post-combustion du CO2 grâce à un procédé TSA (Temperature Swing Adsorption) à chauffage et refroidissements indirects". Paris, CNAM, 2008. http://www.theses.fr/2008CNAM0700.
Testo completoFace à l’augmentation des émissions de gaz à effet de serre, le captage post-combustion du CO2 associé à son stockage est une solution technologique prometteuse. Différentes méthodes sont actuellement développées dont l’adsorption qui fait l’objet de cette étude. Ce travail concerne l’utilisation d’un procédé TSA (Temperature Swing Adsorption) pour le captage post-combustion du CO2. Ce procédé fait appel à un adsorbeur équipé d’un échangeur interne permettant un chauffage (vapeur d’eau) et refroidissement (circulation d’eau) indirects (pas de contact entre le caloporteur et l’adsorbant). Ce travail s’appuie à la fois sur une partie expérimentale et numérique. A partir des premières expériences, la zéolithe 5A a été sélectionnée. Différentes conditions opératoires (composition de l’alimentation, température de désorption, débit de purge, durée du cycle, étapes de pré-refroidissement / pré-chauffage,…) ont alors été testées à partir d’un mélange N2-CO2 afin d’obtenir un compromis optimal entre les critères de performance. D’autres configurations ont ensuite été testées au moyen d’un modèle numérique préalablement validé à partir d’expériences. En phase d’adsorption, la température d’alimentation et la température initiale du lit n’ont que peu d’influence sur les performances de l’adsorbeur. Grâce à une étude paramétrique effectuée pour des cycles, des conditions opératoires optimales, notamment avec une étape de pré-refroidissement, ont été déterminées pour cette application spécifique. Les résultats ainsi obtenus sont tout à fait encourageants puisqu’ils ont permis de mettre en évidence des performances comparables à celles des procédés de référence d’absorption par amine
Lepaumier, Hélène. "Etude des mécanismes de dégradation des amines utilisées pour le captage du CO2 dans les fumées". Chambéry, 2008. http://www.theses.fr/2008CHAMS038.
Testo completoGlobal warming leads to reduce greenhouse gas emissions. Post combustion CO2 capture with solvent is the most advanced technology to reduce CO2 emissions in industrial fumes. A major problem associated with chemical absorption of CO2 using the benchmark ethanolamine (MEA) is solvent degradation through irreversible side reactions with CO2 and O2 which leads to numerous harmful impacts to the process : corrosion, solvent loss, foaming, fouling, and viscosity increase. So, developing new amines with higher chemical stability is essential. This work is based on the chemical stability study of 17 different molecules. Their structures have been chosen in order to establish structure-property relationships : alkanolamines, known for gas treatment application (MEA, DEA, MDEA, AMP. . . ), diamines, and triamines without alcohol function. Impact of temperature, CO2, and O2 on degradation has been studied. Strong experimental conditions have been used to observe significant degradation after a 15 days experiment. Separation, identification and quantification of degradation products have been performed by using different testing instructions such as gas chromatography, mass spectrometry, ionic chromatography and NMR. Different mechanisms are proposed to explain most of degradation compounds. Radical reactions (desalkylation, alkylation, ring-closure reactions and piperazinones formation) are involved under O2 pressure whereas CO2 induces ionic reactions (desalkylation, alkylation, addition, ring-closure reactions and oxazolidinones or imidazolidinones formation). Large discrepancies of stability are noticed among the different amines. Knowledge of degradation products and reaction mechanisms has thus permitted to establish some relationships between structure and chemical stability : for example, role of the amine function (primary, secondary, tertiary), impact of alkyl chain length between the two amino groups and steric hindrance
Al, Maksoud Walid. "Des matériaux hybrides pour le captage de bio-toxiques : Par greffage des poly-aromatiques obtenus via une méthodologie palladocatalysées in et ex-aqua. Par greffage des molécules poly-azotées". Phd thesis, Université Claude Bernard - Lyon I, 2010. http://tel.archives-ouvertes.fr/tel-00845468.
Testo completoJeandel, Elodie. "Monitoring géochimique par couplage entre les gaz rares et les isotopes du carbon : étude d'un réservoir naturel". Paris 11, 2008. http://www.theses.fr/2008PA112318.
Testo completoTo limit emissions of greenhouse gases in the atmosphere, CO2 geological sequestration appears as a solution in the fight against climate change. The development of reliable monitoring tools to ensure the sustainability and the safety of geological storage is a prerequisite for the implementation of such sites. In this framework, a geochemical method using noble gas and carbon isotopes geochemistry has been tested on natural and industrial analogues. The study of natural analogues from different geological settings showed systematic behaviours of the geochemical parameters, depending on the containment sites, and proving the effectiveness of these tools in terms of leak detection and as tracers of the behaviour of CO2. Moreover, an experience of geochemical tracing on a natural gas storage has demonstrated that it is possible to identify the physical-chemical processes taking place in the reservoir to a human time scale, increasing interest in the proposed tool and providing general informations on its use
Stevanovic, Stéphane. "Absorption sélective de gaz par des liquides ioniques basés sur des anions carboxylates ou des anions tris (pentafluoroethyl) trifluorophosphates". Phd thesis, Université Blaise Pascal - Clermont-Ferrand II, 2012. http://tel.archives-ouvertes.fr/tel-00822155.
Testo completoWang, Maxime Hao. "Étude de l’effet des impuretés sur la dégradation des alcanolamines utilisées dans un procédé de captage du dioxyde de carbone issu des fumées d’incinérateur de déchets industriels". Thesis, Rouen, INSA, 2013. http://www.theses.fr/2013ISAM0009/document.
Testo completoIn the context of industrial symbiosis, the goal of this project is to reuse the carbon dioxide from the incinerator gas as a commercial substance. The most suitable technology of CO2 capture from postcombustion gas is the chemical absorption by alkanolamines. Some characteristics of waste incinerator gas may affect the performances of CO2 capture process. The composition of gas from industrial waste incinerator plant is characterized by a high concentration of oxygen and the presence of NOx and SOx. The first goal is to determine the influence of pollutants like NOx and SOx on the degradation of the amine and the second objective is to study the impact of pollutants on the CO2 absorption kinetics in a solvent
Diedro, Franck. "Influence de la variabilité pétrophysique et minéralogique des réservoirs géologiques sur le transfert réactif. Application au stockage du CO₂". Saint-Etienne, EMSE, 2009. http://tel.archives-ouvertes.fr/tel-00436039.
Testo completoThe project of this thesis relates the impact of initial variability of geological reservoir on the underground storage of CO₂. We use as a starting point the natural basins such as the carbonated Dogger of the Basin of Paris and sandy reservoirs of Ravenscar (the North Sea). Each of the rebuilt model reservoir was defined by the list of its minerals (calcite, dolomite, chlorite, potassic feldspath, kaolinite, quartz for example for the carbonate reservoir) and by his petrophysical properties (porosity and permeability). The variability of these parameters was simulated using multivariable geostatistic methods operating on their range, stage, and thresholding. We defined important operational parameters to summarize the main properties of storage (namely the quantity of carbon stored in the reservoir, the quantity of carbon precipitated in the form of dolomite, quantity of carbon evacuated by the mobile aquifer, quantity of carbon contained in the water of the reservoir as well as the variation of porosity in the reservoir). Deterministic responsive transfer simulations were then made following different storage scenarios: (a) case of the injection of the initial CO₂ in the tank that has enabled us to set the initial state of the tank, (b) case of an aquifer mobile moving in the tank containing saturated CO₂, and (c) the case of an acidic water moving in a tank containing an neutral aquifer). We have subsequently sought to study the influence variability on operational parameters storage settingsWe have thus highlighted that, compared to the homogeneous case, the heterogeneous field promotes the dolomite carbon storage and decreases the amount of carbon removed by the aquifer. The effect of high petrophysical range and the impact of mobile aquifer have also been studied. Finally, we set up a model of experimental plan, to study the impact of the variability of all input data on selected answers. The effect of numerical dispersion has been studied and we demonstrated their importance in some results. The experimental plan has highlighted the importance of dolomite spot on the carbon stored
Simond, Mickaël. "Étude des interactions moléculaires dans les solvants d'intérêt pour le captage des gaz acides". Phd thesis, Université Blaise Pascal - Clermont-Ferrand II, 2013. http://tel.archives-ouvertes.fr/tel-01011515.
Testo completoHo, Ngoc linh. "Captage du CO2 par des solvants physiques confinés dans des materiaux poreux". Thesis, Aix-Marseille 2, 2011. http://www.theses.fr/2011AIX22089.
Testo completoIn this work, we investigate the existence and the fundamentals mechanisms underlying the apparition of enhanced CO2 solubility in hybrid materials. A number of prospective solid supports and physical solvents are chosen and the synthesized hybrid adsorbents are subsequently evaluated by measuring CO2 adsorption isotherms. Generally, all the hybrid adsorbents show an enhancement of CO2 solubility compared with the bulk physical solvent. According to further investigation, we have obtained certain requisites for a good solid support, of which structure should be mesoporous with large surface area. In addition, there is an optimized solvent's size to achieve an enhanced solubility. As a result, among the candidates, the N-methyl-2-pyrrolidone confined in MCM-41 adsorbent is proven to be the most suitable hybrid adsorbent for an effective CO2-removal application. In order to gain a deeper insight, Grand Canonical Monte Carlo simulations are then performed to interpret the CO2 solubility behavior in a modeled system of hybrid MCM-41 adsorbent. As a result, the microscopic mechanisms underlying the apparition of enhanced solubility are then clearly identified. In fact, the presence of solvent molecules favors the layering of CO2 molecule within the pores thereby the CO2 solubility in hybrid adsorbent markedly increases in comparison with the one found in the raw adsorbent as well as in the bulk solvent. In addition, to fully evaluate the efficiency of hybrid adsorbents in capturing CO2, the sorbent-solid interactions along with the solvent molecular size impact on CO2 solubility are further investigated in this study. We found that an ideal hybrid system should possess a weak solvent-solid interaction but a strong solvent-CO2 affinity. Furthermore, an optimal solvent size is obtained for the enhanced CO2 solubility in the hybrid system. According to the simulation results, the solvent layer builds pseudo-micropores inside the mesoporous MCM-41, enabling more CO2 molecules to be absorbed under greater influence of spatial confinement and surface interaction
Juma, Sarah. "Oxycombustion diluée au dioxyde de carbone : étude de la stratégie d'injection du CO2". Rouen, 2014. http://www.theses.fr/2014ROUES022.
Testo completoThe set-up of oxy-fuel combustion with flue gas recirculation raises questions about the design of adapted burners. The separation of the oxidant (O2) and inert gas (flue gas) allows either their injection with premixing of both flows, in burners with similar design than those used in classic air combustion, or separated injection, with the possibility to modify independently the injection parameters for each flow. Both injection strategies are studied and compared in the frame of a simplified academic study, led on CH4-fed multi-coaxial 25 kW burners, with O2 and CO2 (replacing the recirculation gases). These burners are composed of three to four coaxial injections, depending on the strategy: respectively CH4/ O2/(CO2+O2) for premixed strategy, and CH4/O2/CO2/O2 for separated injection strategy. A small primary oxy-fuel flame is maintained, and stabilizes behind the methane lip: four main flame types are observed thanks to chemiluminescence. The flame is continuous and homogeneous in terms of intensity (A type) for premixed burners. For separated injection burners, it may exhibit a localized decrease of intensity between the primary and the secondary flame (A’ or C type), or the secondary flame is lifted far above the primary oxy-fuel flame (B type). Mixing mechanisms leading to these structures are analyzed with PIV, and show that flame stability is favored by recirculation zones, by a small CO2 flow or co-flow (CO2+O2) velocity, associated to a large velocity ratio UO2/UCO2. The large velocity gradients favor the mixing and provide a stable flame, with controlled and acceptable thermal fluxes and temperatures distributions, and exhaust gases composition
Ricaurte, Fernandez Marvin José. "Séparation du co2 d’un mélange co2-ch4 par cristallisation d’hydrates de gaz : influence d’additifs et effet des conditions opératoires". Thesis, Pau, 2012. http://www.theses.fr/2012PAUU3031/document.
Testo completoThe separation of CO2 from a gas mixture by crystallization of gas hydrates is a process that could eventually provide an attractive alternative to the conventional techniques used for CO2 capture. The aim of this thesis was to evaluate the potential of this "hydrate" process to separate CO2 from a CO2-CH4 gas mixture, rich in CO2. We have studied in particular the selectivity of the separation toward CO2 and the hydrate crystallization kinetics. The effects of thermodynamic and kinetic additives (and some additive combinations) on these two parameters for different operating conditions (pressure, temperature, concentrations) were evaluated. Hydrate formation and dissociation experiments were performed in "batch mode” in a high pressure reactor, and with an experimental pilot rig designed and built entirely during this thesis. A semi-empirical model was also developed to estimate the water to hydrate conversion and the composition of the different phases (hydrates, liquid and vapor) at equilibrium. The results show that the combination of sodium dodecyl sulfate (SDS) used as a kinetic promoter, with tetrahydrofuran (THF) used as a thermodynamic promoter, provides interesting results in terms of both the amount of hydrates formed and the hydrate formation kinetics. The selectivity of the separation toward CO2 remains too low (an average of four CO2 molecules trapped in the hydrate structure for one of CH4) to consider using this "hydrate" process on a larger scale to separate CO2 from such a gas mixture
Doupoux, Cédric. "Caractérisation et modélisation de la dynamique des stocks de matière organique profonde des sols amazoniens". Thesis, Toulon, 2017. http://www.theses.fr/2017TOUL0003/document.
Testo completoRecent results have shown that equatorial podzols store large amounts of carbon in their deep Bh horizons. This leads to two main questions: (1) how and at what kinetics these soils were formed, (2) how climate change could induce atmospheric carbon production that could impact the global climate system.In this context, we have developed a model that allows to constrain carbon fluxes both by the observed C stocks and their 14C age. In a sufficiently simplified situation, we have established a formal relationship between the C stock evolution and its 14C age. Applied to Amazonian podzols, our model has brought new and unexpected results. It has been shown that the surface horizons of the most hydromorphic podzolized areas are the largest contributors of MOD transferred to the hydrographic network then to the sea. It is observed that the formation of Bh is only possible by considering two compartments, fast and slow. The estimate of their formation time (low estimate) allowed to differentiate between relatively young podzols (formation time 15 – 25 ky) developed on relatively recent Holocene sediments and old podzols (formation 180 – 290 ky) developed on older sediments. The carbon accumulation rate in the studied podzols ranges from 0.54 to 3.17 gC m-2 y-1, which corresponds to a carbon sequestration around 3 1011 gC an-1, which is significant at the geological scales.Column percolation experiments allowed us to show the reactivity of the Bh material and the presence, despite very high C/N ratios (63 on average), of a significant bacterial activity which modifies the nature of the MOD which percolates through it. This MOD has the capacity to transport Al and Fe in the form of complex organometallic complexes capable of migrating through very kaolinitic materials. These results contribute to the understanding of the transfers of pedologically formed MOD in the deep aquifers.Under the hypothesis of the appearance of a climate with contrasting seasons, we have been able to show that a 90-day period without rain after the disappearance of the perched water-table would not allow to reach the point of entry of air by drying of superficial horizons. Nevertheless, assuming an air entry, the extrapolation of the experimentally measured mineralization rates under oxic conditions results in a production of atmospheric C around 2.0 1014 g of CO2 per year, which may involve a positive feedback from the global climate system
Perraud, Véronique. "Mise au point d’un préleveur automatique pour la mesure en continu des composés carbonylés atmosphériques". Aix-Marseille 1, 2007. http://theses.univ-amu.fr.lama.univ-amu.fr/2007AIX11058.pdf.
Testo completoBecause of their implication in photochemical processes leadind to the formation of tropospheric ozone and their negative effect on human health, carbonyl compounds are part of the volatile organic compounds which demand a continuous measurement of their atmospheric concentration (fast fluctuation of their atmospheric concentration). The present research meets this requirement and two sampling strategies were studied to have an automatic instrument for the continuous measurement of atmospheric carbonyl compounds. First, sampling by using a tranfer of gaseous phase in a liquid phase associated with a simultaneous chemical derivatization of the trapped compounds was studied because of its high specificity towards carbonyl compounds. However, no couple “sampling device-reagent” allows a quantitative sampling of carbonyl compounds, nor a continuous measurement in the field. Another strategy was therefore studied: cryogenic adsorption onto solid adsorbent followed by thermodesorption and analysis by GC/MS. Collection efficiency using different solid adsorbents was greater than 95% for carbonyl compounds consisting of 1 (formaldehyde, Pvap (-30°C) = 34400Pa) to 7 carbons (benzaldehyde, Pvap (-30°C) = 0,75 Pa). This sampling strategy is a successful first step towards the realization of the automatic sampling device for a continuous measurement of atmospheric carbonyls compounds
Chiquet, Pierre. "Mécanismes thermophysiques déterminant la sécurité du stockage géologique du CO2". Pau, 2006. http://www.theses.fr/2006PAUU3045.
Testo completoCO2 underground storage as an option for reducing greenhouse gases emissions consists of trapping industrial CO2 and injecting it into deep geological formations such as saline aquifers and hydrocarbons reservoirs. This study aims at assessing leakage processes and evaluating storage capacities. To this end, two leakage phenomena were considered, caprock capillary breakthrough and diffusional transport. The former involves interfacial properties of the brine/CO2/mineral system: brine/CO2 interfacial tension and rock wettability under dense CO2. Chapter one presents a series of IFT measurements performed at temperatures and pressures up to 45 MPa-110°C. Results show a great decrease of IFT with pressure in the 0-to-20 MPa range beyond what it tends to stabilize at values in the order of 25-30 mN. M-1. Chapter two deals with rock wettability. Dynamic contact angles were measured on muscovite mica and quartz up to 10 MPa. Results highlight an alteration of wettability with pressure that was accounted for by means of a DLVO based model. Direct capillary entry pressures on a clay stone sample are proposed in chapter three. Diffusion, is treated in chapter four. We used the Taylor dispersion method to measure D up to 40 MPa. Results indicate low values in the order of 2. 10-9 m2. S-1. Chapter five discuses the consequences of the previous parameters in terms of storage capacity
Neveux, Thibaut. "Modélisation et optimisation des procédés de captage de CO2 par absorption chimique". Thesis, Université de Lorraine, 2013. http://www.theses.fr/2013LORR0266/document.
Testo completoCO2 capture processes by chemical absorption lead to a large energy penalty on efficiency of coal-fired power plants, establishing one of the main bottleneck to its industrial deployment. The objective of this thesis is the development and validation of a global methodology, allowing the precise evaluation of the potential of a given amine capture process. Characteristic phenomena of chemical absorption have been thoroughly studied and represented with state-of-the-art models. The e-UNIQUAC model has been used to describe vapor-liquid and chemical equilibria of electrolyte solutions and the model parameters have been identified for four solvents. A rate-based formulation has been adopted for the representation of chemically enhanced heat and mass transfer in columns. The absorption and stripping models have been successfully validated against experimental data from an industrial and a laboratory pilot plants. The influence of the numerous phenomena has been investigated in order to highlight the most limiting ones. A methodology has been proposed to evaluate the total energy penalty resulting from the implementation of a capture process on an advanced supercritical coal-fired power plant, including thermal and electric consumptions. Then, the simulation and process evaluation environments have been coupled with a non-linear optimization algorithm in order to find optimal operating and design parameters with respect to energetic and economic performances
Laude, Audrey. "Investir dans le stockage géologique du carbone à partir de biomasse : une approche par les options réelles". Electronic Thesis or Diss., Orléans, 2011. http://www.theses.fr/2011ORLE0507.
Testo completoUsing biomass to produce energy emits carbon dioxide. These emissions can be captured, transported andstored into geological formations. This process is named BCCS (Biomass Carbon Capture and Storage). Itleads to massive reductions and the whole system carbon balance system could be negative given specificassumptions, which is called ‘negative emissions’. BCCS may help to achieve low CO2 concentration target,even below the 450ppm threshold. Providing suitable incentives is necessary to trigger private investment.Private investors are facing considerable uncertainty, about the carbon market. We study in this dissertation thebehavior of decision makers who can invest in a specific variant of BCCS, which is the production ofbioethanol coming from sugar beets. After a deterministic analysis based on a real case study, we consider theinfluence of different kinds of uncertainties on the investment profile through a real option approach. Thetechnical progress uncertainty has been modeled with Poisson jumps. We show that investors tend to wait forinnovations. We distinguish two cases depending on the progress rate: early or delayed technical progressrate. First allowance price is driven by geometric Brownian motion. Second, the price follows a mean revertingprocess with jumps at specific fixed dates, to take into account the international round of negotiations aboutclimatic change, as a kind of climate regulation uncertainty
Guo, Yicang. "Thermodynamic modelling of mixtures related to absorption refrigeration systems and CO2 capture". Electronic Thesis or Diss., Institut polytechnique de Paris, 2024. http://www.theses.fr/2024IPPAE019.
Testo completoCO2 emissions from industrial activities have been a major factor in the rapid rise in global temperatures over the last century. The threat of global warming has prompted most industrialized countries to commit to reducing CO2 concentrations. This thesis focuses on two themes related to CO2 emission reduction. The first part is to use absorption heat pump systems to convert low-grade energy into high-grade energy, thereby increasing the energy efficiency of industrial systems, reducing energy consumption and CO2 emissions. The ELV data of IL-water solutions were correlated using NRTL and e-NRTL models. Additional calculations were performed to evaluate the performance of working fluids in ARS under different operating conditions. The results indicate that the selected working pair has good performance and potential to replace traditional pairs.The second part of the thesis focuses on the modeling of mixtures containing CO2, and in particular mixtures with alkanes and refrigerants. The multipolar version of the SAFT-VR Mie equation of state was chosen to study the phase behaviour and transport properties of these mixtures. A predictive model for these mixtures was thus developed, in order to determine their phase equilibria. A very good agreement with the pure component and mixture experimental data is obtained, demonstrating the important role of the multipolar term in the equation of state
Li, Lun. "Séquestration biologique du carbone par les cyanobactéries". Phd thesis, Université Claude Bernard - Lyon I, 2010. http://tel.archives-ouvertes.fr/tel-00878524.
Testo completoPfister, Marc. "Captage du CO2 en post combustion par procédé de perméation gazeuse". Thesis, Université de Lorraine, 2017. http://www.theses.fr/2017LORR0020/document.
Testo completoCO2 Capture and Storage (CCS) is a promising solution to separate CO2 from flue gas, to reduce the CO2 emissions in the atmosphere, and hence to reduce global warming. In CCS, one important constraint is the high additional energy requirement of the different capture processes. That statement is partly explained by the low CO2 fraction in the inlet flue gas and the high output targets in terms of CO2 capture and purity (>90%).Gas permeation across dense membrane can be used in post combustion CO2 capture. Gas permeation in a dense membrane is ruled by a mass transfer mechanism and separation performance in a dense membrane are characterized by component’s effective permeability and selectivity. One of the newest and encouraging type of membrane in terms of separation performance is the facilitated transport membrane. Each particular type of membrane is defined by a specific mass transfer law. The most important difference to the mass transfer behavior in a dense membrane is related to the facilitated transport mechanism and the solution diffusion mechanism and its restrictions and limitations.Permeation flux modelling across a dense membrane is required to perform a post combustion CO2 capture process simulation. A CO2 gas permeation separation process is composed of a two-steps membrane process, one drying step and a compression unit. Simulation on the energy requirement and surface area of the different membrane modules in the global system are useful to determine the benefits of using dense membranes in a post combustion CO2 capture technology
Daval, Damien. "Processus de carbonation de basaltes et de roches ultrabasiques en conditions de subsurface". Paris 7, 2009. http://www.theses.fr/2009PA077136.
Testo completoMineral trapping of co2 by carbonation is possibly a way to store co2 permanently. However, little is known aboutthe reaction kinetics and mechanisms of this process. Our work aimed at identifying the main parameters/dontrolling the weathering and carbonation rates of model silicates of (ultra)basic rocks. The influence of secondary phases on silicate weathering rates received detailed attention. Whereas the formation of thick and mesoporous coatings of amorphous silica onto the surface of wollastonite weakly affects wollastonite dissolution, forsterite dissolution is inhibited by a passivating silica layer. In this latter case, the reaction continues through solid-state diffusion, a process which is ~ 5 orders of magnitude slower than an interfacial dissolution mechanism. Another parameter which controls the weathering rate of silicates (r) is the distance from equilibrium (Δgr) at which it takes place. We showed that the law implemented into geochemical codes and which links r to Δgr overestimates diopside dissolution rate by one order of magnitude on a wide range of Δgr. This difference is responsible for a substantial error on the modeling of carbonation rate of diopside, which we calculated and corrected. A third factor which affects the weathering rate of minerals is due to the c02 itself: its effect (apart from that of ph) intrinsically promûtes lizardite dissolution kinetics, presumably because of the formation of surface complexes involving hco3" species. Finally, co2-h2o-fe-silicates interactions can lead to the reduction of co2, a flux which could compete with that of carbonation. Preliminary experiments of fayalite dissolution will help to resolve this question
Renner, Marie. "The Emergence of Carbon Capture and Storage Techniques in the Power Sector". Thesis, Paris 10, 2015. http://www.theses.fr/2015PA100045/document.
Testo completoThis thesis analyses the techno-economic and social conditions required for the emergence of Carbon Capture and Storage (CCS) techniques in the power sector, in compliance with CCS role in long-term mitigation scenarios. The research combines two complementary approaches: the positive one deals with the economic and social determinants necessary to trigger CCS investments, and addresses two significant issues: (1) for which CO2 price is it worth investing in CCS plants, and (2) when is CCS use socially optimal? The normative approach gives recommendations on how CCS can best be deployed as part of a least cost approach to climate change mitigation. Notably, recommendations are provided about the optimal combination of CCS policy supports that should be implemented. This Ph.D. dissertation is composed of four chapters. The first two chapters embrace the investor’s vision and highlight the determinants necessary for CCS commercial emergence. The last two chapters embrace the public decision-makers’ vision. Based on the fact that, although cost-effective, one technology may not be deployed because of social acceptance issues, Chapter 3 deals with CCS public acceptance and optimal pollution. Chapter 4 goes further and addresses the optimal CCS investment under ambiguity by providing a decision criterion with simulations on the European Union’s 2050 Energy Roadmap
Zaidiza, David Ricardo Albarracin. "Modelling of Hollow Fibre Membrane Contactors : Application to Post-combustion Carbon Dioxide Capture". Thesis, Université de Lorraine, 2016. http://www.theses.fr/2016LORR0035/document.
Testo completoPost-combustion CO2 capture (PCC) is an important strategy in mitigating greenhouse effect. The reference process in PCC is the CO2 absorption into amine aqueous solutions, followed by the regeneration (or stripping) of the solvent. The robustness of packed columns makes it the standard technology for both absorption and stripping steps. However, the treatment of large quantities of flue gases requires itself equipment of a large size. Hollow fibre membrane contactors (HFMC) are considered as one of the most promising strategies for intensified CO2 absorption process, due to their significantly higher interfacial area than that of packed columns, allowing to reduce the equipment size. In addition, this would reduce the energy penalty of the process by reducing the required amount of stripping steam. However, despite the potential advantages of HFMC, very few investigations have studied implementing this technology for PCC within an industrial framework. To fill this lack, the performances of both absorption and stripping steps using HFMC under industrial conditions were estimated by modelling and simulation. To identify the optimal modelling strategy, transfer models with different levels of complexity were developed ranging from one-dimensional isothermal single-component to two-dimensional adiabatic multi-component. Simulation results of both absorption and stripping steps revealed that, compared to traditional packed columns, contactor volume reduction factors comprised between 4 and 10 might be achieved using HFMC. However, since the stripping operating conditions are very close to thermodynamic equilibrium, HFMC can hardly reduce the energy consumption of the process
Bouchemoua, Amina. "Etude du captage du CO2 par la cristallisation des hydrates de gaz : Application au mélange CO2-N2". Phd thesis, Ecole Nationale Supérieure des Mines de Saint-Etienne, 2012. http://tel.archives-ouvertes.fr/tel-00783876.
Testo completoToubassy, Joseph. "Étude et modélisation du givrage du CO2 sur un évaporateur à glissement de température". Thesis, Paris, ENMP, 2012. http://www.theses.fr/2012ENMP0108.
Testo completoThe carbon dioxide capture and storage is the solution to reduce CO2 emissions from large stationary sources. CO2 capture by "Antisublimation" consists in cooling flue gases under the CO2 triple point, which goes then directly from vapor to solid phase. The CO2 concentration variation induces a temperature variation of about 20 K through the heat exchanger. The exergy optimization of the heat exchanger is a necessity to improve the CO2 separation and the process energy performance.Since the CO2 properties under the triple point are not defined, new equations are proposed to calculate CO2 thermodynamic properties for solid-vapor equilibrium. A CO2-N2 psychrometric chart is developed to represent the flue-gas gliding temperature. The study of the flue–gas side heat and mass transfer requires antisublimation understanding. The classical nucleation theory is adopted to identify parameters that affect the mass transfer and frost morphology. A qualitative and quantitative experimental investigation is performed to study the frost formation and its dependence on the supersaturation and solute concentration. The solid CO2 observation under 200x magnification ratio proves that antisublimation occurs by heterogeneous nucleation. A CFD multiphase and multi-component transient model able to predict the frost formation and growth as a function of the heat-exchanger structure and flow conditions is proposed
Boulmene, Rida. "Etude théorique de l'aspect microscopique de la capture et du stockage de CO2 par les zéolites : étude des clusters de Zn-Imidazole et triazole avec CO2". Thesis, Paris Est, 2016. http://www.theses.fr/2016PESC1093/document.
Testo completoSeveral experimental and theoretical studies have shown the ability of zeolitic-imidazole frameworks (ZIFs) materials to capture the CO2 gas. In this study, we have focused on the interaction of CO2 with one of the sub-unit of ZIFs ie the complex between the imidazole and zinc (Im-Zn+q, q = 0 ,1, 2) or triazole without zinc. Various adsorption sites are examined for these complexes.The calculations were performed using ab initio methods MP2; CCSD(T)-F12 and density functional theory with PBE PBE0, M1 and M05-2X functionals with different basis set (aug-cc-pVDZ, aug-cc-pVTZ and 6-311++G(d, p), tightly integrated in GAUSSIAN and MOLPRO packages. The Grimme corrections for dispersion forces description (DFT-D3) are also included.Our results shows that the stability of our complex structures is achieved by the presence of strong covalent bonds (chemical bonds of organic ligands) and also by Van der Waals and hydrogen weak bonds. Both types of bonding are in competition. This allowed us to better understand the experimental observations
Tifafi, Marwa. "Different soil study tools to better understand the dynamics of carbon in soils at different spatial scales, from a single soil profile to the global scale". Electronic Thesis or Diss., Université Paris-Saclay (ComUE), 2018. http://www.theses.fr/2018SACLV021.
Testo completoSoils are the major components ofthe terrestrial ecosystems and the largest organiccarbon reservoir on Earth, being very reactive tohuman disturbance and climate change. Despiteits importance within the carbon reservoirs, soilcarbon dynamics is an important source ofuncertainties for future climate predictions. Theaim of the thesis was to explore different aspectsof soil carbon studies (Experimentalmeasurements, modeling, and databaseevaluation) at different spatial scales (from thescale of a profile to the global scale). Wehighlighted that the estimation of the global soilcarbon stocks is still quite uncertain.Consequently, the role of soil carbon in theclimate dynamics becomes one of the majoruncertainties in the Earth system models (ESMs)used to predict future climate change. Thesecond part of thesis deals with the presentationof a new version of the IPSL-Land SurfaceModel called ORCHIDEE-SOM, incorporatingthe 14C dynamics in the soil. Several tests doneassume that model improvements should focusmore on a depth dependent parameterization,mainly for the diffusion, in order to improve therepresentation of the global carbon cycle inLand Surface Models, thus helping to constrainthe predictions of the future soil organic carbonresponse to global warming
Anselmi, Hélène. "Modélisation et évaluation environnementale d’une unité de captage de CO₂ intégrée à un procédé industriel". Electronic Thesis or Diss., Université de Lorraine, 2019. http://www.theses.fr/2019LORR0080.
Testo completoLimiting carbon dioxide (CO2) emissions is a major global issue, particularly for the energy, chemical and metallurgical industries. To this end, CO2 capture technologies have been developed in recent decades. In this study, we focused on three types of CO2 capture technologies: chemical absorption by MEA, membrane separation and activated carbon adsorption. The CO2 considered is emitted by a coal-fired power station and then directly valorized within a manufacturing process on the same site. The objective of this study was to quantify the environmental benefits of installing a CO2 capture technology in comparison to the current configuration, without CO2 capture. Our approach combined process modeling and life cycle assessment. The methodology adopted was to model the complete system (the power plant, the manufacturing process and the various capture units) using a flowsheeting software (Aspen Plus), then to determine the environmental impacts by LCA. The results show that the MEA chemical adsorption process is strongly penalized by the use of the solvent, both regarding the energy consumption and the environmental impacts. The membrane process exhibits significant environmental impacts, despite a much lower energy consumption, due to the massive use of polymers (membrane materials). Finally, the activated carbon adsorption process has lower environmental impacts than the other two processes in the vast majority of impact categories
Chabanon, Élodie. "Contacteurs à membranes composites et contacteurs microporeux pour procédés gaz-liquide intensifiés de captage du CO2 en post-combustion : expérimentation et modélisation". Paris, ENMP, 2011. http://www.theses.fr/2011ENMP0061.
Testo completoThe decrease of the CO2 anthropogenic emissions is one of the main aims of the 21st century. Different processes are developed in order to capture CO2, but gas-liquid absorption in packed columns is considered as the reference postcombustion technology. Membrane contactors, which could potentially decrease by a factor 2 to 10 the size of the absorption units due to an increased interfacial area (1000 to 5000 m2. M-3 ), a so-called intensification effect, have been investigated in this study. Two kind of hollow fibers are studied: microporous and composite membranes (i. E. A dense polymeric skin coated on a porous support). In a first part, a series of experiments is reported to evaluate the influence of some geometric and operating parameters on the process capture performances and on the mass transfer characteristics. Results obtained on short time scale experiments are in agreement to the literature results. Even though a dense skin layer on a porous support generates an additional resistance to the mass transfer, a dedicated study carried out on long time scale (several hundreds hours) show for the first time that mass transfer performances of composite fibers can be similar to microporous unwetted membranes. Moreover, the wetting resistance of the composite fibers compared to microporous hollow fibers (PP and PTFE) is clearly demonstrated. In a second part, a comparative study of different mathematical models with increasing complexity is carried out. One parameter is used to fit the experimental results: the membrane mass transfer coefficient (km). Km values obtained through curve fits are in the range of data reported in the literature (10-2 to 10-5 m. S-1). However, the assumption of a km effective value which would depend of the operating conditions is addressed and discussed. This approach is different from the studies reported in the literature which generally postulates a single value for a given membrane material. Under these conditions, the composite membrane interest, which shows a constant and probably predictable value of the membrane mass transfer coefficient due to their wetting resistance, seems to be promising to intensify the gas-liquid absorption process in CO2 postcombustion capture
Battaïa, Guillaume. "Expérimentation versus simulation du transport réactif en milieu poreux, capture des profils de concentration et évolution texturale des solides". Saint-Etienne, EMSE, 2009. http://tel.archives-ouvertes.fr/tel-00466764.
Testo completoA new type of plug flow reactor is developed. It reproduces a 1D porous medium composed of quartz and reactive solids exposed to the percolation of an aqueous phase, whose concentration profile can be captured through sampling ports. The reaction of CO₂ saturated solutions (5-8 bar) at 40-50°C with carbonate (calcite, dolomite) generates reproducible dissolution fronts migrating downstream with stationary shape. This shape evidences an increase in reactive surface area with increasing dissolution, in agreement with the observed skeletal solid textures. Diopside dissolution in acidic solutions, pH=2, 60°C, generates linear concentration profiles as predicted far from equilibrium. In the initial non-stoichiometric dissolution stage, a Si-dominated surface layer is formed. SEM data suggest an anisotropic distribution of this layer
Lowe, Alexander Rowland. "Alkyl pipéridine démixantes pour le captage du CO2 : approche thermodynamique". Thesis, Clermont-Ferrand 2, 2016. http://www.theses.fr/2016CLF22772/document.
Testo completoThe increase of carbon dioxide (CO2) concentration in the atmosphere, since the industrial revolution has led to the rise in the average global climate temperature. To prevent the escalation of global climate temperatures the amount of CO2 emitted into the atmosphere must be reduced. One solution is carbon capture and sequestration which removes CO2 from fixed sources. The absorption/desorption cycle is well known for the treatment of acid gas, but is expensive and not as efficient for the treatment of gas from fixed/industrial sources. A solution to this problem is the use of aqueous demixing amine solvents which present a liquid-liquid phase equilibrium (LLE) as a function of temperature. This manuscript presents a study done to measure the LLE and thermodynamic properties of the alkyl piperidine family, which can be used for carbon capture processes. This work evaluates the effect of the size, position and number of alkyl substituents on the thermodynamic properties of interest in the carbon capture process. To study the LLE of aqueous demixing solutions, particularly gas loaded solutions, two novel apparatuses were developed. The results demonstrate that the changes in the amine phase diagrams are related to the chemical reactions involved with dissolution of CO2. The tertiary alkyl piperidines displayed reduced demixing temperature with the addition of CO2 due to the formation of carbonate species. The secondary alkyl piperidines display an increasing demixing temperature which is related to the formation of carbamate species which stabilizes the solution. Secondary alkyl piperidines that are severely sterically hindered, which cannot produce carbamates, behave similarly to the tertiary amine which is coherent with the preceding conclusion. The structure property relationship concerning the excess thermodynamic properties (VE, CpE et HE) of aqueous solutions were studied in depth. This revealed that the position of the substituents on the cyclic ring has a considerable and obvious influence on the intensity of the excess properties, along with the class of the amine, whether secondary or tertiary, will influence the positions of the extrema of the excess property. To conclude, a rigorous thermodynamic model based on the CO2 solubility and the enthalpy of solution for CO2 in aqueous solutions of alkyl piperidine, allowed for the determination of the carbamate formation constants of 3- and 4-methylpiperidine
Tifafi, Marwa. "Different soil study tools to better understand the dynamics of carbon in soils at different spatial scales, from a single soil profile to the global scale". Thesis, Université Paris-Saclay (ComUE), 2018. http://www.theses.fr/2018SACLV021/document.
Testo completoSoils are the major components ofthe terrestrial ecosystems and the largest organiccarbon reservoir on Earth, being very reactive tohuman disturbance and climate change. Despiteits importance within the carbon reservoirs, soilcarbon dynamics is an important source ofuncertainties for future climate predictions. Theaim of the thesis was to explore different aspectsof soil carbon studies (Experimentalmeasurements, modeling, and databaseevaluation) at different spatial scales (from thescale of a profile to the global scale). Wehighlighted that the estimation of the global soilcarbon stocks is still quite uncertain.Consequently, the role of soil carbon in theclimate dynamics becomes one of the majoruncertainties in the Earth system models (ESMs)used to predict future climate change. Thesecond part of thesis deals with the presentationof a new version of the IPSL-Land SurfaceModel called ORCHIDEE-SOM, incorporatingthe 14C dynamics in the soil. Several tests doneassume that model improvements should focusmore on a depth dependent parameterization,mainly for the diffusion, in order to improve therepresentation of the global carbon cycle inLand Surface Models, thus helping to constrainthe predictions of the future soil organic carbonresponse to global warming
Toro, Molina Carol. "Comparaison du captage du CO2 en postcombustion par des solutions d'ammoniaque et d'amines organiques : Évaluation en contacteurs direct et indirect, par des approches cinétiques, thermodynamiques et par modélisation". Phd thesis, Ecole Nationale Supérieure des Mines de Paris, 2013. http://pastel.archives-ouvertes.fr/pastel-00935386.
Testo completoCardinael, Rémi. "Stockage de carbone et dynamique des matières organiques des sols en agroforesterie sous climat méditerranéen et tempéré". Thesis, Université Paris-Saclay (ComUE), 2015. http://www.theses.fr/2015SACLA003/document.
Testo completoAgroforestry is a land use type where trees are associated with crops and/or animals within the same field. This agroecosystem could help mitigating climate change, and also contribute to its adaptation. The goal of this thesis was to evaluate the potential of soil organic carbon storage under agroforestry systems. This study was performped at the oldest experimental site in France, a trial supervised by INRA since 1995, but also at farmers' fields. Soil organic carbon stocks were compared between agroforestry and agricultural plots, down to 2 m soil depth. All organic inputs to the soil were quantified (tree roots, leaf litter, crop roots and residues). The stability of additionnal stored carbon was caracterised with soil organic matter fractionation, and soil incubations. A model of soil organic carbon dynamic was described in order to better undrestand this dynamic in agroforestry, especially in deep soil layers. This study revealed the interest and the potential of agroforestry systems in increasing soil organic carbon stocks, with accumulation rates of 0.09 to 0.46 t C ha -1 yr -1. It also reveals the role of tree rows in this storage, and the importance of carbon inputs from root mortality. However, it raises concerns about the stability of this storage