Letteratura scientifica selezionata sul tema "Butterfly factorization"
Cita una fonte nei formati APA, MLA, Chicago, Harvard e in molti altri stili
Consulta la lista di attuali articoli, libri, tesi, atti di convegni e altre fonti scientifiche attinenti al tema "Butterfly factorization".
Accanto a ogni fonte nell'elenco di riferimenti c'è un pulsante "Aggiungi alla bibliografia". Premilo e genereremo automaticamente la citazione bibliografica dell'opera scelta nello stile citazionale di cui hai bisogno: APA, MLA, Harvard, Chicago, Vancouver ecc.
Puoi anche scaricare il testo completo della pubblicazione scientifica nel formato .pdf e leggere online l'abstract (il sommario) dell'opera se è presente nei metadati.
Articoli di riviste sul tema "Butterfly factorization"
Li, Yingzhou, Haizhao Yang, Eileen R. Martin, Kenneth L. Ho e Lexing Ying. "Butterfly Factorization". Multiscale Modeling & Simulation 13, n. 2 (gennaio 2015): 714–32. http://dx.doi.org/10.1137/15m1007173.
Testo completoLi, Yingzhou, e Haizhao Yang. "Interpolative Butterfly Factorization". SIAM Journal on Scientific Computing 39, n. 2 (gennaio 2017): A503—A531. http://dx.doi.org/10.1137/16m1074941.
Testo completoLi, Yingzhou, Haizhao Yang e Lexing Ying. "Multidimensional butterfly factorization". Applied and Computational Harmonic Analysis 44, n. 3 (maggio 2018): 737–58. http://dx.doi.org/10.1016/j.acha.2017.04.002.
Testo completoPang, Qiyuan, Kenneth L. Ho e Haizhao Yang. "Interpolative Decomposition Butterfly Factorization". SIAM Journal on Scientific Computing 42, n. 2 (gennaio 2020): A1097—A1115. http://dx.doi.org/10.1137/19m1294873.
Testo completoLiu, Yang, Xin Xing, Han Guo, Eric Michielssen, Pieter Ghysels e Xiaoye Sherry Li. "Butterfly Factorization Via Randomized Matrix-Vector Multiplications". SIAM Journal on Scientific Computing 43, n. 2 (gennaio 2021): A883—A907. http://dx.doi.org/10.1137/20m1315853.
Testo completoChen, Ze, Juan Zhang, Kenneth L. Ho e Haizhao Yang. "Multidimensional phase recovery and interpolative decomposition butterfly factorization". Journal of Computational Physics 412 (luglio 2020): 109427. http://dx.doi.org/10.1016/j.jcp.2020.109427.
Testo completoJaber, Marwan A., e Daniel Massicotte. "Radix-2α/4β Building Blocks for Efficient VLSI’s Higher Radices Butterflies Implementation". VLSI Design 2014 (13 maggio 2014): 1–13. http://dx.doi.org/10.1155/2014/690594.
Testo completoBremer, James, Ze Chen e Haizhao Yang. "Rapid Application of the Spherical Harmonic Transform via Interpolative Decomposition Butterfly Factorization". SIAM Journal on Scientific Computing 43, n. 6 (gennaio 2021): A3789—A3808. http://dx.doi.org/10.1137/20m1333845.
Testo completoYang, Haizhao. "A unified framework for oscillatory integral transforms: When to use NUFFT or butterfly factorization?" Journal of Computational Physics 388 (luglio 2019): 103–22. http://dx.doi.org/10.1016/j.jcp.2019.02.044.
Testo completoMardan, Suha Suliman, e Mounir Taha Hamood. "New fast Walsh–Hadamard–Hartley transform algorithm". International Journal of Electrical and Computer Engineering (IJECE) 13, n. 2 (1 aprile 2023): 1533. http://dx.doi.org/10.11591/ijece.v13i2.pp1533-1540.
Testo completoTesi sul tema "Butterfly factorization"
Zheng, Léon. "Frugalité en données et efficacité computationnelle dans l'apprentissage profond". Electronic Thesis or Diss., Lyon, École normale supérieure, 2024. http://www.theses.fr/2024ENSL0009.
Testo completoThis thesis focuses on two challenges of frugality and efficiency in modern deep learning: data frugality and computational resource efficiency. First, we study self-supervised learning, a promising approach in computer vision that does not require data annotations for learning representations. In particular, we propose a unification of several self-supervised objective functions under a framework based on rotation-invariant kernels, which opens up prospects to reduce the computational cost of these objective functions. Second, given that matrix multiplication is the predominant operation in deep neural networks, we focus on the construction of fast algorithms that allow matrix-vector multiplication with nearly linear complexity. More specifically, we examine the problem of sparse matrix factorization under the constraint of butterfly sparsity, a structure common to several fast transforms like the discrete Fourier transform. The thesis establishes new theoretical guarantees for butterfly factorization algorithms, and explores the potential of butterfly sparsity to reduce the computational costs of neural networks during their training or inference phase. In particular, we explore the efficiency of GPU implementations for butterfly sparse matrix multiplication, with the goal of truly accelerating sparse neural networks
Atti di convegni sul tema "Butterfly factorization"
Shekofteh, S. Kazem, Christian Alles e Holger Fröning. "Reducing Memory Requirements for the IPU using Butterfly Factorizations". In SC-W 2023: Workshops of The International Conference on High Performance Computing, Network, Storage, and Analysis. New York, NY, USA: ACM, 2023. http://dx.doi.org/10.1145/3624062.3624196.
Testo completo