Letteratura scientifica selezionata sul tema "Brownian motion processes"
Cita una fonte nei formati APA, MLA, Chicago, Harvard e in molti altri stili
Consulta la lista di attuali articoli, libri, tesi, atti di convegni e altre fonti scientifiche attinenti al tema "Brownian motion processes".
Accanto a ogni fonte nell'elenco di riferimenti c'è un pulsante "Aggiungi alla bibliografia". Premilo e genereremo automaticamente la citazione bibliografica dell'opera scelta nello stile citazionale di cui hai bisogno: APA, MLA, Harvard, Chicago, Vancouver ecc.
Puoi anche scaricare il testo completo della pubblicazione scientifica nel formato .pdf e leggere online l'abstract (il sommario) dell'opera se è presente nei metadati.
Articoli di riviste sul tema "Brownian motion processes"
Suryawan, Herry P., e José L. da Silva. "Green Measures for a Class of Non-Markov Processes". Mathematics 12, n. 9 (27 aprile 2024): 1334. http://dx.doi.org/10.3390/math12091334.
Testo completoTakenaka, Shigeo. "Integral-geometric construction of self-similar stable processes". Nagoya Mathematical Journal 123 (settembre 1991): 1–12. http://dx.doi.org/10.1017/s0027763000003627.
Testo completoRosen, Jay, e Jean-Dominique Deuschel. "motion, super-Brownian motion and related processes". Annals of Probability 26, n. 2 (aprile 1998): 602–43. http://dx.doi.org/10.1214/aop/1022855645.
Testo completoRao, Nan, Qidi Peng e Ran Zhao. "Cluster Analysis on Locally Asymptotically Self-Similar Processes with Known Number of Clusters". Fractal and Fractional 6, n. 4 (14 aprile 2022): 222. http://dx.doi.org/10.3390/fractalfract6040222.
Testo completoSOTTINEN, TOMMI, e LAURI VIITASAARI. "CONDITIONAL-MEAN HEDGING UNDER TRANSACTION COSTS IN GAUSSIAN MODELS". International Journal of Theoretical and Applied Finance 21, n. 02 (marzo 2018): 1850015. http://dx.doi.org/10.1142/s0219024918500152.
Testo completoAndres, Sebastian, e Lisa Hartung. "Diffusion processes on branching Brownian motion". Latin American Journal of Probability and Mathematical Statistics 15, n. 2 (2018): 1377. http://dx.doi.org/10.30757/alea.v15-51.
Testo completoOuknine, Y. "“Skew-Brownian Motion” and Derived Processes". Theory of Probability & Its Applications 35, n. 1 (gennaio 1991): 163–69. http://dx.doi.org/10.1137/1135018.
Testo completoKatori, Makoto, e Hideki Tanemura. "Noncolliding Brownian Motion and Determinantal Processes". Journal of Statistical Physics 129, n. 5-6 (13 ottobre 2007): 1233–77. http://dx.doi.org/10.1007/s10955-007-9421-y.
Testo completoJedidi, Wissem, e Stavros Vakeroudis. "Windings of planar processes, exponential functionals and Asian options". Advances in Applied Probability 50, n. 3 (settembre 2018): 726–42. http://dx.doi.org/10.1017/apr.2018.33.
Testo completoAdler, Robert J., e Ron Pyke. "Scanning Brownian Processes". Advances in Applied Probability 29, n. 2 (giugno 1997): 295–326. http://dx.doi.org/10.2307/1428004.
Testo completoTesi sul tema "Brownian motion processes"
Dunkel, Jörn. "Relativistic Brownian motion and diffusion processes". kostenfrei, 2008. http://d-nb.info/991318757/34.
Testo completoTrefán, György. "Deterministic Brownian Motion". Thesis, University of North Texas, 1993. https://digital.library.unt.edu/ark:/67531/metadc279262/.
Testo completoKeprta, S. "Integral tests for Brownian motion and some related processes". Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1997. http://www.collectionscanada.ca/obj/s4/f2/dsk2/ftp03/NQ26856.pdf.
Testo completoKeprta, Stanislav Carleton University Dissertation Mathematics and Statistics. "Integral tests for Brownian motion and some related processes". Ottawa, 1997.
Cerca il testo completoCakir, Rasit Grigolini Paolo. "Fractional Brownian motion and dynamic approach to complexity". [Denton, Tex.] : University of North Texas, 2007. http://digital.library.unt.edu/permalink/meta-dc-3992.
Testo completoSimon, Matthieu. "Markov-modulated processes: Brownian motions, option pricing and epidemics". Doctoral thesis, Universite Libre de Bruxelles, 2017. http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/250010.
Testo completoDoctorat en Sciences
info:eu-repo/semantics/nonPublished
莊競誠 e King-sing Chong. "Explorations in Markov processes". Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 1997. http://hub.hku.hk/bib/B31235682.
Testo completoChong, King-sing. "Explorations in Markov processes /". Hong Kong : University of Hong Kong, 1997. http://sunzi.lib.hku.hk/hkuto/record.jsp?B18736105.
Testo completoDuncan, Thomas. "Brownian Motion: A Study of Its Theory and Applications". Thesis, Boston College, 2007. http://hdl.handle.net/2345/505.
Testo completoThe theory of Brownian motion is an integral part of statistics and probability, and it also has some of the most diverse applications found in any topic in mathematics. With extensions into fields as vast and different as economics, physics, and management science, Brownian motion has become one of the most studied mathematical phenomena of the late twentieth and early twenty-first centuries. Today, Brownian motion is mostly understood as a type of mathematical process called a stochastic process. The word "stochastic" actually stems from the Greek word for "I guess," implying that stochastic processes tend to produce uncertain results, and Brownian motion is no exception to this, though with the right models, probabilities can be assigned to certain outcomes and we can begin to understand these complicated processes. This work reaches to attain this goal with regard to Brownian motion, and in addition it explores several applications found in the aforementioned fields and beyond
Thesis (BA) — Boston College, 2007
Submitted to: Boston College. College of Arts and Sciences
Discipline: Mathematics
Discipline: College Honors Program
Hult, Henrik. "Topics on fractional Brownian motion and regular variation for stochastic processes". Doctoral thesis, KTH, Mathematics, 2003. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-3604.
Testo completoThe first part of this thesis studies tail probabilities forelliptical distributions and probabilities of extreme eventsfor multivariate stochastic processes. It is assumed that thetails of the probability distributions satisfy a regularvariation condition. This means, roughly speaking, that thereis a non-negligible probability for very large or extremeoutcomes to occur. Such models are useful in applicationsincluding insurance, finance and telecommunications networks.It is shown how regular variation of the marginals, or theincrements, of a stochastic process implies regular variationof functionals of the process. Moreover, the associated tailbehavior in terms of a limit measure is derived.
The second part of the thesis studies problems related toparameter estimation in stochastic models with long memory.Emphasis is on the estimation of the drift parameter in somestochastic differential equations driven by the fractionalBrownian motion or more generally Volterra-type processes.Observing the process continuously, the maximum likelihoodestimator is derived using a Girsanov transformation. In thecase of discrete observations the study is carried out for theparticular case of the fractional Ornstein-Uhlenbeck process.For this model Whittles approach is applied to derive anestimator for all unknown parameters.
Libri sul tema "Brownian motion processes"
1972-, Dolgopyat Dmitry, a cura di. Brownian Brownian motion-I. Providence, R.I: American Mathematical Society, 2009.
Cerca il testo completoWiersema, Ubbo F. Brownian motion calculus. Chichester: John Wiley & Sons, 2008.
Cerca il testo completoWiersema, Ubbo F. Brownian Motion Calculus. New York: John Wiley & Sons, Ltd., 2008.
Cerca il testo completoSchilling, René L. Brownian motion: An introduction to stochastic processes. Berlin: De Gruyter, 2012.
Cerca il testo completoLindstrøm, Tom. Brownian motion on nested fractals. Providence, R.I., USA: American Mathematical Society, 1990.
Cerca il testo completoEarnshaw, Robert C., e Elizabeth M. Riley. Brownian motion: Theory, modelling and applications. Hauppauge, N.Y: Nova Science Publishers, 2011.
Cerca il testo completoBass, Richard F. Cutting Brownian paths. Providence, R.I: American Mathematical Society, 1999.
Cerca il testo completoKaratzas, Ioannis. Brownian motion and stochastic calculus. 2a ed. New York: Springer, 1996.
Cerca il testo completoE, Shreve Steven, a cura di. Brownian motion and stochastic calculus. New York: Springer-Verlag, 1988.
Cerca il testo completoE, Shreve Steven, a cura di. Brownian motion and stochastic calculus. 2a ed. New York: Springer-Verlag, 1991.
Cerca il testo completoCapitoli di libri sul tema "Brownian motion processes"
Rozanov, Yuriĭ A. "Brownian Motion". In Introduction to Random Processes, 33–43. Berlin, Heidelberg: Springer Berlin Heidelberg, 1987. http://dx.doi.org/10.1007/978-3-642-72717-7_5.
Testo completoResnick, Sidney I. "Brownian Motion". In Adventures in Stochastic Processes, 482–557. Boston, MA: Birkhäuser Boston, 2002. http://dx.doi.org/10.1007/978-1-4612-0387-2_6.
Testo completoKorosteleva, Olga. "Brownian Motion". In Stochastic Processes with R, 153–82. Boca Raton: Chapman and Hall/CRC, 2022. http://dx.doi.org/10.1201/9781003244288-9.
Testo completoKoralov, Leonid, e Yakov G. Sinai. "Brownian Motion". In Theory of Probability and Random Processes, 253–72. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-540-68829-7_18.
Testo completoHainaut, Donatien. "Fractional Brownian Motion". In Continuous Time Processes for Finance, 143–78. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-06361-9_6.
Testo completoMadhira, Sivaprasad, e Shailaja Deshmukh. "Brownian Motion Process". In Introduction to Stochastic Processes Using R, 487–545. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-99-5601-2_9.
Testo completoItô, Kiyosi, e Henry P. McKean. "The standard Brownian motion". In Diffusion Processes and their Sample Paths, 5–40. Berlin, Heidelberg: Springer Berlin Heidelberg, 1996. http://dx.doi.org/10.1007/978-3-642-62025-6_2.
Testo completoBas, Esra. "Introduction to Brownian Motion". In Basics of Probability and Stochastic Processes, 253–63. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-32323-3_16.
Testo completoBosq, Denis, e Hung T. Nguyen. "Brownian Motion and Diffusion Processes". In A Course in Stochastic Processes, 233–53. Dordrecht: Springer Netherlands, 1996. http://dx.doi.org/10.1007/978-94-015-8769-3_12.
Testo completoKallenberg, Olav. "Gaussian Processes and Brownian Motion". In Probability and Its Applications, 249–69. New York, NY: Springer New York, 2002. http://dx.doi.org/10.1007/978-1-4757-4015-8_13.
Testo completoAtti di convegni sul tema "Brownian motion processes"
Bilokon, Paul, e Abbas Edalat. "A domain-theoretic approach to Brownian motion and general continuous stochastic processes". In CSL-LICS '14: JOINT MEETING OF the Twenty-Third EACSL Annual Conference on COMPUTER SCIENCE LOGIC. New York, NY, USA: ACM, 2014. http://dx.doi.org/10.1145/2603088.2603102.
Testo completoBorhani, Alireza, e Matthias Patzold. "Modelling of non-stationary mobile radio channels using two-dimensional brownian motion processes". In 2013 International Conference on Advanced Technologies for Communications (ATC 2013). IEEE, 2013. http://dx.doi.org/10.1109/atc.2013.6698114.
Testo completoCezayirli, Ahmet. "Simulation of online relative concentration measurements in chemical processes using Brownian motion and image processing". In 2020 4th International Symposium on Multidisciplinary Studies and Innovative Technologies (ISMSIT). IEEE, 2020. http://dx.doi.org/10.1109/ismsit50672.2020.9254637.
Testo completoBusnaina, Ahmed, Xiaoying Zhu e Xiaowei Zheng. "Particle Transport in CVD and Diffusion Processes". In ASME 1992 International Computers in Engineering Conference and Exposition. American Society of Mechanical Engineers, 1992. http://dx.doi.org/10.1115/cie1992-0057.
Testo completoPerez Rey, Luis A., Vlado Menkovski e Jim Portegies. "Diffusion Variational Autoencoders". In Twenty-Ninth International Joint Conference on Artificial Intelligence and Seventeenth Pacific Rim International Conference on Artificial Intelligence {IJCAI-PRICAI-20}. California: International Joint Conferences on Artificial Intelligence Organization, 2020. http://dx.doi.org/10.24963/ijcai.2020/375.
Testo completoTian, L., G. Ahmadi e J. Y. Tu. "Multi-Scale Transport Modeling: Asbestos and Nano Fibers in Inhalation Risk Assessments". In ASME 2017 Fluids Engineering Division Summer Meeting. American Society of Mechanical Engineers, 2017. http://dx.doi.org/10.1115/fedsm2017-69083.
Testo completoZare, Azam, Omid Abouali e Goodarz Ahmadi. "A Numerical Model for Brownian Motions of Nano-Particles in Supersonic and Hypersonic Impactors". In ASME 2006 2nd Joint U.S.-European Fluids Engineering Summer Meeting Collocated With the 14th International Conference on Nuclear Engineering. ASMEDC, 2006. http://dx.doi.org/10.1115/fedsm2006-98308.
Testo completoMacGibbon, Bruce S., e Ahmed A. Busnaina. "Mass Transport and Particle Transport in an LPCVD Process". In ASME 1993 International Computers in Engineering Conference and Exposition. American Society of Mechanical Engineers, 1993. http://dx.doi.org/10.1115/cie1993-0027.
Testo completoPerez, Dario G., e Luciano Zunino. "Inner- and outer-scales of turbulent wavefront phase defined through the lens of multi-scale Levy fractional Brownian motion processes". In SPIE Remote Sensing, a cura di Anton Kohnle, Karin Stein e John D. Gonglewski. SPIE, 2008. http://dx.doi.org/10.1117/12.800155.
Testo completoTakana, Hidemasa, Kazuhiro Ogawa, Tetsuo Shoji e Hideya Nishiyama. "Optimization of Cold Gas Dynamic Spray Processes by Computational Simulation". In ASME/JSME 2007 5th Joint Fluids Engineering Conference. ASMEDC, 2007. http://dx.doi.org/10.1115/fedsm2007-37081.
Testo completoRapporti di organizzazioni sul tema "Brownian motion processes"
Adler, Robert J., e Gennady Samorodnitsky. Super Fractional Brownian Motion, Fractional Super Brownian Motion and Related Self-Similar (Super) Processes. Fort Belvoir, VA: Defense Technical Information Center, gennaio 1991. http://dx.doi.org/10.21236/ada274696.
Testo completoAdler, Robert J., e Gennady Samorodnitsky. Super Fractional Brownian Motion, Fractional Super Brownian Motion and Related Self-Similar (Super) Processes. Fort Belvoir, VA: Defense Technical Information Center, gennaio 1994. http://dx.doi.org/10.21236/ada275124.
Testo completoСоловйов, В. М., В. В. Соловйова e Д. М. Чабаненко. Динаміка параметрів α-стійкого процесу Леві для розподілів прибутковостей фінансових часових рядів. ФО-П Ткачук О. В., 2014. http://dx.doi.org/10.31812/0564/1336.
Testo completo