Segui questo link per vedere altri tipi di pubblicazioni sul tema: Boundary layer.

Articoli di riviste sul tema "Boundary layer"

Cita una fonte nei formati APA, MLA, Chicago, Harvard e in molti altri stili

Scegli il tipo di fonte:

Vedi i top-50 articoli di riviste per l'attività di ricerca sul tema "Boundary layer".

Accanto a ogni fonte nell'elenco di riferimenti c'è un pulsante "Aggiungi alla bibliografia". Premilo e genereremo automaticamente la citazione bibliografica dell'opera scelta nello stile citazionale di cui hai bisogno: APA, MLA, Harvard, Chicago, Vancouver ecc.

Puoi anche scaricare il testo completo della pubblicazione scientifica nel formato .pdf e leggere online l'abstract (il sommario) dell'opera se è presente nei metadati.

Vedi gli articoli di riviste di molte aree scientifiche e compila una bibliografia corretta.

1

Bösenberg, Jens, e Holger Linné. "Laser remote sensing of the planetary boundary layer". Meteorologische Zeitschrift 11, n. 4 (30 ottobre 2002): 233–40. http://dx.doi.org/10.1127/0941-2948/2002/0011-0233.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
2

Chlond, Andreas, e Hartmut Grassl. "The atmospheric boundary layer". Meteorologische Zeitschrift 11, n. 4 (30 ottobre 2002): 227. http://dx.doi.org/10.1127/0941-2948/2002/0011-0227.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
3

Holloway, Simon, Hugo Ricketts e Geraint Vaughan. "Boundary layer temperature measurements of a noctual urban boundary layer". EPJ Web of Conferences 176 (2018): 06004. http://dx.doi.org/10.1051/epjconf/201817606004.

Testo completo
Abstract (sommario):
A low-power lidar system based in Manchester, United Kingdom has been developed to measure temperature profiles in the nocturnal urban boundary layer. The lidar transmitter uses a 355nm diode-pumped solid state Nd:YAG laser and two narrow-band interference filters in the receiver filter out rotational Raman lines that are dependent on temperature. The spectral response of the lidar is calibrated using a monochromator. Temperature profiles measured by the system are calibrated by comparison to co-located radiosondes.
Gli stili APA, Harvard, Vancouver, ISO e altri
4

Mamtaz, Farhana, Ahammad Hossain e Nusrat Sharmin. "Solution of Boundary Layer and Thermal Boundary Layer Equation". Asian Research Journal of Mathematics 11, n. 4 (19 dicembre 2018): 1–15. http://dx.doi.org/10.9734/arjom/2018/45267.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
5

Kenyon, Kern E. "Curvature Boundary Layer". Physics Essays 16, n. 1 (marzo 2003): 74–85. http://dx.doi.org/10.4006/1.3025569.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
6

Vranková, Andrea, e Milan Palko. "Atmospheric Boundary Layer". Applied Mechanics and Materials 820 (gennaio 2016): 338–44. http://dx.doi.org/10.4028/www.scientific.net/amm.820.338.

Testo completo
Abstract (sommario):
Atmospheric Boundary Layer (ABL) is the lowest part of the troposphere. The main feature of the Atmospheric Boundary Layer is the turbulent nature of the flow. The thickness of the boundary layer, formed by flowing air friction on the earth’s surface under various conditions move in quite a wide range. ABL is generally defined as being 0.5 km above the surface, although it can extend up to 2 km depending on time and location. The flow properties are most important over the surface of solid objects, which carry out all the reactions between fluid and solid.
Gli stili APA, Harvard, Vancouver, ISO e altri
7

Müller, Bernhard M. "Boundary‐layer microphone". Journal of the Acoustical Society of America 96, n. 5 (novembre 1994): 3206. http://dx.doi.org/10.1121/1.411273.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
8

Piau, J. M. "Viscoplastic boundary layer". Journal of Non-Newtonian Fluid Mechanics 102, n. 2 (febbraio 2002): 193–218. http://dx.doi.org/10.1016/s0377-0257(01)00178-1.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
9

Fernholz, H. H. "Boundary Layer Theory". European Journal of Mechanics - B/Fluids 20, n. 1 (gennaio 2001): 155–57. http://dx.doi.org/10.1016/s0997-7546(00)01101-8.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
10

Cha, S. S., R. K. Ahluwalia e K. H. Im. "Boundary layer nucleation". International Journal of Heat and Mass Transfer 32, n. 5 (maggio 1989): 825–35. http://dx.doi.org/10.1016/0017-9310(89)90231-7.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
11

Bahl, Ravi. "Boundary-layer blowing". AIAA Journal 23, n. 1 (gennaio 1985): 157–58. http://dx.doi.org/10.2514/3.8887.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
12

Koizumi, David H. "Boundary layer microphone". Journal of the Acoustical Society of America 113, n. 2 (2003): 683. http://dx.doi.org/10.1121/1.1560240.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
13

Schmidt, Axel, e Michael Nickel. "Boundary layer adapter". Journal of the Acoustical Society of America 128, n. 4 (2010): 2252. http://dx.doi.org/10.1121/1.3500761.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
14

Garratt, J. R. "Boundary layer climates". Earth-Science Reviews 27, n. 3 (maggio 1990): 265. http://dx.doi.org/10.1016/0012-8252(90)90005-g.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
15

Holtslag, Bert. "Preface: GEWEX Atmospheric Boundary-layer Study (GABLS) on Stable Boundary Layers". Boundary-Layer Meteorology 118, n. 2 (febbraio 2006): 243–46. http://dx.doi.org/10.1007/s10546-005-9008-6.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
16

Donnelly, M. J., O. K. Rediniotis, S. A. Ragab e D. P. Telionis. "The Interaction of Rolling Vortices With a Turbulent Boundary Layer". Journal of Fluids Engineering 117, n. 4 (1 dicembre 1995): 564–70. http://dx.doi.org/10.1115/1.2817302.

Testo completo
Abstract (sommario):
Laser-Doppler velocimetry is employed to measure the periodic field created by releasing spanwise vortices in a turbulent boundary layer. Phase-averaged vorticity and turbulence level contours are estimated and presented. It is found that vortices with diameter of the order of the boundary layer quickly diffuse and disappear while their turbulent kinetic energy spreads uniformly across the entire boundary layer. Larger vortices have a considerably longer life span and in turn feed more vorticity into the boundary layer.
Gli stili APA, Harvard, Vancouver, ISO e altri
17

Taylor, Peter A. "Marine Stratus—A Boundary-Layer Model". Atmosphere 15, n. 5 (11 maggio 2024): 585. http://dx.doi.org/10.3390/atmos15050585.

Testo completo
Abstract (sommario):
A relatively simple 1D RANS model of the time evolution of the planetary boundary layer is extended to include water vapor and cloud droplets plus transfers between them. Radiative fluxes and flux divergence are also included. An underlying ocean surface is treated as a source of water vapor and as a sink for cloud or fog droplets. With a constant sea surface temperature and a steady wind, initially dry or relatively dry air will moisten, starting at the surface. Turbulent boundary layer mixing will then lead towards a layer with a well-mixed potential temperature (and so temperature decreasing with height) and well-mixed water vapor mixing ratio. As a result, the air will, sooner or later, become saturated at some level, and a stratus cloud will form.
Gli stili APA, Harvard, Vancouver, ISO e altri
18

Fabian, Peter, Bernhard Rappenglück, Andreas Stohl, Herbert Werner, Martin Winterhalter, Hans Schlager, Paul Stock et al. "Boundary layer photochemistry during a total solar eclipse". Meteorologische Zeitschrift 10, n. 3 (1 maggio 2001): 187–92. http://dx.doi.org/10.1127/0941-2948/2001/0010-0187.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
19

Carpenter, D. L., e J. Lemaire. "The Plasmasphere Boundary Layer". Annales Geophysicae 22, n. 12 (22 dicembre 2004): 4291–98. http://dx.doi.org/10.5194/angeo-22-4291-2004.

Testo completo
Abstract (sommario):
Abstract. As an inner magnetospheric phenomenon the plasmapause region is of interest for a number of reasons, one being the occurrence there of geophysically important interactions between the plasmas of the hot plasma sheet and of the cool plasmasphere. There is a need for a conceptual framework within which to examine and discuss these interactions and their consequences, and we therefore suggest that the plasmapause region be called the Plasmasphere Boundary Layer, or PBL. Such a term has been slow to emerge because of the complexity and variability of the plasma populations that can exist near the plasmapause and because of the variety of criteria used to identify the plasmapause in experimental data. Furthermore, and quite importantly in our view, a substantial obstacle to the consideration of the plasmapause region as a boundary layer has been the longstanding tendency of textbooks on space physics to limit introductory material on the plasmapause phenomenon to zeroth order descriptions in terms of ideal MHD theory, thus implying that the plasmasphere is relatively well understood. A textbook may introduce the concept of shielding of the inner magnetosphere from perturbing convection electric fields, but attention is not usually paid to the variety of physical processes reported to occur in the PBL, such as heating, instabilities, and fast longitudinal flows, processes which must play roles in plasmasphere dynamics in concert with the flow regimes associated with the major dynamo sources of electric fields. We believe that through the use of the PBL concept in future textbook discussions of the plasmasphere and in scientific communications, much progress can be made on longstanding questions about the physics involved in the formation of the plasmapause and in the cycles of erosion and recovery of the plasmasphere. Key words. Magnetospheric physics (plasmasphere; plasma convection; MHD waves and instabilities)
Gli stili APA, Harvard, Vancouver, ISO e altri
20

Iamandi, Constantin, Andrei Georgescu e Cristian Erbasu. "Atmospheric Boundary Layer Change". International Journal of Fluid Mechanics Research 29, n. 3-4 (2002): 5. http://dx.doi.org/10.1615/interjfluidmechres.v29.i3-4.170.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
21

Vranková, Andrea, e Milan Palko. "Atmospheric Boundary Layer Modelling". Applied Mechanics and Materials 820 (gennaio 2016): 351–58. http://dx.doi.org/10.4028/www.scientific.net/amm.820.351.

Testo completo
Abstract (sommario):
The aim of the paper was to define the input options over the boundary layer, as the entrance boundary conditions for simulation in ANSYS. The boundary layer is designed for use in external aerodynamics of buildings (part of the urban structure) for selected sites occurring in the territory of the Slovak Republic.
Gli stili APA, Harvard, Vancouver, ISO e altri
22

Donner, L. J. "The atmospheric boundary layer". Eos, Transactions American Geophysical Union 76, n. 17 (1995): 177. http://dx.doi.org/10.1029/95eo00101.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
23

Hiraoka, H., M. Ohashi, Susumu Kurita, Manabu Kanda, Takashi Karasudani, Hiromasa Ueda, Yuji Ohya e Takanori Uchida. "TC4 Atmospheric Boundary Layer". Wind Engineers, JAWE 2006, n. 108 (2006): 693–708. http://dx.doi.org/10.5359/jawe.2006.693.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
24

BLOTTNER, F. G. "Chemical Nonequilibrium Boundary Layer". Journal of Spacecraft and Rockets 40, n. 5 (settembre 2003): 810–18. http://dx.doi.org/10.2514/2.6907.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
25

Swain, Mark R., e Hubert Gallée. "Antarctic Boundary Layer Seeing". Publications of the Astronomical Society of the Pacific 118, n. 846 (agosto 2006): 1190–97. http://dx.doi.org/10.1086/507153.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
26

Anderson, John D. "Ludwig Prandtl’s Boundary Layer". Physics Today 58, n. 12 (dicembre 2005): 42–48. http://dx.doi.org/10.1063/1.2169443.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
27

Kerschen, E. J. "Boundary Layer Receptivity Theory". Applied Mechanics Reviews 43, n. 5S (1 maggio 1990): S152—S157. http://dx.doi.org/10.1115/1.3120795.

Testo completo
Abstract (sommario):
The receptivity mechanisms by which free-stream disturbances generate instability waves in laminar boundary layers are discussed. Free-stream disturbances have wavelengths which are generally much longer than those of instability waves. Hence, the transfer of energy from the free-stream disturbance to the instability wave requires a wavelength conversion mechanism. Recent analyses using asymptotic methods have shown that the wavelength conversion takes place in regions of the boundary layer where the mean flow adjusts on a short streamwise length scale. This paper reviews recent progress in the theoretical understanding of these phenomena.
Gli stili APA, Harvard, Vancouver, ISO e altri
28

Bridges, Thomas J., e Philip J. Morris. "Boundary layer stability calculations". Physics of Fluids 30, n. 11 (1987): 3351. http://dx.doi.org/10.1063/1.866467.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
29

Esplin, G. J. "Boundary Layer Emission Monitoring". JAPCA 38, n. 9 (settembre 1988): 1158–61. http://dx.doi.org/10.1080/08940630.1988.10466465.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
30

Mahrt, L. "Nocturnal Boundary-Layer Regimes". Boundary-Layer Meteorology 88, n. 2 (agosto 1998): 255–78. http://dx.doi.org/10.1023/a:1001171313493.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
31

Trowbridge, John H., e Steven J. Lentz. "The Bottom Boundary Layer". Annual Review of Marine Science 10, n. 1 (3 gennaio 2018): 397–420. http://dx.doi.org/10.1146/annurev-marine-121916-063351.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
32

Arav, Nahum, e Mitchell C. Begelman. "Radiation-viscous boundary layer". Astrophysical Journal 401 (dicembre 1992): 125. http://dx.doi.org/10.1086/172045.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
33

Cheskidov, Alexey. "Turbulent boundary layer equations". Comptes Rendus Mathematique 334, n. 5 (gennaio 2002): 423–27. http://dx.doi.org/10.1016/s1631-073x(02)02275-6.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
34

BOTTARO, ALESSANDRO. "A ‘receptive’ boundary layer". Journal of Fluid Mechanics 646 (8 marzo 2010): 1–4. http://dx.doi.org/10.1017/s0022112009994228.

Testo completo
Abstract (sommario):
Receptivity is the process which describes how environmental disturbances (such as gusts, acoustic waves or wall roughness) are filtered by a boundary layer and turned into downstream-growing waves. It is closely related to the identification of initial conditions for the disturbances and requires knowledge of the characteristics of the specific external forcing field. Without such a knowledge, it makes sense to focus on worst case scenarios and search for those initial states which maximize the disturbance amplitude at a given downstream position, and hence to identify upper bounds on growth rates, which will be useful in predicting the transition to turbulence. This philosophical approach has been taken by Tempelmann, Hanifi & Henningson (J. Fluid Mech., 2010, vol. 646, pp. 5–37) in a remarkably complete parametric study of ‘optimal disturbances’ for a model of the flow over a swept wing; they pinpoint the crucial importance both of the spatial variation of the flow and of non-modal disturbances, even when the flow is ‘supercritical’ and hence subject to classical ‘normal mode’ instabilities.
Gli stili APA, Harvard, Vancouver, ISO e altri
35

Bénech, B. "The atmospheric boundary layer". Atmospheric Research 29, n. 3-4 (maggio 1993): 286–87. http://dx.doi.org/10.1016/0169-8095(93)90017-i.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
36

Durand, Pierre. "Atmospheric boundary layer flows". Atmospheric Research 41, n. 2 (luglio 1996): 177–78. http://dx.doi.org/10.1016/0169-8095(95)00045-3.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
37

King, J. C. "The atmospheric boundary layer". Dynamics of Atmospheres and Oceans 18, n. 1-2 (giugno 1993): 115–16. http://dx.doi.org/10.1016/0377-0265(93)90006-s.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
38

De Keyser, J., M. W. Dunlop, C. J. Owen, B. U. Ö. Sonnerup, S. E. Haaland, A. Vaivads, G. Paschmann, R. Lundin e L. Rezeau. "Magnetopause and Boundary Layer". Space Science Reviews 118, n. 1-4 (giugno 2005): 231–320. http://dx.doi.org/10.1007/s11214-005-3834-1.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
39

Simpson, R. L. "Turbulent Boundary-Layer Separation". Annual Review of Fluid Mechanics 21, n. 1 (gennaio 1989): 205–32. http://dx.doi.org/10.1146/annurev.fl.21.010189.001225.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
40

Wu, Xiaohua, Parviz Moin e Jean-Pierre Hickey. "Boundary layer bypass transition". Physics of Fluids 26, n. 9 (settembre 2014): 091104. http://dx.doi.org/10.1063/1.4893454.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
41

Xu, Qin, e Wei Gu. "Semigeostrophic Frontal Boundary Layer". Boundary-Layer Meteorology 104, n. 1 (luglio 2002): 99–110. http://dx.doi.org/10.1023/a:1015565624074.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
42

Businger, J. A. "The atmospheric boundary layer". Earth-Science Reviews 34, n. 4 (agosto 1993): 283–84. http://dx.doi.org/10.1016/0012-8252(93)90069-j.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
43

Hobbs, S. E. "The atmospheric boundary layer". Journal of Atmospheric and Terrestrial Physics 57, n. 3 (marzo 1995): 322. http://dx.doi.org/10.1016/0021-9169(95)90026-8.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
44

Ostermeyer, Georg-Peter, Thomas Vietor, Michael Müller, David Inkermann, Johannes Otto e Hendrik Lembeck. "The Boundary Layer Machine". PAMM 17, n. 1 (dicembre 2017): 159–60. http://dx.doi.org/10.1002/pamm.201710049.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
45

Mahrt, L. "Boundary-layer moisture regimes". Quarterly Journal of the Royal Meteorological Society 117, n. 497 (gennaio 1991): 151–76. http://dx.doi.org/10.1002/qj.49711749708.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
46

Smith, Roger K., e Michael T. Montgomery. "Hurricane boundary-layer theory". Quarterly Journal of the Royal Meteorological Society 136, n. 652 (ottobre 2010): 1665–70. http://dx.doi.org/10.1002/qj.679.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
47

Anderson, E. J., W. R. McGillis e M. A. Grosenbaugh. "The boundary layer of swimming fish". Journal of Experimental Biology 204, n. 1 (1 gennaio 2001): 81–102. http://dx.doi.org/10.1242/jeb.204.1.81.

Testo completo
Abstract (sommario):
Tangential and normal velocity profiles of the boundary layer surrounding live swimming fish were determined by digital particle tracking velocimetry, DPTV. Two species were examined: the scup Stenotomus chrysops, a carangiform swimmer, and the smooth dogfish Mustelus canis, an anguilliform swimmer. Measurements were taken at several locations over the surfaces of the fish and throughout complete undulatory cycles of their propulsive motions. The Reynolds number based on length, Re, ranged from 3×10(3) to 3×10(5). In general, boundary layer profiles were found to match known laminar and turbulent profiles including those of Blasius, Falkner and Skan and the law of the wall. In still water, boundary layer profile shape always suggested laminar flow. In flowing water, boundary layer profile shape suggested laminar flow at lower Reynolds numbers and turbulent flow at the highest Reynolds numbers. In some cases, oscillation between laminar and turbulent profile shapes with body phase was observed. Local friction coefficients, boundary layer thickness and fluid velocities at the edge of the boundary layer were suggestive of local oscillatory and mean streamwise acceleration of the boundary layer. The behavior of these variables differed significantly in the boundary layer over a rigid fish. Total skin friction was determined. Swimming fish were found to experience greater friction drag than the same fish stretched straight in the flow. Nevertheless, the power necessary to overcome friction drag was determined to be within previous experimentally measured power outputs. No separation of the boundary layer was observed around swimming fish, suggesting negligible form drag. Inflected boundary layers, suggestive of incipient separation, were observed sporadically, but appeared to be stabilized at later phases of the undulatory cycle. These phenomena may be evidence of hydrodynamic sensing and response towards the optimization of swimming performance.
Gli stili APA, Harvard, Vancouver, ISO e altri
48

Kuntz, D. W., V. A. Amatucci e A. L. Addy. "Turbulent boundary-layer properties downstream of the shock-wave/boundary-layer interaction". AIAA Journal 25, n. 5 (maggio 1987): 668–75. http://dx.doi.org/10.2514/3.9681.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
49

S. S. PARASNIS, M. K. KULKARNI e J. S. PILLAI. "Simulation of boundary layer parameters using one dimensional atmospheric boundary layer model". Journal of Agrometeorology 3, n. 1-2 (1 settembre 2001): 261–66. http://dx.doi.org/10.54386/jam.v3i1-2.411.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
50

Manisha Patel, Hema Surati e M. G. Timol. "Extension of Blasius Newtonian Boundary Layer to Blasius Non-Newtonian Boundary Layer". Mathematical Journal of Interdisciplinary Sciences 9, n. 2 (8 giugno 2021): 35–41. http://dx.doi.org/10.15415/mjis.2021.92004.

Testo completo
Abstract (sommario):
Blasius equation is very well known and it aries in many boundary layer problems of fluid dynamics. In this present article, the Blasius boundary layer is extended by transforming the stress strain term from Newtonian to non-Newtonian. The extension of Blasius boundary layer is discussed using some non-newtonian fluid models like, Power-law model, Sisko model and Prandtl model. The Generalised governing partial differential equations for Blasius boundary layer for all above three models are transformed into the non-linear ordinary differewntial equations using the one parameter deductive group theory technique. The obtained similarity solutions are then solved numerically. The graphical presentation is also explained for the same. It concludes that velocity increases more rapidly when fluid index is moving from shear thickninhg to shear thininhg fluid.MSC 2020 No.: 76A05, 76D10, 76M99
Gli stili APA, Harvard, Vancouver, ISO e altri
Offriamo sconti su tutti i piani premium per gli autori le cui opere sono incluse in raccolte letterarie tematiche. Contattaci per ottenere un codice promozionale unico!

Vai alla bibliografia