Tesi sul tema "Boosting"
Cita una fonte nei formati APA, MLA, Chicago, Harvard e in molti altri stili
Vedi i top-50 saggi (tesi di laurea o di dottorato) per l'attività di ricerca sul tema "Boosting".
Accanto a ogni fonte nell'elenco di riferimenti c'è un pulsante "Aggiungi alla bibliografia". Premilo e genereremo automaticamente la citazione bibliografica dell'opera scelta nello stile citazionale di cui hai bisogno: APA, MLA, Harvard, Chicago, Vancouver ecc.
Puoi anche scaricare il testo completo della pubblicazione scientifica nel formato .pdf e leggere online l'abstract (il sommario) dell'opera se è presente nei metadati.
Vedi le tesi di molte aree scientifiche e compila una bibliografia corretta.
Lin, Wei-Chao. "Boosting image annotation". Thesis, University of Sunderland, 2010. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.512013.
Testo completoThompson, Simon Giles. "Distributed boosting algorithms". Thesis, University of Portsmouth, 1999. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.285529.
Testo completoZhou, Mian. "Gobor-boosting face recognition". Thesis, University of Reading, 2008. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.494814.
Testo completoANIBOLETE, TULIO JORGE DE A. N. DE S. "BOOSTING FOR RECOMMENDATION SYSTEMS". PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO, 2008. http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=13225@1.
Testo completoWith the amount of information and its easy availability on the Internet, many options are offered to the people and they, normally, have little or almost no experience to decide between the existing alternatives. In this scene, the Recommendation Systems appear to organize and recommend automatically, through Machine Learning, the interesting items. One of the great recommendation challenges is to match correctly what is being recommended and who are receiving the recommendation. This work presents a Recommendation System based on Collaborative Filtering, technique whose essence is the exchange of experiences between users with common interests. In Collaborative Filtering, users rate each experimented item indicating its relevance allowing the use of ratings by other users of the same group. Our objective is to implement a Boosting algorithm in order to optimize a Recommendation System performance. For this, we use a database of advertisements with validation purposes and a database of movies with testing purposes. After adaptations in the conventional Boosting strategies, improvements of 3% were reached over the original algorithm.
SALOMONI, MATTEO. "Boosting scintillation based detection". Doctoral thesis, Università degli Studi di Milano-Bicocca, 2019. http://hdl.handle.net/10281/241285.
Testo completoDuring this Ph.D., state-of-the-art scintillating materials have been intensively studied with several constraints found regarding their light emission, optical properties, and chemical stability. Different characterization benches were developed specifically for the measurements presented in the thesis and extensive work has been dedicated to fine tune the simulations framework that describes scintillators and photo-detectors. Classical approaches were found to be already at a good trade-off between performances and costs while to really boost scintillation detection a shift in paradigm was needed, moving away from classical ray tracing concepts and scintillation mechanism. This Ph.D. work explored the use of diffraction and quantum dots to break the limit of critical angle and classical e-h recombination, respectively. \newline Photonic crystals were used as diffracting layer deposited on the read-out face of inorganic scintillators and showed promising results from the point of view the crystal's time and energy resolution. The additional modes provided by the periodical nano-structuration of the read-out face add several degrees of freedom where simulations could find new optimal solutions. An enhanced extraction of scintillation light was demonstrated in different crystal configurations.\newline Nanocrystals, on the other hand, pushed the state-of-the-art of scintillation timing properties down to the ps scale, bringing innovative ideas for future fast detectors. The use of quantum dots allowed to tune the recombination mechanism of scintillating semiconductors leading to inhibited non-radiative channels and enhance dipole emission from the emitting centers.
Hofner, Benjamin. "Boosting in structured additive models". Diss., lmu, 2011. http://nbn-resolving.de/urn:nbn:de:bvb:19-138053.
Testo completoRätsch, Gunnar. "Robust boosting via convex optimization". Phd thesis, Universität Potsdam, 2001. http://opus.kobv.de/ubp/volltexte/2005/39/.
Testo completoDie Arbeit behandelt folgende Sachverhalte:
o Die zur Analyse von Boosting-Methoden geeignete Statistische Lerntheorie. Wir studieren lerntheoretische Garantien zur Abschätzung der Vorhersagequalität auf ungesehenen Mustern. Kürzlich haben sich sogenannte Klassifikationstechniken mit großem Margin als ein praktisches Ergebnis dieser Theorie herausgestellt - insbesondere Boosting und Support-Vektor-Maschinen. Ein großer Margin impliziert eine hohe Vorhersagequalität der Entscheidungsregel. Deshalb wird analysiert, wie groß der Margin bei Boosting ist und ein verbesserter Algorithmus vorgeschlagen, der effizient Regeln mit maximalem Margin erzeugt.
o Was ist der Zusammenhang von Boosting und Techniken der konvexen Optimierung?
Um die Eigenschaften der entstehenden Klassifikations- oder Regressionsregeln zu analysieren, ist es sehr wichtig zu verstehen, ob und unter welchen Bedingungen iterative Algorithmen wie Boosting konvergieren. Wir zeigen, daß solche Algorithmen benutzt werden koennen, um sehr große Optimierungsprobleme mit Nebenbedingungen zu lösen, deren Lösung sich gut charakterisieren laesst. Dazu werden Verbindungen zum Wissenschaftsgebiet der konvexen Optimierung aufgezeigt und ausgenutzt, um Konvergenzgarantien für eine große Familie von Boosting-ähnlichen Algorithmen zu geben.
o Kann man Boosting robust gegenüber Meßfehlern und Ausreissern in den Daten machen?
Ein Problem bisheriger Boosting-Methoden ist die relativ hohe Sensitivität gegenüber Messungenauigkeiten und Meßfehlern in der Trainingsdatenmenge. Um dieses Problem zu beheben, wird die sogenannte 'Soft-Margin' Idee, die beim Support-Vector Lernen schon benutzt wird, auf Boosting übertragen. Das führt zu theoretisch gut motivierten, regularisierten Algorithmen, die ein hohes Maß an Robustheit aufweisen.
o Wie kann man die Anwendbarkeit von Boosting auf Regressionsprobleme erweitern?
Boosting-Methoden wurden ursprünglich für Klassifikationsprobleme entwickelt. Um die Anwendbarkeit auf Regressionsprobleme zu erweitern, werden die vorherigen Konvergenzresultate benutzt und neue Boosting-ähnliche Algorithmen zur Regression entwickelt. Wir zeigen, daß diese Algorithmen gute theoretische und praktische Eigenschaften haben.
o Ist Boosting praktisch anwendbar?
Die dargestellten theoretischen Ergebnisse werden begleitet von Simulationsergebnissen, entweder, um bestimmte Eigenschaften von Algorithmen zu illustrieren, oder um zu zeigen, daß sie in der Praxis tatsächlich gut funktionieren und direkt einsetzbar sind. Die praktische Relevanz der entwickelten Methoden wird in der Analyse chaotischer Zeitreihen und durch industrielle Anwendungen wie ein Stromverbrauch-Überwachungssystem und bei der Entwicklung neuer Medikamente illustriert.
In this work we consider statistical learning problems. A learning machine aims to extract information from a set of training examples such that it is able to predict the associated label on unseen examples. We consider the case where the resulting classification or regression rule is a combination of simple rules - also called base hypotheses. The so-called boosting algorithms iteratively find a weighted linear combination of base hypotheses that predict well on unseen data. We address the following issues:
o The statistical learning theory framework for analyzing boosting methods.
We study learning theoretic guarantees on the prediction performance on unseen examples. Recently, large margin classification techniques emerged as a practical result of the theory of generalization, in particular Boosting and Support Vector Machines. A large margin implies a good generalization performance. Hence, we analyze how large the margins in boosting are and find an improved algorithm that is able to generate the maximum margin solution.
o How can boosting methods be related to mathematical optimization techniques?
To analyze the properties of the resulting classification or regression rule, it is of high importance to understand whether and under which conditions boosting converges. We show that boosting can be used to solve large scale constrained optimization problems, whose solutions are well characterizable. To show this, we relate boosting methods to methods known from mathematical optimization, and derive convergence guarantees for a quite general family of boosting algorithms.
o How to make Boosting noise robust?
One of the problems of current boosting techniques is that they are sensitive to noise in the training sample. In order to make boosting robust, we transfer the soft margin idea from support vector learning to boosting. We develop theoretically motivated regularized algorithms that exhibit a high noise robustness.
o How to adapt boosting to regression problems?
Boosting methods are originally designed for classification problems. To extend the boosting idea to regression problems, we use the previous convergence results and relations to semi-infinite programming to design boosting-like algorithms for regression problems. We show that these leveraging algorithms have desirable theoretical and practical properties.
o Can boosting techniques be useful in practice?
The presented theoretical results are guided by simulation results either to illustrate properties of the proposed algorithms or to show that they work well in practice. We report on successful applications in a non-intrusive power monitoring system, chaotic time series analysis and a drug discovery process.
---
Anmerkung:
Der Autor ist Träger des von der Mathematisch-Naturwissenschaftlichen Fakultät der Universität Potsdam vergebenen Michelson-Preises für die beste Promotion des Jahres 2001/2002.
Chan, Jeffrey (Jeffrey D. ). "On boosting and noisy labels". Thesis, Massachusetts Institute of Technology, 2015. http://hdl.handle.net/1721.1/100297.
Testo completoThis electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
Cataloged from student-submitted PDF version of thesis.
Includes bibliographical references (pages 53-56).
Boosting is a machine learning technique widely used across many disciplines. Boosting enables one to learn from labeled data in order to predict the labels of unlabeled data. A central property of boosting instrumental to its popularity is its resistance to overfitting. Previous experiments provide a margin-based explanation for this resistance to overfitting. In this thesis, the main finding is that boosting's resistance to overfitting can be understood in terms of how it handles noisy (mislabeled) points. Confirming experimental evidence emerged from experiments using the Wisconsin Diagnostic Breast Cancer(WDBC) dataset commonly used in machine learning experiments. A majority vote ensemble filter identified on average that 2.5% of the points in the dataset as noisy. The experiments chiefly investigated boosting's treatment of noisy points from a volume-based perspective. While the cell volume surrounding noisy points did not show a significant difference from other points, the decision volume surrounding noisy points was two to three times less than that of non-noisy points. Additional findings showed that decision volume not only provides insight into boosting's resistance to overfitting in the context of noisy points, but also serves as a suitable metric for identifying which points in a dataset are likely to be mislabeled.
by Jeffrey Chan.
M. Eng.
Bjurgert, Johan. "System Identification by Adaptive Boosting". Thesis, KTH, Reglerteknik, 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-179711.
Testo completoInom området maskininlärning har algoritmen Adaptive Boosting framgångs-rikt använts på många typer av klassificerings- och regressionsproblem. Hit-intills har algoritmen dock inte använts till att estimera dynamiska system. I detta examensarbete utforskas sambanden mellan Adaptive Boosting och sys-temidentifiering. En ny identifieringsmetod kallad TM-Boost, som är inspir-erad av Adaptive Boosting introduceras. Metoden baseras på ortonormala basfunktioner och bygger iterativt upp ett dynamiskt system. En tilltalande egenskap är att det inte längre är nödvändigt att specifiera modellordning. Det bevisas också matematiskt att det estimerade systemet, under vissa förut-sättningar, konvergerar mot det sanna underliggande systemet, vilket även verifieras i en serie identifieringsexperiment.
Mayr, Andreas [Verfasser]. "Boosting beyond the mean - extending component-wise gradient boosting algorithms to multiple dimensions / Andreas Mayr". München : Verlag Dr. Hut, 2013. http://d-nb.info/104287848X/34.
Testo completoReithinger, Florian. "Mixed models based on likelihood boosting". Diss., [S.l.] : [s.n.], 2006. http://edoc.ub.uni-muenchen.de/archive/00006281.
Testo completoTieu, Kinh H. (Kinh Han) 1976. "Boosting sparse representations for image retrieval". Thesis, Massachusetts Institute of Technology, 2000. http://hdl.handle.net/1721.1/86431.
Testo completoTEIXEIRA, JÚNIOR Talisman Cláudio de Queiroz. "Classificação fonética utilizando Boosting e SVM". Universidade Federal do Pará, 2006. http://repositorio.ufpa.br/jspui/2011/2533.
Testo completoApproved for entry into archive by Irvana Coutinho(irvana@ufpa.br) on 2012-03-07T12:40:11Z (GMT) No. of bitstreams: 2 Dissertacao_Talisman_Teixeira_Junior ClassificacaoFoneticaBoosting.pdf: 1955727 bytes, checksum: 2174e57105a6d0135a85cb9c47e05a7a (MD5) license_rdf: 23898 bytes, checksum: e363e809996cf46ada20da1accfcd9c7 (MD5)
Made available in DSpace on 2012-03-07T12:40:11Z (GMT). No. of bitstreams: 2 Dissertacao_Talisman_Teixeira_Junior ClassificacaoFoneticaBoosting.pdf: 1955727 bytes, checksum: 2174e57105a6d0135a85cb9c47e05a7a (MD5) license_rdf: 23898 bytes, checksum: e363e809996cf46ada20da1accfcd9c7 (MD5) Previous issue date: 2006
Para compor um sistema de Reconhecimento Automático de Voz, pode ser utilizada uma tarefa chamada Classificação Fonética, onde a partir de uma amostra de voz decide-se qual fonema foi emitido por um interlocutor. Para facilitar a classificação e realçar as características mais marcantes dos fonemas, normalmente, as amostras de voz são pré- processadas através de um fronl-en'L Um fron:-end, geralmente, extrai um conjunto de parâmetros para cada amostra de voz. Após este processamento, estes parâmetros são insendos em um algoritmo classificador que (já devidamente treinado) procurará decidir qual o fonema emitido. Existe uma tendência de que quanto maior a quantidade de parâmetros utilizados no sistema, melhor será a taxa de acertos na classificação. A contrapartida para esta tendência é o maior custo computacional envolvido. A técnica de Seleção de Parâmetros tem como função mostrar quais os parâmetros mais relevantes (ou mais utilizados) em uma tarefa de classificação, possibilitando, assim, descobrir quais os parâmetros redundantes, que trazem pouca (ou nenhuma) contribuição à tarefa de classificação. A proposta deste trabalho é aplicar o classificador SVM à classificação fonética, utilizando a base de dados TIMIT, e descobrir os parâmetros mais relevantes na classificação, aplicando a técnica Boosting de Seleção de Parâmetros.
With the aim of setting up a Automatic Speech Recognition (ASR) system, a task named Phonetic Classification can be used. That task consists in, from a speech sample, deciding which phoneme was pronounced by a speaker. To ease the classification task and to enhance the most marked characteristics of the phonemes, the speech samples are usually pre-processed by a front-end. A front-end, as a general rule, extracts a set of features to each speech sample. After that, these features are inserted in a classification algorithm, that (already properly trained) will try to decide which phoneme was pronounced. There is a rule of thumb which says that the more features the system uses, the smaller the classification error rate will be. The disadvantage to that is the larger computational cost. Feature Selection task aims to show which are the most relevant (or more used) features in a classification task. Therefore, it is possible to discover which are the redundant features, that make little (or no) contribution to the classification task. The aim of this work is to apply SVM classificator in Phonetic Classification task, using TIMIT database, and discover the most relevant features in this classification using Boosting approach to implement Feature Selection.
Nikolaou, Nikolaos. "Cost-sensitive boosting : a unified approach". Thesis, University of Manchester, 2016. https://www.research.manchester.ac.uk/portal/en/theses/costsensitive-boosting-a-unified-approach(ae9bb7bd-743e-40b8-b50f-eb59461d9d36).html.
Testo completoZhai, Shaodan. "Direct Optimization for Classification with Boosting". Wright State University / OhioLINK, 2015. http://rave.ohiolink.edu/etdc/view?acc_num=wright1453001665.
Testo completoByrne, Alice. "Boosting Britain : démocratie et propagande culturelle". Aix-Marseille 1, 2010. http://www.theses.fr/2010AIX10026.
Testo completoSelchenkova, Tatiana. "Boosting implicit learning with temporal regularities". Thesis, Lyon 1, 2013. http://www.theses.fr/2013LYO10278.
Testo completoThe thesis aims to investigate how temporal regularities can influence the implicit learning of artificial pitch structures. Implicit learning refers to the acquisition of structure knowledge by mere exposure. According to the Dynamic Attending Theory proposed by Jones (Jones, 1976), internal attentional oscillators synchronize with external temporal regularities, helping to guide attention over time and to develop temporal and perceptual expectations about future events. We made the hypothesis that strongly metrical structures might boost implicit learning, and in particular, that the strongly metrical presentation of pitch structures helps listeners to develop temporal expectations about the occurrence of the next event and thus benefits to the processing of the pitch dimension, leading to better learning of the artificial material. Three studies were realized during this PhD thesis. In Study 1, we used a behavioral approach to investigate how regular and irregular temporal presentations of an artificial pitch grammar influence implicit learning. The data revealed that both types of temporal presentations can influence implicit learning, but that the regular presentation leads to an advantage over the irregular presentation. In Study 2, we used behavioral and electrophysiological methods to investigate which type of regular temporal presentation of the artificial grammar, i.e. strongly metrical or isochronous, leads to better implicit learning of pitch structures. Electrophysiological results showed that the metrical framework provided an additional benefit for the pitch structure learning. In Study 3, we investigated whether the strongly metrical presentation allows patients with left inferior frontal lesions (with previously reported deficits for implicit learning) to learn the artificial pitch grammar. Behavioral and electrophysiological results showed that patients with left inferior frontal gyrus lesions acquired the new artificial grammar despite their lesions and despite previously reported deficits in implicit learning and syntax processing of natural language. It might be useful to exploit the potential benefit of the strongly metrical presentation further in patients for who impaired IL has been shown with non-musical and non-metrical materials
Suchier, Henri-Maxime. "Nouvelles contributions du boosting en apprentissage automatique". Phd thesis, Université Jean Monnet - Saint-Etienne, 2006. http://tel.archives-ouvertes.fr/tel-00379539.
Testo completoLe boosting, et son algorithme AdaBoost, est une méthode ensembliste très étudiée depuis plusieurs années : ses performances expérimentales remarquables reposent sur des fondements théoriques rigoureux. Il construit de manière adaptative et itérative des hypothèses de base en focalisant l'apprentissage, à chaque nouvelle itération, sur les exemples qui ont été difficiles à apprendre lors des itérations précédentes. Cependant, AdaBoost est relativement inadapté aux données du monde réel. Dans cette thèse, nous nous concentrons en particulier sur les données bruitées, et sur les données hétérogènes.
Dans le cas des données bruitées, non seulement la méthode peut devenir très lente, mais surtout, AdaBoost apprend par coeur les données, et le pouvoir prédictif des hypothèses globales générées, s'en trouve extrêmement dégradé. Nous nous sommes donc intéressés à une adaptation du boosting pour traiter les données bruitées. Notre solution exploite l'information provenant d'un oracle de confiance permettant d'annihiler les effets dramatiques du bruit. Nous montrons que notre nouvel algorithme conserve les propriétés théoriques du boosting standard. Nous mettons en pratique cette nouvelle méthode, d'une part sur des données numériques, et d'autre part, de manière plus originale, sur des données textuelles.
Dans le cas des données hétérogènes, aucune adaptation du boosting n'a été proposée jusqu'à présent. Pourtant, ces données, caractérisées par des attributs multiples mais de natures différentes (comme des images, du son, du texte, etc), sont extrêmement fréquentes sur le web, par exemple. Nous avons donc développé un nouvel algorithme de boosting permettant de les utiliser. Plutôt que de combiner des hypothèses boostées indépendamment, nous construisons un nouveau schéma de boosting permettant de faire collaborer durant l'apprentissage des algorithmes spécialisés sur chaque type d'attribut. Nous prouvons que les décroissances exponentielles des erreurs sont toujours assurées par ce nouveau modèle, aussi bien d'un point de vue théorique qu'expérimental.
Vayatis, Nicolas. "Approches statistiques en apprentissage : boosting et ranking". Habilitation à diriger des recherches, Université Pierre et Marie Curie - Paris VI, 2006. http://tel.archives-ouvertes.fr/tel-00120738.
Testo completosélectionnant un estimateur au sein d'une classe massive telle que l'enveloppe convexe d'une classe de VC. Dans le premier volet du mémoire, on rappelle les interprétations des algorithmes de boosting comme des implémentations de principes de minimisation
de risques convexes et on étudie leurs propriétés sous cet angle. En particulier, on montre l'importance de la
régularisation pour obtenir des stratégies consistantes. On développe également une nouvelle classe d'algorithmes de type gradient stochastique appelés algorithmes de descente miroir avec moyennisation et on évalue leur comportement à travers des simulations informatiques. Après avoir présenté les principes fondamentaux du boosting, on s'attache dans le
deuxième volet à des questions plus avancées telles que
l'élaboration d'inégalités d'oracle. Ainsi, on étudie la
calibration précise des pénalités en fonction des critères
de coût utilisés. On présente des résultats
non-asymptotiques sur la performance des estimateurs du boosting pénalisés, notamment les vitesses rapides sous les conditions de marge de type Mammen-Tsybakov et on décrit les capacités d'approximation du boosting utilisant les "rampes" (stumps) de décision. Le troisième volet du mémoire explore le problème du ranking. Un enjeu important dans des applications
telles que la fouille de documents ou le "credit scoring" est d'ordonner les instances plutôt que de les catégoriser. On propose une formulation simple de ce problème qui permet d'interpréter le ranking comme une classification sur des paires d'observations. La différence dans ce cas vient du fait que les
critères empiriques sont des U-statistiques et on développe donc la théorie de la classification adaptée à ce contexte. On explore également la question de la généralisation de l'erreur de ranking afin de pouvoir inclure des a priori sur l'ordre des instances, comme dans le cas où on ne s'intéresse qu'aux "meilleures" instances.
Hofner, Benjamin [Verfasser]. "Boosting in Structured Additive Models / Benjamin Hofner". München : Verlag Dr. Hut, 2012. http://d-nb.info/1020299223/34.
Testo completoWang, Shihai. "Boosting learning applied to facial expression recognition". Thesis, University of Manchester, 2009. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.511940.
Testo completoGuile, Geofrrey Robert. "Boosting ensemble techniques for Microarray data analysis". Thesis, University of East Anglia, 2009. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.518361.
Testo completoNecib, Lina. "Boosting (in)direct detection of dark matter". Thesis, Massachusetts Institute of Technology, 2017. http://hdl.handle.net/1721.1/112073.
Testo completoCataloged from PDF version of thesis.
Includes bibliographical references (pages 153-178).
In this thesis, I study the expected direct and indirect detection signals of dark matter. More precisely, I study three aspects of dark matter; I use hydrodynamic simulations to extract properties of weakly interacting dark matter that are relevant for both direct and indirect detection signals, and construct viable dark matter models with interesting experimental signatures. First, I analyze the full scale Illustris simulation, and find that Galactic indirect detection signals are expected to be largely symmetric, while extragalactic signals are not, due to recent mergers and the presence of substructure. Second, through the study of the high resolution Milky Way simulation Eris, I find that metal-poor halo stars can be used as tracers for the dark matter velocity distribution. I use the Sloan Digital Sky Survey to obtain the first empirical velocity distribution of dark matter, which weakens the expected direct detection limits by up to an order of magnitude at masses ~ 10 GeV. Finally, I expand the weakly interacting dark matter paradigm by proposing a new dark matter model called boosted dark matter. This novel scenario contains a relativistic component with interesting hybrid direct and indirect detection signatures at neutrino experiments. I propose two search strategies for boosted dark matter, at Cherenkov-based experiments and future liquid-argon neutrino detectors.
by Lina Necib.
Ph. D.
Iyer, Raj Dharmarajan 1976. "An efficient boosting algorithm for combining preferences". Thesis, Massachusetts Institute of Technology, 1999. http://hdl.handle.net/1721.1/80203.
Testo completoIncludes bibliographical references (p. 79-84).
by Raj Dharmarajan Iyer, Jr.
S.M.
Henry, Claudia. "Approches spectrales et boosting : extensions et synergie". Université des Antilles et de la Guyane, 2008. http://www.theses.fr/2008AGUY0217.
Testo completoThe machine learning is an important field of investigation in artificial intelligence. We consider it under his two aspects supervised and not-supervised, respectively via two techniques : the spectral clustering and the boosting. The spectral clustering which is based on algebraic results proved to be simple to use and effective. We propose a probabilistic interpretation of this method and an application to the distinction of languages in a multilingual corpus of texts. The boosting is a learning technology making it possible to increase the performances of decision trees. We generalize this concept by proposing an algorithm for enhancing the performances of a rather broad class classifieurs. Lastly, we are interested in the possible interactions of these two types of training. Theoretical but such experimental results support our matter
Larsson, Richard. "Boosting Gamma Neural Activity using Binaural Beats". Thesis, Linköpings universitet, Institutionen för datavetenskap, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-166074.
Testo completoTeixeira, Filipe. "Boosting compression-based classifiers for authorship attribution". Master's thesis, Universidade de Aveiro, 2016. http://hdl.handle.net/10773/18375.
Testo completoAtribuição de autoria é o ato de atribuir um autor a documento anónimo. Apesar de esta tarefa ser tradicionalmente feita por especialistas, muitos novos métodos foram apresentados desde o aparecimento de computadores, em meados do século XX, alguns deles recorrendo a compressores para encontrar padrões recorrentes nos dados. Neste trabalho vamos apresentar os resultados que podem ser alcançados ao utilizar mais do que um compressor, utilizando um meta-algoritmo conhecido como Boosting.
Authorship attribution is the task of assigning an author to an anonymous document. Although the task was traditionally performed by expert linguists, many new techniques have been suggested since the appearance of computers, in the middle of the XX century, some of them using compressors to find repeating patterns in the data. This work will present the results that can be achieved by a collaboration of more than one compressor using a meta-algorithm known as Boosting.
Huang, Jian Giles C. Lee. "A multiclass boosting classification method with active learning". [University Park, Pa.] : Pennsylvania State University, 2009. http://etda.libraries.psu.edu/theses/approved/WorldWideIndex/ETD-4765/index.html.
Testo completoRätsch, Gunnar. "Robust boosting via convex optimization theory and applications /". [S.l.] : [s.n.], 2001. http://pub.ub.uni-potsdam.de/2002/0008/raetsch.ps.
Testo completoLei, Celestino. "Using genetic algorithms and boosting for data preprocessing". Thesis, University of Macau, 2002. http://umaclib3.umac.mo/record=b1447848.
Testo completoMitchell, Andrew Computer Science & Engineering Faculty of Engineering UNSW. "An approach to boosting from positive-only data". Awarded by:University of New South Wales. Computer Science and Engineering, 2004. http://handle.unsw.edu.au/1959.4/20678.
Testo completoLiao, Jun. "Totally corrective boosting algorithms that maximize the margin /". Diss., Digital Dissertations Database. Restricted to UC campuses, 2006. http://uclibs.org/PID/11984.
Testo completoRobinzonov, Nikolay. "Advances in boosting of temporal and spatial models". Diss., Ludwig-Maximilians-Universität München, 2013. http://nbn-resolving.de/urn:nbn:de:bvb:19-153382.
Testo completoDUARTE, JULIO CESAR. "THE BOOSTING AT START ALGORITHM AND ITS APPLICATIONS". PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO, 2009. http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=31451@1.
Testo completoCOORDENAÇÃO DE APERFEIÇOAMENTO DO PESSOAL DE ENSINO SUPERIOR
INSTITUTO MILITAR DE ENGENHARIA
CENTRO TECNOLÓGICO DO EXÉRCITO
PROGRAMA DE EXCELENCIA ACADEMICA
Boosting é uma técnica de aprendizado de máquina que combina diversos classificadores fracos com o objetivo de melhorar a acurácia geral. Em cada iteração, o algoritmo atualiza os pesos dos exemplos e constrói um classificador adicional. Um esquema simples de votação é utilizado para combinar os classificadores. O algoritmo mais famoso baseado em Boosting é o AdaBoost. Este algoritmo aumenta os pesos dos exemplos em que os classificadores anteriores cometeram erros. Assim, foca o classificador adicional nos exemplos mais difíceis. Inicialmente, uma distribuição uniforme de pesos é atribúda aos exemplos. Entretanto, não existe garantia que essa seja a melhor escolha para a distribuição inicial. Neste trabalho, apresentamos o Boosting at Start (BAS), uma nova abordagem de aprendizado de máquina baseada em Boosting. O BAS generaliza o AdaBoost permitindo a utilização de uma distribuição inicial arbitrária. Também apresentamos esquemas para determinação de tal distribuição. Além disso, mostramos como adaptar o BAS para esquemas de Aprendizado Semi-supervisionado. Adicionalmente, descrevemos a aplicação do BAS em diferentes problemas de classificação de dados e de texto, comparando o seu desempenho com o algoritmo AdaBoost original e alguns algoritmos do estado-da-arte para tais tarefas. Os resultados experimentais indicam que uma modelagem simples usando o algoritmo BAS gera classificadores eficazes.
Boosting is a Machine Learning technique that combines several weak classifers with the goal of improving the overall accuracy. In each iteration, the algorithm updates the example weights and builds an additional classifer. A simple voting scheme is used to combine the classifers. The most famous Boosting-based algorithm is AdaBoost. This algorithm increases the weights of the examples that were misclassifed by the previous classifers. Thus, it focuses the additional classifer on the hardest examples. Initially, an uniform weight distribution is assigned to the examples. However, there is no guarantee that this is the best choice for the initial distribution. In this work, we present Boosting at Start (BAS), a new Machine Learning approach based on Boosting. BAS generalizes AdaBoost by allowing the use of an arbitrary initial distribution. We present schemes for the determination of such distribution. We also show how to adapt BAS to Semi-supervised learning schemes. Additionally, we describe the application of BAS in different problems of data and text classifcation, comparing its performance with the original AdaBoost algorithm and some state-of-the-art algorithms for such tasks. The experimental results indicate that a simple modelling using the BAS algorithm generates effective classifers.
Abouelenien, Mohamed. "Boosting for Learning From Imbalanced, Multiclass Data Sets". Thesis, University of North Texas, 2013. https://digital.library.unt.edu/ark:/67531/metadc407775/.
Testo completoBarbosa, Paulo Henrique Farias. "The impact of boosting higher education in Brazil". Master's thesis, Instituto Superior de Economia e Gestão, 2018. http://hdl.handle.net/10400.5/16614.
Testo completoA presente tese estuda se a abertura de Instituição de Ensino Superior (IES) em municípios do Brasil onde ainda não havia oferta de ensino superior, teve impacto na renda per capita. Para isso, construí um painel com todos os municípios brasileiros para os anos de 2000 e 2010, com os dados do Censo Demográfico e Censo do Ensino Superior. Para lidar com possíveis problemas de endogeneidade que são comuns neste tipo de dados, usei o modelo de Heckman. Os resultados do modelo de Heckman apontam para um positivo impacto da abertura de IES na renda per capita dos municípios (que ainda não tinham oferta de ensino superior). Mais precisamente, o impacto de introduzir IES foi, em média, de aproximadamente 4%, enquanto que o impacto de dobrar o número de pessoas com ensino superior foi também de 4%. O modelo aponta que selection bias está fortemente presente nos dados.
The present thesis studies the impact on income per capita of the opening of new Higher Education Institutions (HEI) in Brazilian municipalities where there was no supply of higher education. To do so, I constructed a panel with data from 2000 and 2010 with all Brazilian municipalities, based on the Demographic Census and on the Higher Education Census. In order to overcome the endogeneity problems normally encountered in these datasets, I applied the Heckman model. The results of the Heckman model point to a positive impact of new HEI openings in municipalities where there was no higher education supply in the initial period. The impact of introducing HEI in the municipality is of around 4% on income per capita, while the impact of doubling the proportion of the population with tertiary education is, as well, of around 4%. The model suggests that selection bias highly present in the dataset.
info:eu-repo/semantics/publishedVersion
Sogoni, Zanele. "Is public debt boosting economic growth in SADC?" Master's thesis, University of Cape Town, 2014. http://hdl.handle.net/11427/29033.
Testo completoDhyani, Dushyanta Dhyani. "Boosting Supervised Neural Relation Extraction with Distant Supervision". The Ohio State University, 2018. http://rave.ohiolink.edu/etdc/view?acc_num=osu1524095334803486.
Testo completoBurridge, Stephen (Stephen Robert) Carleton University Dissertation History. "The busy East: boosting the Maritimes, 1910-1925". Ottawa, 1993.
Cerca il testo completoLoh, Wai Lam. "Boosting of multiphase flows using multiphase jet pumps". Thesis, University of Manchester, 2000. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.549306.
Testo completoMoreni, Matilde <1994>. "Prediction of Cryptocurrency prices using Gradient Boosting machine". Master's Degree Thesis, Università Ca' Foscari Venezia, 2020. http://hdl.handle.net/10579/17739.
Testo completoLeitenstorfer, Florian. "Boosting in nonparametric regression : constrained and unconstrained modeling approaches /". München : Hut, 2008. http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&doc_number=016367575&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA.
Testo completoLeitenstorfer, Florian. "Boosting in nonparametric regression constrained and unconstrained modeling approaches". München Verl. Dr. Hut, 2007. http://d-nb.info/987775812/04.
Testo completoCrudelini, Miriam. "Demand Forecasting mediante algoritmi di boosting: una valutazione sperimentale". Bachelor's thesis, Alma Mater Studiorum - Università di Bologna, 2019. http://amslaurea.unibo.it/19136/.
Testo completoJohannsson, Dagur Valberg. "Biomedical Information Retrieval based on Document-Level Term Boosting". Thesis, Norwegian University of Science and Technology, Department of Computer and Information Science, 2009. http://urn.kb.se/resolve?urn=urn:nbn:no:ntnu:diva-8981.
Testo completoThere are several problems regarding information retrieval on biomedical information. The common methods for information retrieval tend to fall short when searching in this domain. With the ever increasing amount of information available, researchers have widely agreed on that means to precisely retrieve needed information is vital to use all available knowledge. We have in an effort to increase the precision of retrieval within biomedical information created an approach to give all terms in a document a context weight based on the contexts domain specific data. We have created a means of including our context weights in document ranking, by combining the weights with existing ranking models. Combining context weights with existing models has given us document-level term boosting, where the context of the queried terms within a document will positively or negatively affect the documents ranking score. We have tested out our approach by implementing a full search engine prototype and evaluatied it on a document collection within biomedical domain. Our work shows that this type of score boosting has little effect on overall retrieval precision. We conclude that the approach we have created, as implemented in our prototype, not to necessarily be good means of increasing precision in biomedical retrieval systems.
Wamhoff, Jons-Tobias, Stephan Diestelhorst, Christof Fetzer, Patrick Marlier, Pascal Felber e Dave Dice. "Selective Core Boosting: The Return of the Turbo Button". Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2013. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-127748.
Testo completoBrockhaus, Sarah [Verfasser], e Sonja [Akademischer Betreuer] Greven. "Boosting functional regression models / Sarah Brockhaus ; Betreuer: Sonja Greven". München : Universitätsbibliothek der Ludwig-Maximilians-Universität, 2016. http://d-nb.info/1115144812/34.
Testo completoRedpath, David Bruce. "Boosting with Feature Selection applied to underwater video classification". Thesis, Heriot-Watt University, 2006. http://hdl.handle.net/10399/155.
Testo completoMcGinley, Susan. "Boosting Lycopene in the Diet: The Tomato Consumption Study". College of Agriculture and Life Sciences, University of Arizona (Tucson, AZ), 2006. http://hdl.handle.net/10150/622177.
Testo completoAhlgren, Marcus. "Claims Reserving using Gradient Boosting and Generalized Linear Models". Thesis, KTH, Matematisk statistik, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-229406.
Testo completoEn av de centrala verksamheterna ett försäkringsbolag arbetar med handlar om att uppskatta skadekostnader för att kunna ersätta försäkringstagarna. Denna procedur kallas reservsättning och utförs av aktuarier med hjälp av statistiska metoder. Under de senaste årtiondena har statistiska inlärningsmetoder blivit mer och mer populära tack vare deras förmåga att hitta komplexa mönster i alla typer av data. Dock har intresset för dessa varit relativt lågt inom försäkringsbranschen till förmån för mer traditionella försäkringsmatematiska metoder. I den här masteruppsatsen undersöker vi förmågan att reservsätta med metoden \textit{gradient boosting}, en icke-parametrisk statistisk inlärningsmetod som har visat sig fungera mycket väl inom en rad andra områden vilket har gjort metoden mycket populär. Vi jämför denna metod med generaliserade linjära modeller(GLM) som är en av de vanliga metoderna vid reservsättning. Vi jämför modellerna med hjälp av ett dataset tillhandahålls av Länsförsäkringar AB. Modellerna implementerades med R. 80\% av detta dataset används för att träna modellerna och resterande 20\% används för att evaluera modellernas prediktionsförmåga på okänd data. Resultaten visar att GLM har ett lägre prediktionsfel. Gradient boosting kräver att ett antal hyperparametrar justeras manuellt för att få en välfungerande modell medan GLM inte kräver lika mycket korrigeringar varför den är mer praktiskt lämpad. Fördelen med att kunna modellerna komplexa förhållanden i data utnyttjas inte till fullo i denna uppsats då vi endast arbetar med sex prediktionsvariabler. Det är sannolikt att gradient boosting skulle ge bättre resultat med mer komplicerade datastrukturer.