Letteratura scientifica selezionata sul tema "Bone-grafting"

Cita una fonte nei formati APA, MLA, Chicago, Harvard e in molti altri stili

Scegli il tipo di fonte:

Consulta la lista di attuali articoli, libri, tesi, atti di convegni e altre fonti scientifiche attinenti al tema "Bone-grafting".

Accanto a ogni fonte nell'elenco di riferimenti c'è un pulsante "Aggiungi alla bibliografia". Premilo e genereremo automaticamente la citazione bibliografica dell'opera scelta nello stile citazionale di cui hai bisogno: APA, MLA, Harvard, Chicago, Vancouver ecc.

Puoi anche scaricare il testo completo della pubblicazione scientifica nel formato .pdf e leggere online l'abstract (il sommario) dell'opera se è presente nei metadati.

Articoli di riviste sul tema "Bone-grafting"

1

SM, Harsini. "Bone Regenerative Medicine and Bone Grafting". Open Access Journal of Veterinary Science & Research 3, n. 4 (2018): 1–7. http://dx.doi.org/10.23880/oajvsr-16000167.

Testo completo
Abstract (sommario):
Bone tissues can repair and regenerate it: in many clinical cases, bone fractures repair without scar formation. Nevertheless, in large bone defects and pathological fractures, bone healing fail to heal. Bone grafting is defined as implantation of material which promot es fracture healing, through osteoconduction osteogenesis, and osteoinduction. Ideal bone grafting depends on several factors such as defect size, ethical issues, biomechanical characteristics, tissue viability, shape and volume, associated complications, cost, graft size, graft handling, and biological characteristics. The materials that are used as bone graft can be divided into separate major categories, such as autografts, allografts, and xenografts. Synthetic substitutes and tissue - engineered biomateri als are other options. Each of these instances has some advantages and disadvantages. Between the all strategies for improving fracture healing and enhance the outcome of unification of the grafts, tissue engineering is a suitable option. A desirable tissu e - engineered bone must have properties similar to those of autografts without their limitations. None of the used bone grafts has all the ideal properties including low donor morbidity, long shelf life, efficient cost, biological safety, no size restrictio n, and osteoconductive, osteoinductive, osteogenic, and angiogenic properties; but Tissue engineering tries to supply most of these features. In addition it is able to induce healing and reconstruction of bone defects. Combining the basis of orthopedic sur gery with knowledge from different sciences like materials science, biology, chemistry, physics, and engineering can overcome the limitations of current therapies. Combining the basis of orthopedic surgery with knowledge from different sciences like materi als science, biology, chemistry, physics, and engineering can overcome the limitations of current therapies.
Gli stili APA, Harvard, Vancouver, ISO e altri
2

Zipfel, Gregory J., Bernard H. Guiot e Richard G. Fessler. "Bone grafting". Neurosurgical Focus 14, n. 2 (febbraio 2003): 1–8. http://dx.doi.org/10.3171/foc.2003.14.2.9.

Testo completo
Abstract (sommario):
In recent years our understanding of spinal fusion biology has improved. This includes the continued elucidation of the step-by-step cellular and molecular events involved in the prototypic bone induction cascade, as well as the identification and characterization of the various critical growth factors governing the process of bone formation and bone graft incorporation. Based on these fundamental principles, growth factor technology has been exploited in an attempt to improve rates of spinal fusion, and promising results have been realized in preclinical animal studies and initial clinical human studies. In this article the authors review the recent advances in the biology of bone fusion and provide a perspective on the future of spinal fusion, a future that will very likely include increased graft fusion rates and improved patient outcome as a result of the successful translation of fundamental bone fusion principles to the bedside.
Gli stili APA, Harvard, Vancouver, ISO e altri
3

YT, Konttinen, Waris E, Xu J-W, Lassus J, Salo J, Nevalainen J e Santatvirta S. "Bone grafting". Journal of Orthopaedic Nursing 3, n. 1 (febbraio 1999): 52. http://dx.doi.org/10.1016/s1361-3111(99)80090-9.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
4

Pikos, Michael A. "Bone grafting". Journal of Oral and Maxillofacial Surgery 61, n. 8 (agosto 2003): 7. http://dx.doi.org/10.1016/s0278-2391(03)00346-x.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
5

Alexander, J. W. "Bone Grafting". Veterinary Clinics of North America: Small Animal Practice 17, n. 4 (luglio 1987): 811–19. http://dx.doi.org/10.1016/s0195-5616(87)50078-x.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
6

Konttinen, YrjöT, Eero Waris, Jing-Wen Xu, Jan Lassus, Jari Salo, Seppo Santavirta e Juha Nevalainen. "Bone grafting". Current Orthopaedics 12, n. 3 (luglio 1998): 209–15. http://dx.doi.org/10.1016/s0268-0890(98)90026-3.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
7

&NA;. "BONE GRAFTING". Plastic and Reconstructive Surgery 82, n. 4 (ottobre 1988): 739. http://dx.doi.org/10.1097/00006534-198810000-00105.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
8

Egol, Kenneth A., Aaron Nauth, Mark Lee, Hans-Christoph Pape, J. Tracy Watson e Joseph Borrelli. "Bone Grafting". Journal of Orthopaedic Trauma 29 (dicembre 2015): S10—S14. http://dx.doi.org/10.1097/bot.0000000000000460.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
9

Eppley, Barry L. "Alveolar cleft bone grafting (Part I): Primary bone grafting". Journal of Oral and Maxillofacial Surgery 54, n. 1 (gennaio 1996): 74–82. http://dx.doi.org/10.1016/s0278-2391(96)90310-9.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
10

Ochs, Mark W. "Alveolar cleft bone grafting (Part II): Secondary bone grafting". Journal of Oral and Maxillofacial Surgery 54, n. 1 (gennaio 1996): 83–88. http://dx.doi.org/10.1016/s0278-2391(96)90311-0.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri

Tesi sul tema "Bone-grafting"

1

Herbert, Amy Angharad. "Bone grafting : tissue treatment and osseointegration". Thesis, Cardiff University, 2004. http://orca.cf.ac.uk/55547/.

Testo completo
Abstract (sommario):
Bone grafts fill skeletal defects and provide a structure upon which new bone can be deposited. There is no standard method of storing bone prior to grafting, the three main storage regimes being stored fresh frozen at -80°C, gamma irradiated or freeze dried. The initial aim of this project was to determine how osteoblastic cells behaved when exposed to bone treated in the above ways. It was found that sterilisation of bone with gamma irradiation caused cell death in a number of the cells that came into contact with it. Therefore the use of gamma irradiation for grafting is contraindicated, a similar observation was observed for freeze-dried bone whereas cells grew and differentiated on fresh frozen tissue. The second aim of this study was to develop a system whereby bone marrow cells could be expanded in culture and retain their osteogenic potential so that they would be suitable for either coating a bone graft (thus increasing the rate of osseointegration of the graft) or used alone to treat small bone defects. Rodent bone marrow was used in a variety of cultures and bone formation was induced by either BGJ-b medium or ECCM (Endothelial cell conditioned medium). Control cultures were grown in alpha modification minimum essential medium. ECCM was overall found to produce a greater number of cells at the end of the incubation periods studied than BGJ-b medium. BGJ-b medium preferentially selected mineralization over cell proliferation under all of the culture conditions studied (monolayers, collagen gels and organ cultures). This medium would be best suited to forming small pieces of bone rapidly from bone marrow, to fill small bone defects such as those seen in the dental field. ECCM produced large numbers of osteogenic cells, which could potentially be used to coat large bone grafts.
Gli stili APA, Harvard, Vancouver, ISO e altri
2

Mak, Siu Yan. "Mechanical factors influencing impaction bone grafting". Thesis, University of Bath, 2007. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.486839.

Testo completo
Abstract (sommario):
Impaction grafting for bone stock loss in revision total hip arthroI;>lasty has been used for over a decade. This technique typically involves the insertion of a cemented highly polished stem into impacted morsellised allograft bone. The aim is to compensate for the bone stock loss after failed primary hip arthroplasty and to provide a mechanical and biological scaffold for mechanical support and bone remodelling. The primary objective of this study is to quantify and optimise the graft properties so as to provide maximum supportive forces to the stem, and, at' the same time, to minimise the amount of per.:operative and post-operative femoral fractures. More than 60 parameters that could affect the mechanical properties of graft have been identified. Porcine bone from femoral heads was used in the study which was primarily divided into two parts: fundamental studies of the graft material, and in-vitro mechanical testing to replicate the clinical application of impaction bone grafting. Various techniques of graft preparation including defatting of the graft were investigated. A die-plunger was employed to perform uni-axial compressive testing on the graft at varying strain rates. It was found that defatted' graft demonstrated higher stiffness. Higher rates of loading resulted in increases in stiffness, hoop strain, axial force and Poisson's ratio. Preloading of the graft provided more predictable mechanical characteristics. Cyclic compressive testing showed th~t individual graft particles fractured during compression. In addition, it was found that the graft demonstrated increased viscoelastic properties at higher strain rates. In-vitro mechanical testing was also performed to compare the level of mechanical stability of a cemented polished stem with a larger uncemented polished stem. Composite femora were '' used for this comparison. It was found that the cemented stem showed higher mechanical stability in terms of the level of micromotion and migration, and uncemented stem failed in a catastrophic manner. The study provided information on how various factors contributed to the mechanical behaviour of bone graft and identified parameters that should be used when in-vitro testing of bone graft materials for use in impaction grafting.
Gli stili APA, Harvard, Vancouver, ISO e altri
3

Twitty, Anne. "The expression of tissue inhibitor of metalloproteinase during the early stages of bone graft healing". Thesis, Hong Kong : University of Hong Kong, 2000. http://sunzi.lib.hku.hk/hkuto/record.jsp?B21804023.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
4

Dattani, Rupen. "Femoral impaction grafting : using bone graft substitutes". Thesis, University College London (University of London), 2008. http://discovery.ucl.ac.uk/1444261/.

Testo completo
Abstract (sommario):
Background: Femoral impaction allografting to reconstitute bone loss during revision hip surgery has shown excellent results. However, limitations with the use of allografts have warranted research to investigate if bone graft substitutes could be a suitable alternative to replace or augment allograft in impaction grafting.;Aims and Methods: The objectives of this thesis were to assess if: The use of hydroxyapatite (HA) in various combinations with allograft will be biologically effective and functionally stable using a cemented impaction grafting technique in an ovine hemiarthroplasty model. The different treatment groups were compared by measuring the ground reaction forces and new bone formation. The addition of mesenchymal stem cells (MSCs) to allograft, HA or an allograft:HA mixture enhances the amount of new bone formation compared with impaction of the scaffold alone in an ovine metaphyseal femoral bone defect model. The architecture of the HA scaffold influences bone formation in an extra-skeletal sheep model.;Results: HA: allograft mixture of up to 90:10 demonstrated similar functional stability and amount of new bone formation as a 50:50 mixture. Addition of MSCs to allograft or a 50:50 allograft:HA mixture enhances the amount of new bone formation compared with unimpacted constructs. HA either alone or combined with MSCs induces bone growth only when constructed in block form and not in identical porous granular form.;Conclusion: HA is a suitable bone substitute to augment allograft and may be replace bone graft completely in impaction grafting of a femoral component. This has important clinical implications as HA is readily available, easy to use in surgery and not associated with the adverse effects encountered with allografts. The use of MSCs in the treatment of osteolysis holds great potential but further work is required to assess if this technology is transferable to humans.
Gli stili APA, Harvard, Vancouver, ISO e altri
5

黃美娟 e May-kuen Alice Wong. "Bone induction of demineralized intramembranous and endochondral bone matrices". Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 1999. http://hub.hku.hk/bib/B3197305X.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
6

Wong, May-kuen Alice. "Bone induction of demineralized intramembranous and endochondral bone matrices". View the Table of Contents & Abstract, 1999. http://sunzi.lib.hku.hk/hkuto/record.jsp?B21872752.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
7

Thorén, Klas. "Lipid-extracted bone grafts". Lund : Dept. of Orthopedics, University Hospital, Lund University, 1994. http://catalog.hathitrust.org/api/volumes/oclc/39676934.html.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
8

Lie, Ken Jie Ronny Ket Phoei. "The healing of composite endochondral bone grafts a qualitative and quantitative analysis /". Hong Kong : Faculty of Dentistry, The University of Hong Kong, 1995. http://sunzi.lib.hku.hk/HKUTO/record/B38628120.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
9

李國培 e Ken Jie Ronny Ket Phoei Lie. "The healing of composite endochondral bone grafts: a qualitative and quantitative analysis". Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 1995. http://hub.hku.hk/bib/B38628120.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
10

McNamara, Iain Robert. "Characterisation of the mechanical response of morcellised bone graft and bone graft substitutes for impaction grafting". Thesis, University of Cambridge, 2010. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.608923.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri

Libri sul tema "Bone-grafting"

1

E, Friedlander Gary, a cura di. Bone grafting. Philadelphia, PA: W.B. Saunders, 1987.

Cerca il testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
2

Older, M. W. J., a cura di. Bone Implant Grafting. London: Springer London, 1992. http://dx.doi.org/10.1007/978-1-4471-1934-0.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
3

1935-, Older John, a cura di. Bone implant grafting. London: Springer-Verlag, 1992.

Cerca il testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
4

Older, M. W. J. Bone Implant Grafting. London: Springer London, 1992.

Cerca il testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
5

Leung, Ping-Chung. Current Trends in Bone Grafting. Berlin, Heidelberg: Springer Berlin Heidelberg, 1989. http://dx.doi.org/10.1007/978-3-642-73970-5.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
6

Current trends in bone grafting. Berlin: Springer-Verlag, 1989.

Cerca il testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
7

1948-, Davies J. E., e Bone-Biomaterial Interface Workshop (1990 : Toronto, Ont.), a cura di. The Bone-biomaterial interface. Toronto: University of Toronto Press, 1991.

Cerca il testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
8

1962-, Rasmusson Lars, e Zellin Göran 1962-, a cura di. Bone grafting techniques for maxillary implants. Oxford: Blackwell Munksgaard, 2005.

Cerca il testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
9

Kahnberg, Karl-Erik, a cura di. Bone Grafting Techniques for Maxillary Implants. Oxford, UK: Blackwell Munksgaard, 2005. http://dx.doi.org/10.1002/9780470759578.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
10

Y, Shin Alexander, e Moran Steven L, a cura di. Vascularized bone grafting in orthopedic surgery. Philadelphia: Saunders, 2006.

Cerca il testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri

Capitoli di libri sul tema "Bone-grafting"

1

Sheikh, Zeeshan, Siavash Hasanpour e Michael Glogauer. "Bone Grafting". In Mandibular Implant Prostheses, 155–74. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-71181-2_9.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
2

Czitrom, A. A. "Bone Banking". In Bone Implant Grafting, 209–11. London: Springer London, 1992. http://dx.doi.org/10.1007/978-1-4471-1934-0_26.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
3

Pierce, Todd P., Julio J. Jauregui, Jeffrey J. Cherian, Randa K. Elmallah e Michael A. Mont. "Nonvascularized Bone Grafting". In Osteonecrosis of the Femoral Head, 117–21. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-50664-7_11.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
4

Semb, Gunvor. "Alveolar Bone Grafting". In Frontiers of Oral Biology, 124–36. Basel: S. KARGER AG, 2012. http://dx.doi.org/10.1159/000337666.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
5

Baek, Seung-Hoon, e Shin-Yoon Kim. "Impaction Bone Grafting". In Osteonecrosis, 297–306. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-642-35767-1_41.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
6

Haider, Syed Mahmood. "Alveolar Bone Grafting". In Surgical Atlas of Cleft Palate and Palatal Fistulae, 417–27. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-15-8124-3_43.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
7

Muthusubramanian, Veerabahu, e Kalarikkal Mukundan Harish. "Alveolar Bone Grafting". In Oral and Maxillofacial Surgery for the Clinician, 1655–73. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-15-1346-6_74.

Testo completo
Abstract (sommario):
AbstractAlveolar Bone Grafting is a clinical procedure which is performed to maintain the integrity of the alveolar arch in cleft patients. This clinical procedure helps in facilitating eruption of canine and lateral incisors. This chapter discusses the normal anatomy of alveolus, significance of cleft alveolus, surgical steps to ensure separation of a well-defined oral and nasal layer, donor sites for bone grafting, harvesting techniques and final closure of the alveolar cleft. In addition, this chapter further highlights the recent developments in the field of bone regeneration.
Gli stili APA, Harvard, Vancouver, ISO e altri
8

Czitrom, A. A. "Immunology of Bone Grafting". In Bone Implant Grafting, 3–7. London: Springer London, 1992. http://dx.doi.org/10.1007/978-1-4471-1934-0_1.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
9

Chandler, H. P. "Revision of the Acetabular Component". In Bone Implant Grafting, 63–69. London: Springer London, 1992. http://dx.doi.org/10.1007/978-1-4471-1934-0_10.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
10

Gross, A. E. "Banked Allograft Bone for Proximal Femoral Deficiency". In Bone Implant Grafting, 73–75. London: Springer London, 1992. http://dx.doi.org/10.1007/978-1-4471-1934-0_11.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri

Atti di convegni sul tema "Bone-grafting"

1

Samarawickrama, Kasun G. "A Review on Bone Grafting, Bone Substitutes and Bone Tissue Engineering". In the 2nd International Conference. New York, New York, USA: ACM Press, 2018. http://dx.doi.org/10.1145/3239438.3239457.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
2

Кобызев, А. Е., В. В. Краснов e Ю. Ю. Литвинов. "THE USE OF BONE GRAFTING IN PRACTICAL MEDICINE". In ОТ БИОХИМИИ РАСТЕНИЙ К БИОХИМИИ ЧЕЛОВЕКА. Москва: Федеральное государственное бюджетное научное учреждение "Всероссийский научно-исследовательский институт лекарственных и ароматических растений", 2022. http://dx.doi.org/10.52101/9785870191041_369.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
3

Vivanco, Juan, Josh Slane e Heidi Ploeg. "Nano-Mechanical Properties of Bioceramic Bone Scaffolds Fabricated at Three Sintering Temperatures". In ASME 2011 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2011. http://dx.doi.org/10.1115/sbc2011-53734.

Testo completo
Abstract (sommario):
Bone grafting is an exceptionally common procedure used to repair bone defects within orthopaedics, craniofacial surgery and dentistry. It is estimated that 2.2 million grafting procedures are performed annually worldwide [1] and maintain a market share of $7 billion in the United States alone [2]. There has been a considerable rise in the interest of using bioactive ceramic materials, such as hydroxyapatite and tricalcium phosphate (TCP), to serve as synthetic replacements for autogenous bone grafts, which suffer from donor site morbidity and limited supply [3]. These ceramic materials (which can be formed into three-dimensional scaffolds) are advantageous due to their inherent biocompatibility, osteoconductivy, osteogenecity and osteointegrity [2].
Gli stili APA, Harvard, Vancouver, ISO e altri
4

Reddy, C. Mallikarjuna, B. Ram Bhupal Reddy, E. Kesava Reddy e K. Sesha Maheswaramma. "Finite Element Modeling of Bone by Using Hydroxyapatite As Bioactive Nanomaterial in Bone Grafting, Bone Healing and the Reduction of Mechanical Failure in the Bone Surgery". In 2011 International Conference on Nanoscience, Technology and Societal Implications (NSTSI). IEEE, 2011. http://dx.doi.org/10.1109/nstsi.2011.6111995.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
5

Salaam, Amanee D., e Derrick Dean. "Electrospun Polycaprolactone-Nanodiamond Composite Scaffolds for Bone Tissue Engineering". In ASME 2010 First Global Congress on NanoEngineering for Medicine and Biology. ASMEDC, 2010. http://dx.doi.org/10.1115/nemb2010-13298.

Testo completo
Abstract (sommario):
Every year, there are roughly 8 million bone fractures in United States [1]. In addition, approximately 2300 new cases of primary bone cancer are diagnosed each year [2]. Yet, the number of people suffering from bone disease is significantly greater; about 10 million people in the U.S. alone suffer from osteoporosis [3]. Consequently, surgeons perform nearly 500,000 bone graft operations annually making bone grafts the second most frequently transplanted materials [4]. Although there is an extremely high demand for treatment of bone abnormalities, the current grafting methods fail to meet these demands due to several limitations. Autografting has the fewest problems with rejection and pathogen transmission, however in some cases the availability may be limited or not be possible (e.g., genetic diseases). With other methods of transplantation such as allogafting and xenografting where tissue is acquired from other humans or species, respectively, the receptor’s immune system causes an increased risk of chronic rejection [5]. Notably, the major drawback with all these methods is that they often require multiple painful and invasive surgeries.
Gli stili APA, Harvard, Vancouver, ISO e altri
6

Tandon, Rahul, e Alan S. Herford. "Future of bone pathology, bone grafting, and osseointegration in oral and maxillofacial surgery: how applying optical advancements can help both fields". In SPIE BiOS, a cura di Nikiforos Kollias, Bernard Choi, Haishan Zeng, Hyun Wook Kang, Bodo E. Knudsen, Brian J. Wong, Justus F. Ilgner et al. SPIE, 2013. http://dx.doi.org/10.1117/12.2001675.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
7

Slaoui, Idriss, Makeda K. Stephenson, Huma Abdul Rauf, Douglas E. Dow e Sally S. Shady. "Stress Analysis of Bone Scaffold Designed for Segmental Bone Defects". In ASME 2015 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2015. http://dx.doi.org/10.1115/imece2015-53398.

Testo completo
Abstract (sommario):
Segmental bone defects result in isolated bone fragments. These defects may be caused by trauma or disease and are a leading cause for orthopedic surgery. Segmental defects pose a challenge as they contain gaps between the ends of bones, which are too large for the regenerating tissue to naturally bridge and repair. A widely used clinical approach to repair such defects is the use of autografts that provide the essential bone growth features. However, autografts generate a secondary deficit in the region from which the graft was harvested. This grafting procedure may result in other complications, such as infections, inflammation, scarring, and bleeding. Synthetic bone scaffolding has been explored as a viable method of helping the body repair segmental bone defects. While synthetic bone scaffolding is a promising approach in orthopedic treatments, limitations exist. Bone is a complex organ with many cell types, emergent, anisotropic, mechanical properties and molecular interactions. Studies have shown that the inner geometries, such as pore size, play an integral role in bone regeneration, cell proliferation, differentiation and recovery. An architecturally-based approach in the design and fabrication of the scaffold may support the differentiation of complex bone tissues. This study developed and tested scaffold designs having different pore size and beam thickness. The designs were developed and simulated for compression and tension in SolidWorks. A hexagonal unit cell was the basis for scaffold design. In one experimental trial (Group 1), the offset of the layers was varied. In another experimental trial (Group 2), the ratio between pore size and beam thickness was varied while using the optimal offset from the former trial. The material for simulation was poly-L-lactic (PLA) acid. In the analysis of the simulation results, the optimal layer offset configuration of 100%,50% in the positive x-y direction showed the lowest stress distribution for both compression and tensile simulations compared to the other offset configurations analyzed. In the second trial of Group 2 models, two models with pore size to beam thickness ratios (7:1 and 8:1) demonstrated low stress distribution under the simulated physiological environments. These results suggest that both models can potentially have different applications in the repair of segmental bone defects.
Gli stili APA, Harvard, Vancouver, ISO e altri
8

Ipsen, Brian J., John L. Williams, Michael J. Harris e Thomas L. Schmidt. "Shear Strength of the Pig Capital Femoral Epiphyseal Plate: An Experimental Model for Human Slipped Capital Femoral Epiphysis Fixation Studies". In ASME 2002 International Mechanical Engineering Congress and Exposition. ASMEDC, 2002. http://dx.doi.org/10.1115/imece2002-32611.

Testo completo
Abstract (sommario):
Slipped capital femoral epiphysis (SCFE) is the most common hip disorder affecting adolescent children [1]. The etiology is not fully understood but thought to be multifactorial, related to both biological and biomechanical factors [2]. SCFE occurs when the epiphysis of the proximal femur slips in relation to the metaphysis through the growth plate, causing pain, disability and potential long-term sequellae from joint incongruity. The treatment for SCFE typically involves some form of stabilization procedure using pins, screws, bone grafting, osteotomy, or casting.
Gli stili APA, Harvard, Vancouver, ISO e altri
9

Bazlov, V. A., T. Z. Mamuladze, V. V. Pavlov, V. M. Prohorenko, M. A. Sadovoy, N. G. Fomichev, M. V. Efimenko, E. V. Mamonova e A. M. Aronov. "Using titanium LPW-TI64-GD23-TYPE5 in the individual contour grafting of bone defects with 3D implants". In PHYSICS OF CANCER: INTERDISCIPLINARY PROBLEMS AND CLINICAL APPLICATIONS: Proceedings of the International Conference on Physics of Cancer: Interdisciplinary Problems and Clinical Applications (PC IPCA’17). Author(s), 2017. http://dx.doi.org/10.1063/1.5001585.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
10

Nagel, Thomas, Sascha Müller, Uwe-Jens Görke, Carol Muehlemann e Markus A. Wimmer. "Depth Dependent Strain Analysis of Articular Cartilage Under Impaction Loading". In ASME 2007 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2007. http://dx.doi.org/10.1115/sbc2007-176644.

Testo completo
Abstract (sommario):
Lesions in the cartilage of the knee can lead to degenerative arthritis of the joint. Therefore, procedures such as osteochondral grafting are used to repair the cartilage. Osteochondral grafting procedures are of interest, because the lesion is replaced with true hyaline cartilage. This procedure involves press-fitting a cylindrical bone-cartilage plug by impaction to repair the damaged cartilage area. Recently, it has been shown that impact insertion of osteochondral grafts generates damaging loads that cause chondrocyte death, particularly in the superficial zone [1]. Using high speed video analysis, it has been shown that the highest local deformations occur within the superficial zone of the osteochondral plug [2,3]. However, the exact strain condition of the tissue during impaction and any depth dependent strain differences remain unknown. Assuming uniaxial load conditions of an ideal cylinder exposed to high strain rates, the stress-strain response of cartilage plugs during the impaction process is reported in this study. We hypothesized that the highest strain levels would occur in the superficial zone. Based on the experimental results, the fundamental material effects substantial for the load case under consideration can be studied. Consequently, suitable material models for subsequent numerical simulations can be established.
Gli stili APA, Harvard, Vancouver, ISO e altri

Rapporti di organizzazioni sul tema "Bone-grafting"

1

Markel, Mark D. The Effect of Cementation and Autogenous Bone Grafting on Allograft Union and Incorporation. Fort Belvoir, VA: Defense Technical Information Center, maggio 1994. http://dx.doi.org/10.21236/ada280324.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
2

Markel, Mark D. The Effect of Cementation and Autogenous Bone Grafting on Allograft Union and Incorporation. Fort Belvoir, VA: Defense Technical Information Center, settembre 1994. http://dx.doi.org/10.21236/ada285630.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
3

Markel, Mark D. The Effect of Cementation and Autogenous Bone Grafting on Allograft Union and Incorporation. Fort Belvoir, VA: Defense Technical Information Center, gennaio 1995. http://dx.doi.org/10.21236/ada291094.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
4

Markel, Mark D. The Effect of Cementation and Autogenous Bone Grafting on Allograft Union and Incorporation. Fort Belvoir, VA: Defense Technical Information Center, febbraio 1994. http://dx.doi.org/10.21236/ada276464.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
5

Pluhar, Grace. Optimization of Soft Tissue Management, Spacer Design, and Grafting Strategies for Large Segmental Bone Defects using the Chronic Caprine Tibial Defect Model. Fort Belvoir, VA: Defense Technical Information Center, ottobre 2014. http://dx.doi.org/10.21236/ada613146.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
6

Forsberg, Jonathan A. Optimization of Soft Tissue Management, Spacer Design, and Grafting Strategies For Large Segmental Bone Defects Using The Chronic Caprine Tibial Defect Model. Fort Belvoir, VA: Defense Technical Information Center, ottobre 2014. http://dx.doi.org/10.21236/ada613641.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
7

Canellas, João Vitor, Luciana Drugos, Fabio Ritto, Ricardo Fischer e Paulo Jose Medeiros. What grafting materials produce greater new bone formation in maxillary sinus floor elevation surgery? A systematic review and network meta-analysis protocol. INPLASY - International Platform of Registered Systematic Review and Meta-analysis Protocols, giugno 2020. http://dx.doi.org/10.37766/inplasy2020.6.0106.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
Offriamo sconti su tutti i piani premium per gli autori le cui opere sono incluse in raccolte letterarie tematiche. Contattaci per ottenere un codice promozionale unico!

Vai alla bibliografia