Letteratura scientifica selezionata sul tema "Bonding interphase"

Cita una fonte nei formati APA, MLA, Chicago, Harvard e in molti altri stili

Scegli il tipo di fonte:

Consulta la lista di attuali articoli, libri, tesi, atti di convegni e altre fonti scientifiche attinenti al tema "Bonding interphase".

Accanto a ogni fonte nell'elenco di riferimenti c'è un pulsante "Aggiungi alla bibliografia". Premilo e genereremo automaticamente la citazione bibliografica dell'opera scelta nello stile citazionale di cui hai bisogno: APA, MLA, Harvard, Chicago, Vancouver ecc.

Puoi anche scaricare il testo completo della pubblicazione scientifica nel formato .pdf e leggere online l'abstract (il sommario) dell'opera se è presente nei metadati.

Articoli di riviste sul tema "Bonding interphase":

1

Zhu, Guangxiang, Qian Feng, Jinshan Yang, Jianbao Hu, Hongda Wang, Yudong Xue, Qingliang Shan e Shaoming Dong. "Effect of BNNTs/matrix interface tailoring on toughness and fracture morphology of hierarchical SiCf/SiC composites". Journal of Advanced Ceramics 8, n. 4 (dicembre 2019): 555–63. http://dx.doi.org/10.1007/s40145-019-0338-0.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
Abstract (sommario):
AbstractA thin BN interphase is applied on BNNTs surface to tailor the interfacial bonding between BNNTs and SiC matrix in hierarchical SiCf/SiC composites. The thickness of BN interphase ranging from 10 to 70 nm can be optimized by chemical vapor deposition after BNNTs are in situ grown on SiC fiber surface. Without BN interphase, the fracture toughness of hierarchical SiCf/SiC composites can be impaired by 13.6% due to strong interfacial bonding. As long as BN interphase with 30–45 nm thickness is applied, the interfacial bonding can be optimized and fracture toughness of hierarchical composites can be improved by 27.3%. It implies that tailoring BNNTs/matrix interface by depositing a layer of BN interphase is in favor of activating energy dissipation mechanisms at nanoscale induced by BNNTs.
2

He, Qian, Tianyi Zhan, Haiyang Zhang, Zehui Ju, Lu Hong, Nicolas Brosse e Xiaoning Lu. "Comparison of Bonding Performance Between Plywood and Laminated Veneer Lumber Induced by High Voltage Electrostatic Field." MATEC Web of Conferences 275 (2019): 01013. http://dx.doi.org/10.1051/matecconf/201927501013.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
Abstract (sommario):
High voltage electrostatic field (HVEF) was applied in order to improve wood surface characteristics, bonding and mechanical properties of wood composites. Masson pine (Pinus massoniana Lamp.) plywood and laminated veneer lumber (LVL) were selected in this study. Surface characteristics were conducted by the electron spin resonance (ESR) and X-ray photoelectron spectra (XPS). Bonding interphase and mechanical properties were investigated by fluorescence microscopy and vertical density profile (VDP), bonding strength, wood failure ratio, MOE and MOR. The results indicated that more increments were obtained in free radicals, O/C ratios and C2-C4 components. This is because electrons broke more wood chemical groups and new ions occurred among wood surface under HVEF. Significantly decreased PF adhesive penetration depth (PD) and increased density at bonding interphase was achieved in HVEF treated composites. More decrease of PD and increment of density were observed in plywood than that of LVL. This was attributed to cross linked wood fibers among bonding interphase in plywood. Mechanical properties of bonding strength, wood failure ratio, MOE and MOR were significantly increased under HVEF treatment both for two composites. Higher bonding strength, MOE and MOR were obtained in plywood and their increments were as 98.53%, 33.33%, 18.55% and 12.72%.
3

Zanjani, Jamal Seyyed Monfared, e Ismet Baran. "Co-Bonded Hybrid Thermoplastic-Thermoset Composite Interphase: Process-Microstructure-Property Correlation". Materials 14, n. 2 (8 gennaio 2021): 291. http://dx.doi.org/10.3390/ma14020291.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
Abstract (sommario):
Co-bonding is an effective joining method for fiber-reinforced composites in which a prefabricated part bonds with a thermoset resin during the curing process. Manufacturing of co-bonded thermoset-thermoplastic hybrid composites is a challenging task due to the complexities of the interdiffusion of reactive thermoset resin and thermoplastic polymer at the interface between two plies. Herein, the interphase properties of co-bonded acrylonitrile butadiene styrene thermoplastic to unsaturated polyester thermoset are investigated for different processing conditions. The effect of processing temperature on the cure kinetics and interdiffusion kinetics are studied experimentally. The interphase thickness and microstructure are linked to the chemo-rheological properties of the materials. The interdiffusion mechanisms are explored and models are developed to predict the interphase thickness and microstructure for various process conditions. The temperature-dependent diffusivities were estimated by incorporating an inverse diffusion model. The mechanical response of interphases was analyzed by the Vickers microhardness test and was correlated to the processing condition and microstructure. It was observed that processing temperature has significant effect on the interdiffusion process and, consequently, on the interphase thickness, its microstructure and mechanical performance.
4

Zanjani, Jamal Seyyed Monfared, e Ismet Baran. "Co-Bonded Hybrid Thermoplastic-Thermoset Composite Interphase: Process-Microstructure-Property Correlation". Materials 14, n. 2 (8 gennaio 2021): 291. http://dx.doi.org/10.3390/ma14020291.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
Abstract (sommario):
Co-bonding is an effective joining method for fiber-reinforced composites in which a prefabricated part bonds with a thermoset resin during the curing process. Manufacturing of co-bonded thermoset-thermoplastic hybrid composites is a challenging task due to the complexities of the interdiffusion of reactive thermoset resin and thermoplastic polymer at the interface between two plies. Herein, the interphase properties of co-bonded acrylonitrile butadiene styrene thermoplastic to unsaturated polyester thermoset are investigated for different processing conditions. The effect of processing temperature on the cure kinetics and interdiffusion kinetics are studied experimentally. The interphase thickness and microstructure are linked to the chemo-rheological properties of the materials. The interdiffusion mechanisms are explored and models are developed to predict the interphase thickness and microstructure for various process conditions. The temperature-dependent diffusivities were estimated by incorporating an inverse diffusion model. The mechanical response of interphases was analyzed by the Vickers microhardness test and was correlated to the processing condition and microstructure. It was observed that processing temperature has significant effect on the interdiffusion process and, consequently, on the interphase thickness, its microstructure and mechanical performance.
5

Erartsin, Ozan, Jamal Zanjani e Ismet Baran. "Bond Strength of Co-Bonded Thermoplastic Leading Edge Protection (LEP): The Effect of Processing-Driven Interphase Morphology". Key Engineering Materials 926 (22 luglio 2022): 1786–94. http://dx.doi.org/10.4028/p-65fvc8.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
Abstract (sommario):
Integrated leading edge protection (InLEP) is a novel LEP method that involves co-bonding a tough thermoplastic to the blade shell of the wind turbine made of fiber-reinforced thermoset polymer. In the co-bonding process, as a result of the interdiffusion of the bonded thermoplastic and thermoset polymers, an interphase is formed between them. An important factor affecting the level of interdiffusion is the cure temperature. In this work, we investigate the influence of cure temperature on the interphase morphology and bond strength of ABS-polyester/glass and PC-polyester/glass hybrid composites. The hybrid composites are manufactured via vacuum-assisted resin transfer molding. Interphase morphology is observed and the interphase thickness is measured via optical microscopy. Bond strength is tested via climbing drum peel testing and subsequently, fractography analysis is carried out on the fractured samples. It was found that both the interphase thickness and bond strength decrease with an increase of cure temperature. The decrease in bond strength at high temperatures was accompanied by an increase in the extent of interfacial failure, while interphase failure at low temperatures promoted higher bond strength.
6

Chen, Ming Wei, Hai Peng Qiu, Jian Jiao, Xiu Qian Li, Yu Wang e Hao Zou. "Preparation of High Performance SiCf/SiC Composites through PIP Process". Key Engineering Materials 544 (marzo 2013): 43–47. http://dx.doi.org/10.4028/www.scientific.net/kem.544.43.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
Abstract (sommario):
SiC fiber reinforced SiC matrix (SiCf-SiC) composites with and without pyrolytic carbon interphase were prepared by polymer impregnation pyrolysis (PIP) progress. The effect of pyrolytic carbon interphase on the fracture behavior and mechanical properties of SiCf/SiC composites was studied. The results show that pyrolytic carbon interphase weakened the bonding between the matrix and the fibers. The mechanical properties of SiCf-SiC composites with carbon coating were improved effectively via fiber debonding and pulling-out from matrix under external loads. The flexural strength and fracture toughness of the above composites reached up to 498.52MPa and 24.09MPa•m1/2, respectively.
7

Sarwar, M. I., e Z. Ahmad. "Interphase bonding in organic–inorganic hybrid materials using aminophenyltrimethoxysilane". European Polymer Journal 36, n. 1 (gennaio 2000): 89–94. http://dx.doi.org/10.1016/s0014-3057(99)00046-4.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
8

Aggelis, D. G., D. Kleitsa e T. E. Matikas. "Ultrasonic Characterization of the Fiber-Matrix Interfacial Bond in Aerospace Composites". Scientific World Journal 2013 (2013): 1–8. http://dx.doi.org/10.1155/2013/154984.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
Abstract (sommario):
The properties of advanced composites rely on the quality of the fiber-matrix bonding. Service-induced damage results in deterioration of bonding quality, seriously compromising the load-bearing capacity of the structure. While traditional methods to assess bonding are destructive, herein a nondestructive methodology based on shear wave reflection is numerically investigated. Reflection relies on the bonding quality and results in discernable changes in the received waveform. The key element is the “interphase” model material with varying stiffness. The study is an example of how computational methods enhance the understanding of delicate features concerning the nondestructive evaluation of materials used in advanced structures.
9

Trumble, K. P. "Electron Microscopy studies of spinel interphase formation at the Ni/Al2O3 interface". Proceedings, annual meeting, Electron Microscopy Society of America 47 (6 agosto 1989): 554–55. http://dx.doi.org/10.1017/s0424820100154743.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
Abstract (sommario):
Many metal-ceramic combinations considered for structural components and composites react at high temperatures to form intermediate phases, usually in the form of thin interfacial layers. Interphase formation generally leads to marked changes in interface fracture resistance. A fundamental understanding of metal-ceramic interphase reactions is thus key to optimizing the mechanical behavior of such systems. In the system Ni/Al2O3, nickel aluminate spinel (NiAl2O4) reaction layers have been found to form in diffusion bonding studies. However, the underlying reaction process by which spinel formation occurs is not well understood. It has been suggested that the reaction requires conditions sufficiently oxidizing to first produce NiO which then reacts with the Al2O3. In the present study controlled oxygen diffusion bonding and electron microscopy were used to further explore the spinel formation reaction at the Ni/Al2O3 interface.
10

Erartsın, Ozan, Jamal Sayyed Monfared Zanjani e Ismet Baran. "Thermoset/Thermoplastic Interphases: The Role of Initiator Concentration in Polymer Interdiffusion". Polymers 14, n. 7 (6 aprile 2022): 1493. http://dx.doi.org/10.3390/polym14071493.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
Abstract (sommario):
In the co-bonding of thermoset and thermoplastic polymers, the interdiffusion of the polymers results in the formation of an interphase between them. Understanding the factors influencing the interdiffusion and the resulting interphase is crucial in order to optimize the mechanical performance of the bond. Herein, for the first time, the effect of the initiator concentration of the thermoset resin-initiator mixture on the interphase thickness of co-bonded thermoset-thermoplastic polymers is investigated. The dependence of the gelation time on the initiator concentration is determined by rheometer measurements. Differential scanning calorimetry measurements are carried out to determine the speed of cure. To co-bond the polymers, pieces of already-manufactured thermoplastic plates are embedded in a resin-initiator mixture. The interphase thickness of the co-bonded polymers is measured with an optical microscope. The results of this study show that the gelation time decreases as the initiator concentration increases. This decrease leads to a significant reduction in both interphase thickness and diffusivity. For instance, increasing the initiator/resin weight ratio from 1% to 3% reduces the gelation time by 74% and the interphase thickness by 63%.

Tesi sul tema "Bonding interphase":

1

Boufaida, Zakariya. "Analyse des propriétés mécaniques de composites taffetas verre/matrice acrylique en relation avec les propriétés d’adhésion des fibres sur la matrice". Thesis, Université de Lorraine, 2015. http://www.theses.fr/2015LORR0108/document.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
Abstract (sommario):
Cette thèse est essentiellement consacrée à la caractérisation et à l’analyse des propriétés mécaniques de matériaux composites constitués d’un renfort taffetas verre et d’une résine acrylate (Elium®). Avant l’apparition de la résine Elium® sur le marché en 2013, les polymères acrylates n’étaient pas utilisés dans l’industrie des composites fibres longues. Dans le volet expérimental de la thèse, nous nous intéressons principalement à l’influence de l’ensimage (traitement de surface appliqué aux fibres pour favoriser l’adhésion de la matrice) sur le comportement mécanique de nos composites. En complément de différents essais mécaniques macroscopiques « classiques » (traction, flexion etc.), nous avons utilisé des techniques d’analyse locales fines (mesures de champ cinématique, microtomographie X, Microscopie Électronique à Balayage, nanoindentation…) qui nous ont permis de caractériser et d’étudier certains mécanismes locaux de déformation et d’endommagement. L’influence de l’ensimage sur les propriétés en fatigue a été mise en évidence grâce à des mesures d’autoéchauffement pour lesquelles nous avons développé un traitement original des données. A l’issue de nos investigations, nous avons pu quantifier le bénéfice qui résulte de l’utilisation d’un ensimage spécifiquement conçu pour favoriser l’adhésion d’un polymère acrylate sur des fibres de verre. Dans le volet « simulation numérique » de la thèse, nous avons modélisé le comportement mécanique de nos composites taffetas verre/matrice acrylate grâce au solveur spectral CraFT (Composite response and Fourier Transforms). Le détail des champs de contrainte et de déformation a été obtenu à l’échelle de la mésostructure et révèle une structuration périodique induite par la présence du renfort tissé. Une analyse quantitative a permis de vérifier que les champs de déformation qui ont été obtenus grâce au solveur CraFT sont en très bon accord avec des mesures réalisées par corrélation d’images. A partir du champ de contrainte, nous avons mis en évidence les régions de la mésostructure qui subissent les plus fortes sollicitations mécaniques. En visualisant par microtomographie X la structure interne d’éprouvettes précédemment déformées, nous avons pu établir le lien entre la localisation de l’endommagement au sein de la mésostructure et les régions de concentration de contrainte que la simulation numérique avait mises en évidence
This thesis is devoted to the characterization and the analysis of the mechanical properties of composite materials made of a plain weave glass fiber reinforcement and an acrylic resin (Elium®). Before the commercialization of the Elium resin in 2013, acrylics polymers were not used in the composite industry. In the experimental part of this thesis, we mainly focused on the sizing effect (surface treatment of the fibers to enhance the bonding between the matrix and the fibers) on the mechanical behavior of our composites. The characterizations were carried out through classical macroscopic mechanical tests (tensile, bending, shearing…) but using metrological tools for local analysis (full-field strain measurements, X ray micro-tomography, Scanning Electron Microscopy, Nano-indentation etc.). We were able to study strain and damage phenomena at local scales. Fatigue properties of the sizing were highlighted by heat build-up experiments. To analyze these measurements, an original data treatment has been developed which makes clear the benefit of an acrylic sizing in order to enhance the bonding between glass fibers and our acrylic matrix. In the theoretical part of this thesis, we studied the mechanical behaviour of our glass fiber plain weave/acrylic resin composite through a numerical simulation based on the CraFT spectral solver (Composite response and Fourier Transforms). Local stress and strain fields were obtained at the mesoscopic scale. The strain field analysis shows a periodic structure induced by the presence of the plain weave reinforcement. By a quantitative study, a good agreement between the numerical strain field obtained by CraFT and the 3D-DIC experimental strain measurements was found. The numerical stress field analysis reveals regions were a high local stress occurs. Comparing with X ray micro-tomography observationsof the internal structure of previously loaded composite sampleswe noticed that the damages occurring inside the mesostructure are totally correlated with the local stress concentration revealed by CraFT numerical simulations
2

Chanson, Charlotte. "Optimisation de la liaison interfaciale dans les composites à matrice céramique renforcés par des fibres Hi-Nicalon S". Thesis, Bordeaux, 2015. http://www.theses.fr/2015BORD0222.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
Abstract (sommario):
La performance mécanique des composites à matrice céramique repose en partie sur le contrôle de la liaison interfaciale et le choix des matériaux. Ces travaux s’intéressent au renforcement de la liaison interfaciale en traitant la surface des fibres SiC de dernière génération : les Hi-Nicalon S. L’objectif est d’établir une accroche chimique et/ou mécanique principalement avec l’interphase BN. Des composites modèles, minicomposites élaborés par voie CVI (Chemical Vapor Infiltration) sont utilisés comme base de travail. La quantification de la force de la liaison interfaciale s’effectue en évaluant l’énergie de liaisons interfaciales Gci issues d’essais de traction, et en calculant la contrainte de cisaillement τ par essais de pushout. Dans un premier temps, les fibres HNS dont les surfaces ont été légèrement modifiées, ont été testées avec l’interphase classique PyC. La liaison interfaciale sur minicomposites reste faible. Différentes traitements chimiques ont été effectués à la surface des fibres dans l’optique de renforcer la liaison interfaciale avec le BN, interphase plus résistance à l’oxydation que le PyC. Au préalable, les conditions d’élaborations de l’interphase BN ont été étudiées
Mechanical properties of ceramic composites can be improved by controlling interfacial bonding and choosing materials. To enhance interfacial bonding, treatment on the last SiC fiber, Hi-Nicalon S surface are proposed in this work. The aim is to allow chemical and/or mechanical bonds mainly with BN interphase. For this, composites models, minicomposites are elaborated by CVI (Chemical Vapor Infiltration). Quantification of the strength of interfacial bonding is based by evaluating interfacial bonding energy Gci with tensile tests, and by calculating interfacial shear stress τ with push-out tests. Firstly, Hi-Nicalon S fibers whose surfaces have been slightly modified have been tested with classic interphase PyC. Interfacial bonding on minicomposites is weak. Different treatments have been performed on surface fibers to enhance interfacial bonding with BN, which have a better resistance oxidation than PyC. Before, elaboration parameters of BN interphase have been studied
3

He, Qian. "Étude sur le mécanisme d'activation du bois/bambou/adhésif et amélioration du collage induit par le champ électrique à haute tension". Electronic Thesis or Diss., Université de Lorraine, 2021. http://www.theses.fr/2021LORR0147.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
Abstract (sommario):
Dans cette étude, les équipements avancés ont été sélectionnés afin d’étudier les effets de l’HVEF sur les propriétés physicochimiques du bois et du bambou, les effets du HVEF sur la structure chimique et les propriétés rhéologiques des adhésifs sous une série de paramètres HVEF. L’effet d’agrégation de l’adhésif à l’interface de liaison induite par HVEF a également été révélé et le modèle de prédiction micro-mécanique est établi. Les principales conclusions de cette étude sont les suivantes : 1. Après le traitement HVEF, l’activité de surface du bois et du bambou a augmenté de manière significative. De plus, avec l’augmentation de la tension/temps, les radicaux libres de surface, le rapport O/C et le nombre de groupes oxygène augmentaient de manière significative tandis que l’angle de contact diminuait. 2. Avec l’augmentation de la tension / temps, des réactions intermoléculaires significativement améliorées de la résine d’urée formaldéhyde et de la résine de phénol formaldéhyde ont été obtenues. Après un traitement de 60 kV/8 minutes, un incrément significatif des pics caractéristiques des groupes Cu2012O a été obtenu. Sous le traitement de HVEF, la dépendance de température/fréquence des comportements rhéologiques des deux résines a changé de manière significative. Par conséquent, le degré de polymérisation intermoléculaire du phénol formaldéhyde et de la résine d’urée formaldéhyde peut être considérablement amélioré et la viscoélasticité de la résine peut être améliorée sous traitement HVEF. 3. Après le traitement de HVEF, la distribution de l’adhésif à l’interphase de liaison était continue et uniforme. La profondeur de pénétration a été considérablement réduite. La densité et la force de liaison à l’interphase de liaison ont été sensiblement augmentées, et le taux de délamination a été réduit. Après traitement, la densité maximale à interphase est 1081 kg/m3, qui était 32% plus haut que le contrôle. La force de collage est passée de 0,66 MPa à 1,25 MPa et le taux de bris du bois a augmenté à 85 %, et le taux de délamination a diminué à 5,97 %. Pour le matériau en bambou, la résistance de liaison a été significativement améliorée après le traitement HVEF. La force de liaison de la peau de bambou et de la peau de bambou était de 9,51MPa, et le rapport de défaillance de bambou était de 60%. Dans la combinaison de la moelle de bambou et de la moelle de bambou, le taux de défaillance maximal de bambou était de 85%, qui a été augmenté de 70%. Par conséquent, dans le cadre du traitement HVEF, la distribution continue et uniforme des adhésifs interphasés de liaison peut être obtenue, ce qui peut améliorer considérablement les performances de collage du composite de bambou de bois et est propice à l’utilisation efficace du composite de bambou de bois.4. Selon le profil de densité verticale à l’interface de liaison, le modèle de rigidité stratifiée et de distribution des contraintes de l’interface de liaison a été établi. Les résultats ont montré que l’erreur relative était inférieure à ±15 %. Sur la base du modèle de distribution, les propriétés mécaniques macroscopiques du composite sont prédites avec la combinaison de la mécanique composite et de la théorie des plaques stratifiées, y compris le module élastique, la résistance à la flexion, le module de cisaillement et la résistance au cisaillement. Les résultats ont montré que l’erreur de prédiction des propriétés mécaniques est inférieure à 30%. Avec le modèle de distribution de rigidité et de résistance, l’effet du traitement HVEF peut être caractérisé quantitativement et les propriétés mécaniques des composites traités HVEF peuvent être prédites. En conséquence, le mécanisme de renforcement de la liaison interphase peut être révélé avec le modèle de distribution de la rigidité et de la résistance
In this study, the advanced equipments were selected in order to investigate the effects of HVEF on the physicochemical properties of wood and bamboo, the effects of HVEF on the chemical structure and rheological properties of adhesives under a series of HVEF parameters. The aggregation effect of adhesive at bonding interface induced by HVEF has also been revealed and the micro-mechanical prediction model is established.The main conclusions of this study are as follows:1.After HVEF treatment, the surface activity of wood and bamboo increased significantly. Moreover, with the increase of voltage/time, the surface free radicals, O/C ratio and the number of oxygen groups increased significantly while the contact angle decreased. Under the condition of 60kV, the surface activity highly increased. The increment of free radicals was 26%, the decrease of initial contact angle was 22%, the decrease of equilibrium contact angle was 23%, the increment of free energy component was 43% ~ 75%, the increment of O/C ratio was 34%, the increment of oxygen-containing groups were 39% (C‒OH), 149% (C‒O or C=O) and 97% (O‒C=O), respectively. Therefore, under HVEF treatment, the physical and chemical properties of wood and bamboo can be significantly improved, which is conducive to improving the interphase properties of composite materials.2.With the increase of voltage/time, significantly improved inter-molecular reactions of urea formaldehyde resin and phenol formaldehyde resin were obtained. After 60kV/8 min treatment, significant increment of the characteristic peaks of C‒O groups were obtained. Under HVEF treatment, the temperature/frequency dependence of the rheological behaviors of the two resins changed significantly. Therefore, the degree of inter-molecular polymerization of phenol formaldehyde and urea formaldehyde resin can be significantly improved and the viscoelasticity of the resin can be improved under HVEF treatment.3.After HVEF treatment, the distribution of adhesive at the bonding interphase was continuous and uniform. The penetration depth was significantly reduced. The density and bonding strength at the bonding interphase were significantly increased, and the delamination rate was reduced. After treatment, the maximal density at interphase is 1081 kg/m3, which was 32% higher than the control. The bonding strength increased from 0.66MPa to 1.25MPa and the wood breaking rate increased to 85%, and the delamination rate decreased to 5.97%. For bamboo material, the bonding strength was significantly improved after HVEF treatment. The bonding strength of bamboo skin and bamboo skin was 9.51MPa, and the bamboo failure ratio was 60%. In the combination of bamboo pith and bamboo pith, the maximum bamboo failure ratio was 85%, which was increased by 70%. Therefore, under HVEF treatment, the continuous and uniform distribution of bonding interphase adhesives can be obtained, which can significantly improve the bonding performance of wood bamboo composite, and is conducive to the efficient utilization of wood bamboo composite.4. According to the vertical density profile at the bonding interface, the laminated stiffness and stress distribution model of the bonding interface has been established. The results showed that the relative error was less than ±15%. Based on the distribution model, the macroscopic mechanical properties of composite are predicted with the combination of composite mechanics and laminated plate theory, including elastic modulus, bending strength, shear modulus and shear strength. The results showed that the prediction error of mechanical properties is less than 30%. With the stiffness and strength distribution model, the effect of HVEF treatment can be quantitatively characterized and the mechanical properties of HVEF treated composites can be predicted. As a result, strengthening mechanism of bonding interphase can be revealed with the the stiffness and strength distribution model
4

Siryabe, Emmanuel. "Evaluation non destructive par ultrasons de l'adhésion aux interfaces de joints collés". Thesis, Bordeaux, 2016. http://www.theses.fr/2016BORD0427/document.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
Abstract (sommario):
Cette thèse a pour objectif de développer des méthodes ultrasonores pour l’END de l’adhésion de joints collés. Pour aborder ce problème, les assemblages sont réalisés avec des substrats en aluminium (isotrope, élastique) et un adhésif de type époxy(isotrope, viscoélastique). Selon la géométrie des assemblages, deux méthodes sont proposées pour obtenir une information quantitative sur le niveau d’adhésion. La première est adaptée à des échantillons de type tri-couches avec recouvrement total.Elle consiste à analyser la transmission d’ondes ultrasonores planes de volume à travers l’assemblage immergé dans l'eau.Les conséquences d'un mauvais traitement de surface des substrats sur la mesure des modules de viscoélasticité du joint adhésif sont étudiées. Il a été montré que des interphases dégradées provoquent une anisotropie apparente des modules mesurés pour le joint de colle. Cette anisotropie a été quantifiée à l'aide de deux paramètres β1 et β2 dont les valeurs permettent de révéler la qualité des interphases. Ensuite, les modules élastiques (ou raideurs kL et kT) des interphases ont été estimés, en supposant les propriétés de l'adhésif connues. On montre que leurs valeurs sont maximales lorsque l'adhésion est nominale, et qu’elles diminuent franchement lorsque l'adhésion est dégradée, mais dans des proportions différentes. Des mesures de la contrainte à rupture, réalisées sur des échantillons préparés dans les mêmes conditions, corroborent la chute des modules des interphases. La seconde méthode est adaptée à des échantillons collés avec un recouvrement partiel. Elle es tbasée sur la mesure du coefficient de transmission d'ondes de Lamb se propageant d'un substrat à l'autre, à travers la zone de recouvrement. Une étude de sensibilité numérique (par éléments finis) des coefficients de transmission des modes de Lamb a montré que les propriétés mécaniques des interphases (modélisées par des raideurs surfaciques) peuvent être évaluées si les autres caractéristiques de l’assemblage sont connues. Des mesures expérimentales de ces coefficients de transmission ont ensuite été réalisées avec deux échantillons. L’un d’eux possède des interphases à adhésion nominale et l’autre des interphases dégradées. Une confrontation entre les résultats des mesures obtenus pour les différents modes et les simulations numériques permet de déterminer les valeurs des raideurs d’interfaces pour chaque échantillon. Là encore, il est observé qu’une mauvaise adhésion se traduit par des valeurs faibles des raideurs d’interfaces, qui peuvent être quantifiées, cette fois,grâce aux ondes ultrasonores guidées
The aim of this thesis is to develop NDT ultrasonic methods for the evaluation of the adhesion at interfaces in bonded joints.To address this problem, the assemblies are made of aluminum substrates (isotropic, elastic) and epoxy adhesive (isotropic,viscoelastic). Depending on the geometry of the studied assemblies, two methods are proposed to obtain quantitativeinformation on the adhesion level. The first method is suitable for three-layered plate-like samples. It consists in analyzingthe transmission of bulk ultrasonic plane waves through the assembly immersed in water. The consequences of a inapropriatesurface treatment of the substrates on the measurement of viscoelastic moduli of the joint are studied. It has been shown thatdegraded interphases cause an apparent anisotropy of the measured elastic moduli of the joint. This anisotropy was quantifiedusing two parameters β1 and β2 whose values can reveal the quality of the interphases. Then, the elastic moduli (or stiffnesseskL and kT) of the interphases were estimated, assuming that the adhesive layer properties are known. It was shown that theirvalues are higher when the adhesion is nominal, and are strongly decreased when the adhesion is degraded. Measurements ofthe mechanical strength, on samples prepared under the same conditions, confirmed the drops in these elastic moduli. Thesecond method is more suitable for lap joint samples. It is based on the Lamb wave transmission coefficient measured fromone substrate to the other, across the overlap zone. A numerical sensitivity analysis (finite element model) of the transmissioncoefficients of Lamb waves showed that the mechanical properties of the interphases (modeled by interfacial stiffnesses) canbe evaluated if the other characteristics of the assembly are well known. Experimental measurements of the transmissioncoefficients were then performed on two samples. One of them has interphases with nominal adhesion and the other hasdegraded interphases. A comparison between the measured results obtained for the different modes and numericalsimulations was used to determine the values of the interfacial stiffnesses for each sample. Again, it was observed that pooradhesion leads to low values of the interfacial stiffnesses of the interphases, that can be quantified using guided ultrasonicwaves
5

"Nano-Bonding of Silicon Oxides-based surfaces at Low Temperature: Bonding Interphase Modeling via Molecular Dynamics and Characterization of Bonding Surfaces Topography, Hydro-affinity and Free Energy". Doctoral diss., 2011. http://hdl.handle.net/2286/R.I.14366.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
Abstract (sommario):
abstract: In this work, a new method, "Nanobonding" [1,2] is conceived and researched to bond Si-based surfaces, via nucleation and growth of a 2 D silicon oxide SiOxHx interphase connecting the surfaces at the nanoscale across macroscopic domains. Nanobonding cross-bridges two smooth surfaces put into mechanical contact in an O2/H2O mixed ambient below T <200 °C via arrays of SiOxHx molecules connecting into a continuous macroscopic bonding interphase. Nano-scale surface planarization via wet chemical processing and new spin technology are compared via Tapping Mode Atomic Force Microscopy (TMAFM) , before and after nano-bonding. Nanobonding uses precursor phases, 2D nano-films of beta-cristobalite (beta-c) SiO2, nucleated on Si(100) via the Herbots-Atluri (H-A) method [1]. beta-c SiO2 on Si(100) is ordered and flat with atomic terraces over 20 nm wide, well above 2 nm found in native oxides. When contacted with SiO2 this ultra-smooth nanophase can nucleate and grow domains with cross-bridging molecular strands of hydroxylated SiOx, instead of point contacts. The high density of molecular bonds across extended terraces forms a strong bond between Si-based substrates, nano- bonding [2] the Si and silica. A new model of beta-cristobalite SiO2 with its <110> axis aligned along Si[100] direction is simulated via ab-initio methods in a nano-bonded stack with beta-c SiO2 in contact with amorphous SiO2 (a-SiO2), modelling cross-bridging molecular bonds between beta-c SiO2 on Si(100) and a-SiO2 as during nanobonding. Computed total energies are compared with those found for Si(100) and a-SiO2 and show that the presence of two lattice cells of !-c SiO2 on Si(100) and a-SiO2 lowers energy when compared to Si(100)/ a-SiO2 Shadow cone calculations on three models of beta-c SiO2 on Si(100) are compared with Ion Beam Analysis of H-A processed Si(100). Total surface energy measurements via 3 liquid contact angle analysis of Si(100) after H-A method processing are also compared. By combining nanobonding experiments, TMAFM results, surface energy data, and ab-initio calculations, an atomistic model is derived and nanobonding is optimized. [1] US Patent 6,613,677 (9/2/03), 7,851,365 (12/14/10), [2] Patent Filed: 4/30/09, 10/1/2011
Dissertation/Thesis
Ph.D. Physics 2011

Capitoli di libri sul tema "Bonding interphase":

1

Horiuchi, Shin, Nao Terasaki e Takayuki Miyamae. "Introduction—Interfaces in Adhesion and Adhesive Bonding". In Interfacial Phenomena in Adhesion and Adhesive Bonding, 1–15. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-99-4456-9_1.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
Abstract (sommario):
AbstractThe social background of research on adhesion and adhesive bonding is reviewed. Next, the interphase in the adhesive bond is defined, and the multi-scale and hierarchical structures contained in the interface are arranged based on their sizes. Finally, the analytical methodologies this book introduces to elucidate interfacial phenomena in adhesion and adhesive bonding are overviewed.
2

Zaldivar, Rafael J., e Hyun I. Kim. "Improved Nanofiller-Matrix Bonding and Distribution in GnP-reinforced Polymer Nanocomposites by Surface Plasma Treatments of GnP". In Interface/Interphase in Polymer Nanocomposites, 171–89. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2016. http://dx.doi.org/10.1002/9781119185093.ch5.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
3

Malinowski, Paweł H., Tomasz Wandowski, Wiesław M. Ostachowicz, Maxime Sagnard, Laurent Berthe, Romain Ecault, Igor Solodov, Damien Segur e Marc Kreutzbruck. "Extended Non-destructive Testing for the Bondline Quality Assessment of Aircraft Composite Structures". In Adhesive Bonding of Aircraft Composite Structures, 223–57. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-319-92810-4_4.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
Abstract (sommario):
AbstractWe present the results of extended non-destructive testing (ENDT) methods for bond line quality assessment in adhesive joints. The results presented were derived for important application scenarios with regards to aircraft manufacturing and the in-service repair of composite structures. The electromechanical impedance (EMI), laser shock adhesion testing (LASAT), and nonlinear ultrasound scanning (NUS) were used on flat coupon samples, scarfed samples, and curved samples. The EMI method applied to the flat coupons showed some relation of the frequency shift to the level of contamination. For the curved samples, there was insufficient sensitivity to differentiate distinct levels of contamination, while for scarfed samples in most cases both detection and distinction were possible. The LASAT method gave good results for the coupon samples, which were also in accordance with the results of the $${\text{G}}_{\text{IC}}$$ G IC and $${\text{G}}_{\text{IIC}}$$ G IIC tests. For coupon samples with multiple contaminations, we obtained results with varying significance. In the case of NUS, the measurements revealed an increase in nonlinearity affected by contamination at the interphase between the CFRP adherend and the adhesive layer for the majority of scenarios comprising single contamination of flat coupons and scarfed samples. The effect of multiple contaminations was a decrease in nonlinearity for the curved samples.
4

Wei, Yue-Zhen, Zhi-Qian Zhang, Yin Li, Zi-hai Guo e Bai-Ling Zheng. "A Study of the Interfical Bonding Between Carbon Fibre and PMR-15 Resin". In Controlled Interphases in Composite Materials, 167–74. Dordrecht: Springer Netherlands, 1990. http://dx.doi.org/10.1007/978-94-011-7816-7_16.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
5

Ikuta, N., Z. Maekawa, H. Hamada, H. Ichihashi, E. Nishio e I. Abe. "Effect of Silane Bonding State on Interfacial Strength in Glass Fiber-Epoxy Composites". In Controlled Interphases in Composite Materials, 757–66. Dordrecht: Springer Netherlands, 1990. http://dx.doi.org/10.1007/978-94-011-7816-7_72.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
6

Trumble, Kevin P., e Manfred Rühle. "THE OXYGEN ACTIVITY DEPENDENCE OF SPINEL INTERPHASE FORMATION DURING Ni/Al2O3 DIFFUSION BONDING". In Metal–Ceramic Interfaces, 144–51. Elsevier, 1990. http://dx.doi.org/10.1016/b978-0-08-040505-6.50023-4.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
7

Fadzullah, S. H. Sheikh Md, e Zaleha Mustafa. "Fabrication and Processing of Pineapple Leaf Fiber Reinforced Composites". In Materials Science and Engineering, 876–93. IGI Global, 2017. http://dx.doi.org/10.4018/978-1-5225-1798-6.ch035.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
Abstract (sommario):
There is an increasing interest worldwide in the use of Pineapple Leaf Fibers (PALF) as reinforcements in polymer composites, since this type of natural fiber exhibit attractive features such as superior mechanical, physical and thermal properties, thus offer potential uses in a spectrum of applications. PALF contains high cellulose content (between 70-82%) and high crystallinity. However, being hydrophilic, it posed a compatibility issue particularly in a hydrophobic polymeric matrix system. Thus, their shortcoming need to be addressed to ensure good interfacial bonding at the fibers/matrix interphase before their full potential can be harnessed. This chapter summarized some of the important aspects relating to PALF and its reinforced composites, particularly the main characteristics of the fiber, extraction and pre-treatment process of the fibers. Following this, discussions on the available fabrication processes for both short and continuous long PALF reinforced composites are presented.
8

Barthés-Labrousse, M. G., D. Mercier e F. Debontridder. "FORMATION OF THE INTERPHASE IN EPOXY-AMINE/ALUMINIUM JOINTS: FROM SURFACE CORROSION TO METAL BONDING". In Surface Properties and Engineering of Complex Intermetallics, 265–91. WORLD SCIENTIFIC, 2010. http://dx.doi.org/10.1142/9789814304771_0009.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
9

Chopra, Swamini, S. Sreya, Rohit V. Babhulkar, Swaksha P. Halde, Kavita A. Deshmukh e D. R. Peshwe. "Cryogenic Treatment of Polymer/MWCNT Nano-Composites for Mechanical and Tribological Applications". In Nanotechnology in Aerospace and Structural Mechanics, 103–61. IGI Global, 2019. http://dx.doi.org/10.4018/978-1-5225-7921-2.ch004.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
Abstract (sommario):
The cryogenic treatment of material has been known to motivate structural stability by rearranging its crystallographic structure in metals and by promoting intermolecular as well as intramolecular rearrangements in polymers. Additionally, in case of polymers reinforced with micro fillers, the structural changes brought about by cryogenic treatment are still largely governed by the polymer matrix itself. Thus, when investigated for their mechanical and tribological properties, the response of polymer/MWCNT nano-composites after cryogenic treatment was found to be depending on the cryo-structural modifications in the polymer matrix, followed by the MWCNT interaction to some extent. The enhancement in the mechanical properties of the polymer/MWCNT nano-composites is attributed to the increasing % crystallinity, changes in crystal structure, conversion of less stable phases into more stable phases, change in the nature of bonding and strengthening of interphase between polymer and MWCNT. Thus, for the cryogenic treatment temperature of -185 °C, the optimum soaking period for PA and PA/MWCNT nano-composite was 24 hrs, whereas for PBT and PBT/MWCNT nano-composite it was 12 hrs and 16 hrs, respectively. This agrees well with the popular claim that each polymer has a specific functional group and/or structural characteristic that readily responds to the cryogenic treatments conditions (irrespective of the filler type, content and/or interaction), thereby, modifying the structure and giving superior properties, which makes cryogenic treatment a material specific process.
10

Yang, J., e A. Garton. "Interphases in the Adhesive Bonding of Fluoropolymers *". In Adhesion International 1993, 357–68. CRC Press, 2020. http://dx.doi.org/10.1201/9780367813734-29.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri

Atti di convegni sul tema "Bonding interphase":

1

Nargund, Shrikant. "Evaluation of Stress Wave Attenuation in a Polymer Matrix Composite Using Finite Element Analysis Technique". In ASME 2016 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2016. http://dx.doi.org/10.1115/imece2016-67055.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
Abstract (sommario):
The dynamic behavior of polymer composites is significantly affected by the properties of their micro constituents including shape and size of inclusions and inclusions/matrix adhesion properties. Wave propagation through such a composite is a complex phenomenon as it includes random scattering, absorption and transmittance of the incident wave and is dependent upon factors such as the properties, size and placement of the inclusions inside the matrix. Finite element modeling provides a viable approach for investigating the effects of micro constituent structure on the dynamic behavior of polymer composites. In this paper, we investigate the stress wave attenuation characteristics of a particulate polymer matrix composite using Finite Element (FE) analysis approach. The wave attenuation of ultrasonic sinusoidal waves of frequency ranging from 1 MHz to 4 MHz is evaluated for different FE models. The spherical inclusions are randomly distributed inside the polymer matrix with a certain minimum distance apart from each other. Inclusion-Matrix adhesion properties are studied by modeling a small region at the interface of inclusions and matrix known as interphase region. The interphase region is modeled explicitly using the cohesive zone modeling approach to study how the properties of this region will affect the wave attenuation characteristics of the polymer composite. Cohesive zone models are governed by traction separation law which helps in the measurement of the inclusion-matrix bonding strength and also allow the study of de-bonding at the interface in the critically stressed region produced due application of load. Thus the FE models consist of three phases; polymer matrix, particulate inclusions and the interphase region. Various three dimensional FE models are created using 3D tetrahedral/hexahedral elements by varying the radius of the spherical inclusions and by varying volume fraction of the inclusions. The analyses are performed using a general purpose finite element software LS-Dyna. A rate dependent viscoelastic material model with four terms in prony series expansion is used for modeling the polymer matrix. A linear elastic isotropic material model is used for modeling the inclusions. The wave attenuation is measured as reduction in the amplitude of the wave as it passes through the composite. A comparison of results for various models is done to check for general trend of attenuation coefficient as a function of size of inclusions, volume fraction of inclusions, frequency of loading and interphase region properties. Results show that volume fraction and load frequency have a maximum effect on the wave attenuation coefficient. Interphase region stiffness and interface de-bonding also plays an important role in attenuation characteristics of the polymer composite.
2

Cech, Vladimir, Adam Babik, Antonin Knob e Erik Palesch. "Plasma polymers used for controlled interphase in polymer composites". In 13th International Conference on Plasma Surface Engineering September 10 - 14, 2012, in Garmisch-Partenkirchen, Germany. Linköping University Electronic Press, 2013. http://dx.doi.org/10.3384/wcc2.51-55.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
Abstract (sommario):
The performance of fiber-reinforced composites is strongly influenced by the functionality of composite interphases. Sizing, i.e. functional coating (interlayer), is therefore tailored to improve the transfer of stress from the polymer matrix to the fiber reinforcement by enhancing fiber wettability, adhesion, compatibility, etc. The world market is dominated by glass reinforcement in unsaturated polyester. However, commercially produced sizing (wet chemical process) is heterogeneous with respect to the thickness and uniformity, and hydrolytically unstable. Companies search for new ways of solving the above problems. One of the alternative technologies is plasma polymerization. Plasma polymer films of hexamethyldisiloxane, vinyltriethoxysilane, and tetravinylsilane, pure and in a mixture with oxygen gas, were engineered as compatible interlayers for the glass fiber/polyester composite. The interlayers of controlled physicochemical properties were tailored using the deposition conditions with regard to the elemental composition, chemical structure, and Young’s modulus in order to improve adhesion bonding at the interlayer/glass and polyester/interlayer interfaces and tune the cross-linking of the plasma polymer. The optimized interlayer enabled a 6.5-fold increase of the short-beam strength compared to the untreated fibers. The short-beam strength of GF/polyester composite with the plasma polymer interlayer was 32% higher than that with commercial sizing developed for fiber-reinforced composites with a polyester matrix. The progress in plasmachemical processing of composite reinforcements enabled us to release a new conception of composites without interfaces.
3

Asanuma, Hiroshi, Mitsuji Hirohashi, Kentarou Ichikawa e Hao Du. "Fabrication of fiber-reinforced aluminum smart composites with optical fiber by the interphase forming/bonding method". In Smart Structures & Materials '95, a cura di William B. Spillman, Jr. SPIE, 1995. http://dx.doi.org/10.1117/12.207694.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
4

Charteau, Mélanie, Véronique Gauthier-Brunet, Valérie Audurier, Jean-François Silvain e Anne Joulain. "Study Of The Mechanical Properties Of A Cu/CF Composite With Zrc Interphase". In Euro Powder Metallurgy 2023 Congress & Exhibition. EPMA, 2023. http://dx.doi.org/10.59499/ep235754770.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
Abstract (sommario):
Electronic devices present a large coefficient of thermal expansion (CTE) mismatch between the copper thermal drain and the ceramic and silicon parts. This CTE mismatch causes thermomechanical stresses at the component interfaces (solder joint) resulting in component and/or solder joint failure. Copper composites reinforced with carbon fibres are materials of choice to overcome this drawback due to their expected adaptive CTE. To ensure good transfer of properties, chemical bonding between the matrix and reinforcement is necessary. The challenge of this work is to synthesize these composites, by hot uniaxial pressing, and to produce in-situ Zr-based interphase during the densification step. The microstructure and the chemistry of the matrix and of the interfacial zones, will be finely characterized by optical, scanning and transmission electronic microscopy.
5

VENKATACHALAM,, VINOTHINI, JON BINNER, THOMAS REIMER, BUCKARD ESSER, STEFANO MUNGIGUERRA e RAFFAELE SAVINO. "PROCESSING OF ULTRA-HIGH TEMPERATURE CERAMIC MATRIX COMPOSITES (UHTCMCS) THROUGH RF ENHANCED CHEMICAL VAPOUR INFILTRATION (RF-CVI)". In Thirty-sixth Technical Conference. Destech Publications, Inc., 2021. http://dx.doi.org/10.12783/asc36/35775.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
Abstract (sommario):
Carbon fibre (Cf) reinforced Ultra High Temperature Ceramic (UHTC) Matrix Composites (UHTCMCs) have proven to be excellent materials that can survive nearly 3000°C in highly oxidizing environments along with a good specific strength. Consequently, they have excellent potential for use in aerospace applications such as rocket nozzle throats and thermal protection systems (TPS). Due to the presence of the carbon fibres, UHTCMCs offer high strength and modulus combined with excellent thermal shock behaviour whilst the presence of the ultra-high temperature ceramic phase protects the carbon fibres at the application temperatures. High temperature oxidation, thermal ablation behaviour and mechanical properties of the UHTCMC’s relies heavily on the bonding between the carbon fibre and matrices especially the oxides formed to avoid any progressive failure and predict the life of the components. In the present investigation, a radio frequency assisted chemical vapor infiltration (RF-CVI) technique has been used to make the 2.5D Cf reinforced ZrB2, ZrB2/carbon matrices composites with various interphase materials. The advantage of RF heating is that it creates an inverse temperature profile in the sample, which means that the infiltration starts from inside and progresses outwards. This allows the time needed for processing to be reduced very significantly compared to the conventional CVI process. This presentation will report on the latest results from the research that has been undertaken at the University of Birmingham, including the results from a wide range of testing that has been undertaken at both DLR in Germany and the University of Naples in Italy.
6

Ghasemi-Nejhad, Mehrdad N. "Multifunctional Hierarchical Nanocomposites: A Review". In ASME 2013 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/imece2013-65599.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
Abstract (sommario):
Nanocomposites; including nano-materials such as nano-particles, nanoclays, nanofibers, nanotubes, and nanosheets; are of significant importance in the rapidly developing field of nanotechnology. Due to the nanometer size of these inclusions, their physicochemical characteristics differ significantly from those of micron size and bulk materials. The field of nanocomposites involves the study of multiphase materials where at least one of the constituent phases has one dimension less than 100 nm. This is the range where the phenomena associated with the atomic and molecular interaction strongly influence the macroscopic properties of materials. Since the building blocks of nanocomposites are at nanoscale, they have an enormous surface area with numerous interfaces between the two intermix phases. The special properties of the nanocomposite arise from the interaction of its phases at the interface and/or interphase regions. By contrast, in a conventional composite based on micrometer sized filler such as carbon fibers, the interfaces between the filler and matrix constitutes have a much smaller surface-to-volume fraction of the bulk materials, and hence influence the properties of the host structure to a much smaller extent. The optimum amount of nanomaterials in the nanocomposites depends on the filler size, shape, homogeneity of particles distribution, and the interfacial bonding properties between the fillers and matrix. The promise of nanocomposites lies in their multifunctionality, i.e., the possibility of realizing unique combination of properties unachievable with traditional materials. The challenges in reaching this promise are tremendous. They include control over the distribution in size and dispersion of the nanosize constituents, and tailoring and understanding the role of interfaces between structurally or chemically dissimilar phases on bulk properties. While the properties of the matrix can be improved by the inclusions of nanomaterials, the properties of the fibers can also be improved by the growth of nanotubes on the fibers. The combination of the two will produce super-performing materials, not currently available. Since the improvement of fiber starts with carbon nanotube grown on micron-size fibers (and matrix with a nanomaterial) to give the macro-composite, this process is a bottom-up “hierarchical” advanced manufacturing process, and since the resulting nanocomposites will have “multifunctionality” with improve properties in various functional areas such as chemical and fire resistance, damping, stiffness, strength, fracture toughness, EMI shielding, and electrical and thermal conductivity, the resulting nanocomposites are in fact “multifunctional hierarchical nanocomposites.” In this paper, the current state of knowledge in processing, performance, and characterization of these materials are addressed.

Vai alla bibliografia