Letteratura scientifica selezionata sul tema "Blood flow"

Cita una fonte nei formati APA, MLA, Chicago, Harvard e in molti altri stili

Scegli il tipo di fonte:

Consulta la lista di attuali articoli, libri, tesi, atti di convegni e altre fonti scientifiche attinenti al tema "Blood flow".

Accanto a ogni fonte nell'elenco di riferimenti c'è un pulsante "Aggiungi alla bibliografia". Premilo e genereremo automaticamente la citazione bibliografica dell'opera scelta nello stile citazionale di cui hai bisogno: APA, MLA, Harvard, Chicago, Vancouver ecc.

Puoi anche scaricare il testo completo della pubblicazione scientifica nel formato .pdf e leggere online l'abstract (il sommario) dell'opera se è presente nei metadati.

Articoli di riviste sul tema "Blood flow"

1

Merrill, Gary. "Caffeine and blood flow". Clinical Medical Reviews and Reports 3, n. 4 (6 aprile 2021): 01–03. http://dx.doi.org/10.31579/2690-8794/078.

Testo completo
Abstract (sommario):
Arguably, caffeine is the world’s leading drug of choice. It is estimated that in the U.S. and Europe at least ninety per cent of the adult populations consume caffeine-containing beverages several times each day. It is also known that consumers prefer their hot coffee to be in the range of 45-60°C (i.e. as hot as 140°F). If such a drink is spilled on the exposed skin it can cause full-thickness, third degree burns within 5 seconds. These are the kinds of burns that produce permanent damage and scarring for life. The prudence of consuming hot coffee and other hot drinks at such temperatures is questionable, especially when children and adolescents are involved.
Gli stili APA, Harvard, Vancouver, ISO e altri
2

Merrill, Gary. "Caffeine and Peripheral Blood Flow". Clinical Medical Reviews and Reports 2, n. 02 (24 febbraio 2020): 01–04. http://dx.doi.org/10.31579/2690-8794/009.

Testo completo
Abstract (sommario):
Caffeine is the drug of choice for adults of the world. It is commonly found in the favorite beverages they consume such as coffee, energy drinks, soft drinks and tea. The caffeine molecule is a decorative sculpture that helps visitors identify the recently-constructed Chemistry and Chemical Biology Building on the Busch Campus of Rutgers University, Piscataway, New Jersey.
Gli stili APA, Harvard, Vancouver, ISO e altri
3

Bando, Kiyoshi, e Kenkichi Ohba. "Numerical Simulation of Flow around LDV-Sensor for Measuring Blood Flow Velocities(Cardiovascular flow Simulation)". Proceedings of the Asian Pacific Conference on Biomechanics : emerging science and technology in biomechanics 2004.1 (2004): 55–56. http://dx.doi.org/10.1299/jsmeapbio.2004.1.55.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
4

Pollock, Bruce E. "Blood Flow Out Must Equal Blood Flow In". International Journal of Radiation Oncology*Biology*Physics 111, n. 4 (novembre 2021): 854. http://dx.doi.org/10.1016/j.ijrobp.2021.03.040.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
5

Noble, M. I. M., e P. R. Belcher. "Blood Pressure versus Blood Flow". Transfusion Medicine and Hemotherapy 20, n. 3 (1993): 121–25. http://dx.doi.org/10.1159/000222824.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
6

Wilder-Smith, Einar P., e Arvind Therimadasamy. "Nerve Blood Flow". Journal of Ultrasound in Medicine 32, n. 1 (gennaio 2013): 187–88. http://dx.doi.org/10.7863/jum.2013.32.1.187.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
7

Selman, Warren R., e H. Richard Winn. "Cerebral blood flow". Neurosurgical Focus 32, n. 2 (febbraio 2012): Introduction. http://dx.doi.org/10.3171/2011.12.focus11353.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
8

Scifers, James R., Eric Fuchs, Geoff Kaplan e Kevin King. "Blood Flow Restriction". Athletic Training & Sports Health Care 8, n. 4 (1 luglio 2016): 138–41. http://dx.doi.org/10.3928/19425864-20160621-01.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
9

LUNELL, NILS-OLOV, e LARS NYLUND. "Uteroplacental Blood Flow". Clinical Obstetrics and Gynecology 35, n. 1 (marzo 1992): 108–18. http://dx.doi.org/10.1097/00003081-199203000-00016.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
10

Brechtelsbauer, P. Bradley, e Josef M. Miller. "Cochlear blood flow". Current Opinion in Otolaryngology & Head and Neck Surgery 4, n. 5 (ottobre 1996): 294–301. http://dx.doi.org/10.1097/00020840-199610000-00002.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri

Tesi sul tema "Blood flow"

1

Tafuna'i, Nicole Denney. "Arterial Blood Flow at Rest and During Exercise with Blood Flow Restriction". BYU ScholarsArchive, 2020. https://scholarsarchive.byu.edu/etd/9003.

Testo completo
Abstract (sommario):
PURPOSE: This study comparted arterial occlusion pressure (AOP) of the superficial femoral artery (SFA) between the dominant and nondominant legs and the relationship between blood flow and occlusion pressure at rest and during muscle contractions in males and females. METHODS: The AOP of the SFA was measured using Doppler ultrasound in the dominant and nondominant legs of 35 (16 males, 19 females) apparently healthy, normotensive young adults. Blood flow in the SFA was measured in the resting state (REST) and during plantar flexion exercise (EXC) at occlusion pressures ranging from 0% to 100% of AOP. ANOVA was used to compare AOP between the dominant and nondominant legs and between males and females. Regression analysis was used to evaluate the influence of relevant variables on AOP. A mixed model was used to evaluate the relationship between blood flow and occlusion pressure at REST and during EXC. RESULTS: There was a significant difference in the AOP between the dominant and nondominant legs in males (230 ± 41 vs 209 ± 37 mmHg) and females (191 ± 27 vs 178 ± 21 mmHg), respectively. There was also a significant sex difference in the AOP in the dominant (230 ± 41 vs 191 ± 27 mmHg; p = 0.002) and nondominant (209 ± 37 vs 178 ± 21 mmHg; p = 0.004) legs, respectively. Regression analysis revealed that after accounting for leg circumference, age, sex, blood pressure, and skinfold thickness were not independent predictors of AOP. At REST and during EXC, there was a linear relationship between relative blood flow and occlusion pressure. CONCLUSIONS: Differences in leg circumference contribute to a portion of the differences in AOP between the dominant and nondominant legs and between sexes. The linear relationship between relative blood flow and occlusion pressure suggests that occlusion pressures during blood flow restriction exercise should be chosen carefully. A large variance in blood flow measurements at different occlusion pressures suggests the need for evaluating the reliability of blood flow measurements and standardization of methods.
Gli stili APA, Harvard, Vancouver, ISO e altri
2

Lutjemeier, Barbara June. "Control of muscle blood flow during dynamic exercise : muscle contraction / blood flow interactions". Diss., Manhattan, Kan. : Kansas State University, 2006. http://hdl.handle.net/2097/244.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
3

Nakashima, Tsutomu. "Autoregulation of Cochlear Blood Flow". 名古屋大学医学部, 1999. http://hdl.handle.net/2237/6202.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
4

Qamar, M. I. "Studies on intestinal blood flow". Thesis, University of Bristol, 1986. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.372045.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
5

Aird, Graham Robert. "Blood flow in arterial branches". Thesis, University of Edinburgh, 1985. http://hdl.handle.net/1842/10887.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
6

Dahnoun, Naim. "Continuous monitoring of blood flow". Thesis, University of Leicester, 1990. http://hdl.handle.net/2381/34319.

Testo completo
Abstract (sommario):
An extensive review of the literature revealed that there are still significant weakness in the available technology for blood flow measurement. This dissertation describes two techniques for blood velocity measurement. The first is an invasive method which uses multimodal optical fibres for light transmission to and from a sensing tip, which attenuates the light depending upon the blood velocity. The design and construction of this flowmeter is presented and bench results shown. The modulated light is transmitted to the detection and processing circuit and provision is made for the transducer to be insensitive to pressure fluctuations and ambient light. The second technique, which is noninvasive, uses a continuous wave Doppler ultrasonic technique; the instrument designed is a portable directional Doppler velocimeter with purpose-built probes intended for monitoring blood flow in femorodistal bypass grafts in ambulatory patients. This portable unit differs from conventional Doppler units in many respect which are described. This unit has been developed in order to understand the behaviour of blood flow in grafts while the patients are persuing everyday tasks. A postoperative study of successful in situ vein grafts from 8 patients has been undertaken to determine the feasibility of the technique. This pilot study shows that posture can have an effect on blood flow in grafts, and also shows that it is possible to monitor blood velocity with Doppler techniques for a long period of time, without intervention of an operator.
Gli stili APA, Harvard, Vancouver, ISO e altri
7

Gammack, D. "Blood flow in twisted arteries". Thesis, University of Surrey, 1998. http://epubs.surrey.ac.uk/844008/.

Testo completo
Abstract (sommario):
The motivation for this research into flow in pipes with non-uniform geometry comes from physiological flows. It is now widely believed that haemodynamics plays an important role in the initiation and development of atherosclerosis. Experiments have shown that the preferred sites for atherogenesis are regions of low wall shear stress. The build-up of atherosclerotic plaques in the coronary arteries can lead to arterial blockage and coronary failure. Previous studies have examined uniformly curved pipes and, more recently, uniformly curved and twisted pipes. However, it is well known that the arterial system displays non-uniform, time-dependent geometry. The main objective of this thesis is to describe flow in various pipes with weakly non-uniform curvature and torsion, with a view to understanding the resulting wall shear stress distribution and velocity profiles. The work herein models the flow of an incompressible Newtonian fluid through a pipe whose curvature and torsion vary along the pipe. The governing equations are first derived, then solved for both steady and oscillatory pressure gradients. The solution of these equations involves asymptotic and numerical techniques. The effects due to the non-uniform geometry and possible applications to physiology are discussed. Finally, the effects of torsion upon fluid motion are studied from the Lagrangian viewpoint, using numerical particle tracking.
Gli stili APA, Harvard, Vancouver, ISO e altri
8

deVries, Tiffany Dawn. "Neural Activation in Blood-Flow-Restricted Versus Non-Blood-Flow-Restricted Exercise: An fMRI Study". BYU ScholarsArchive, 2016. https://scholarsarchive.byu.edu/etd/5878.

Testo completo
Abstract (sommario):
Functional magnetic resonance imaging (fMRI) can be used to track neural activation in the brain during functional activities. The purpose of this study was to investigate brain neural responses to blood flow restricted (BFR) versus control handgrip exercise. Using a randomized crossover design, 25 subjects (12 males, 13 females) completed handgrip exercises during two conditions: BFR vs. control. To familiarize participants with the exercise conditions, one week prior to MRI scanning participants completed each exercise condition once on separate days, with 72 hours between days. The following week fMRI scans were performed at the same time of day, separated by 72 hours. The exercise protocol consisted of five 30-second sets of squeezing a nonmetallic handgrip exerciser (a reported 13.6 kg resistance), doing as many repetitions as possible, with 20-second rest intervals between sets. We saw a significant main effect of exercise condition (BFR versus control) between premotor dorsal (PMd)(F = 5.71, p = 0.022), premotor ventral (PMv)(F = 8.21, p = 0.007), and right ventral striatum (VS_R)(F = 7.36, p = 0.01). When considering anatomical regions of interest, we did not find significant differences between exercise conditions in bilateral S1 (p > 0.82), primary motor cortex (M1)(p > 0.33), supplementary motor area (SMA)(p > 0.66), cerebellum (CB)(p > 0.70), insular cortex (INS)(p > 0.45), anterior cingulate cortex (ACC)(p > 0.24), or thalamus (TH)(p > 0.66). Bilateral ACC (ACC_B), right middle frontal gyrus (MFG_R), and the right primary sensory cortex (S1_R) showed significant linear trends (p = 0.001) over the five exercise sets. Finally, the S1_R, left primary sensory cortex (S1_L), and the right anterior cingulate cortex (ACC_R) showed a main effect of set (p < 0.02). These data demonstrate that acute training with BFR during handgrip exercise results in different neural activation patterns in select areas of the brain, compared to a control. These results show that while completing less work with BFR exercise, subjects can achieve a similar amount of brain neural activation as with a higher-volume exercise. Brain neural activation is important to overall patient health and these findings may be important for prescribing training with BFR in clinical and applied research settings.
Gli stili APA, Harvard, Vancouver, ISO e altri
9

Tosenberger, Alen. "Blood flow modelling and applications to blood coagulation and atherosclerosis". Doctoral thesis, Institut Camille Jordan, CNRS UMR 5208, Université Claude Bernard Lyon 1, Université Claude Bernard Lyon 1, France, 2014. http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/244806.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
10

Willie, Christopher Kenneth. "Cerebral blood flow in man : regulation by arterial blood gases". Thesis, University of British Columbia, 2014. http://hdl.handle.net/2429/47074.

Testo completo
Abstract (sommario):
Due to the high metabolic rate of brain tissue and nominal substrate storage, brain perfusion must be precisely regulated to ensure continuous delivery of oxygen and substrates. Cerebral blood flow (CBF) is principally regulated by tissue metabolism, perfusion pressure, autonomic nervous activity, and the partial pressures of arterial oxygen (PaO₂)and carbon dioxide (PaCO₂) – an integrative process thus involving the marked influence of pulmonary gas exchange and cardiovascular function, in addition to intracranial mediators of cerebrovascular resistance. This thesis explicates the roles of PaO₂ and PaCO₂ in human regulation of regional CBF. In study 1, to elucidate their discrete roles, PaO₂ and PaCO₂ were independently manipulated at sea level through the widest range tolerated in humans. Flow reactivity to hypocapnia (low PaCO₂) and hypoxia (low PaO₂) was greater in the vertebral (VA) than internal carotid (ICA) artery, whereas similar reactivity was observed during hypercapnia (high PaCO₂) and hyperoxia (high PaO2₂. Cerebral oxygen delivery was well protected except in cases of extreme hypocapnia. The ventilatory response to hypoxia mitigates falling PaO₂ and reduces PaCO₂, particularly during initial exposure to high altitude. Study 2 assessed regional CBF during ascent to 5050m and every 12 hours during the first 3 days of acclimatization. Although total CBF increased by ~50% and was modestly related to reductions in oxygen saturation of hemoglobin, no regional CBF differences were observed. To extend these findings, Study 3 aimed to determine if cerebrovascular responses to changes in PaO₂ and PaCO₂ differed at 5050m compared to sea level. Despite respiratory alkalosis and partial metabolic compensation at 5050m restoration of PaO₂ to sea level values decreased CBF, and CBF sensitivity to acutely altered PaCO₂ remained similar to sea level. To elucidate the interactive effect on CBF of profound hypoxemia and hypercapnia, study 4 examined the temporal changes in elite breath-hold divers during maximum apneas. Despite 40-50% reductions in arterial oxygen content, CBF elevations were regionally similar (up to +100%) thereby facilitating maintenance of brain oxygen delivery throughout apnea. Although the regulation of CBF is multifaceted, the cerebrovasculature prioritizes oxygen delivery and adjusts to chronic changes in arterial blood gases.
Gli stili APA, Harvard, Vancouver, ISO e altri

Libri sul tema "Blood flow"

1

Spaan, Jos A. E. Coronary Blood Flow. Dordrecht: Springer Netherlands, 1991. http://dx.doi.org/10.1007/978-94-011-3148-3.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
2

Schmetterer, Leopold, e Jeffrey Kiel, a cura di. Ocular Blood Flow. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-540-69469-4.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
3

Pinsky, Michael R. Cerebral Blood Flow. Berlin, Heidelberg: Springer Berlin Heidelberg, 2002. http://dx.doi.org/10.1007/978-3-642-56036-1.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
4

Rescigno, Aldo, e Andrea Boicelli, a cura di. Cerebral Blood Flow. Boston, MA: Springer US, 1988. http://dx.doi.org/10.1007/978-1-4684-5565-6.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
5

Schmiedek, Peter, Karl Einhäupl e Carl-Martin Kirsch, a cura di. Stimulated Cerebral Blood Flow. Berlin, Heidelberg: Springer Berlin Heidelberg, 1992. http://dx.doi.org/10.1007/978-3-642-77102-6.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
6

Mitagvariia, N. P. Cerebral blood flow regulation. New York: Nova Science Publishers, 2009.

Cerca il testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
7

Goyal, Manu, Aakansha Saraf e Kanu Goyal. Blood Flow Restriction Training. New York: Jenny Stanford Publishing, 2023. http://dx.doi.org/10.1201/9781032699585.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
8

Nichols, Wilmer W., Michael O'Rourke, Charalambos Vlachopoulos e Elazer R. Edelman. McDonald's Blood Flow in Arteries. 7a ed. Boca Raton: CRC Press, 2022. http://dx.doi.org/10.1201/9781351253765.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
9

Kaufmann, Peter, e Richard K. Miller, a cura di. Placental Vascularization and Blood Flow. Boston, MA: Springer US, 1988. http://dx.doi.org/10.1007/978-1-4615-8109-3.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
10

Inoue, Michitoshi, Masatsugu Hori, Shoichi Imai e Robert M. Berne, a cura di. Regulation of Coronary Blood Flow. Tokyo: Springer Japan, 1991. http://dx.doi.org/10.1007/978-4-431-68367-4.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri

Capitoli di libri sul tema "Blood flow"

1

Hill, Keith, Tom Baranowski, Walter Schmidt, Nicole Prommer, Michel Audran, Philippe Connes, Ramiro L. Gutiérrez et al. "Blood Flow". In Encyclopedia of Exercise Medicine in Health and Disease, 128. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-540-29807-6_2155.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
2

Thrush, Abigail. "Blood flow". In Diagnostic Ultrasound, 159–69. Third edition. | Boca Raton, FL: CRC Press/Taylor & Francis Group, [2019]: CRC Press, 2019. http://dx.doi.org/10.1201/9781138893603-8.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
3

Hahn, George M. "Blood Flow". In Physics and Technology of Hyperthermia, 441–47. Dordrecht: Springer Netherlands, 1987. http://dx.doi.org/10.1007/978-94-009-3597-6_19.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
4

Hoskins, Peter R., e David Hardman. "Blood and Blood Flow". In Cardiovascular Biomechanics, 37–63. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-46407-7_3.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
5

Müller, Edgar. "Flow Studies". In Cerebral Blood Flow, 215–43. Boston, MA: Springer US, 1988. http://dx.doi.org/10.1007/978-1-4684-5565-6_12.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
6

Rodriguez, G., F. De Carli, G. Novellone, S. Marenco e G. Rosadini. "Regional Cerebral Blood Flow Measurements Using the 133-Xenon Inhalation Method". In Cerebral Blood Flow, 121–43. Boston, MA: Springer US, 1988. http://dx.doi.org/10.1007/978-1-4684-5565-6_7.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
7

Obrist, Walter D. "History of Cerebral Blood Flow Assessment". In Cerebral Blood Flow, 3–6. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/978-3-642-56036-1_1.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
8

Hossmann, Konstantin-Alexander. "The Ischemic Penumbra: Pathophysiology and Therapeutic Implications". In Cerebral Blood Flow, 137–46. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/978-3-642-56036-1_10.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
9

Pennings, F. A., G. J. Bouma e Can Ince. "The Assessment of Determinants of Cerebral Oxygenation and Microcirculation". In Cerebral Blood Flow, 149–64. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/978-3-642-56036-1_11.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
10

Hunter, George, Leena M. Hamberg, Michael H. Lev e Ramon Gilberto Gonzales. "Computed Tomography Angiography and Perfusion Imaging of Acute Stroke". In Cerebral Blood Flow, 165–78. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/978-3-642-56036-1_12.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri

Atti di convegni sul tema "Blood flow"

1

Insley, Joseph A., Leopold Grinberg, Dmitry A. Fedosov, Vitali Morozov, Bruce Caswell, Michael E. Papka e Geroge Em Karniadakis. "Blood flow". In the 2011 companion. New York, New York, USA: ACM Press, 2011. http://dx.doi.org/10.1145/2148600.2148673.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
2

Kane, A. S., Yves Bourgault, A. Iolov, R. G. Owens e A. Fortin. "COMPUTATION OF BLOOD FLOWS ACCOUNTING FOR RED-BLOOD CELL AGGREGATION/FRAGMENTATION". In Seventh International Symposium on Turbulence and Shear Flow Phenomena. Connecticut: Begellhouse, 2011. http://dx.doi.org/10.1615/tsfp7.850.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
3

Jabir, E., e S. Anil Lal. "Blood flow through concentric stenosis". In the 2014 International Conference. New York, New York, USA: ACM Press, 2014. http://dx.doi.org/10.1145/2660859.2660919.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
4

Rahman, Md Shoaibur, e Md Aynal Haque. "Mathematical modeling of blood flow". In 2012 International Conference on Informatics, Electronics & Vision (ICIEV). IEEE, 2012. http://dx.doi.org/10.1109/iciev.2012.6317446.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
5

Li Lei e Yang Pengfei. "High sensitivity blood color flow". In 2013 IEEE International Ultrasonics Symposium (IUS). IEEE, 2013. http://dx.doi.org/10.1109/ultsym.2013.0378.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
6

Kitney, Richard I., Christopher J. Burrell, Don P. Giddens, Keith Straughan, Lincoln Moura, A. A. Kardan, M. Xiao e Martin T. Rothman. "3-D blood flow visualization". In OE/LASE '90, 14-19 Jan., Los Angeles, CA, a cura di Abraham Katzir. SPIE, 1990. http://dx.doi.org/10.1117/12.17592.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
7

Grinberg, Leopold, Mingge Deng, Huan Lei, Joseph A. Insley e George Em Karniadakis. "Multiscale simulations of blood-flow". In the 1st Conference of the Extreme Science and Engineering Discovery Environment. New York, New York, USA: ACM Press, 2012. http://dx.doi.org/10.1145/2335755.2335829.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
8

Marinova, Iliana, e Valentin Mateev. "Noninvasive Blood Flow Velocity Determination". In 2019 19th International Symposium on Electromagnetic Fields in Mechatronics, Electrical and Electronic Engineering (ISEF). IEEE, 2019. http://dx.doi.org/10.1109/isef45929.2019.9096914.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
9

Liou, Jian-Chiun, e Zhen-Yu Yang. "Ultrasonic blood flow rate monitoring". In 2021 IEEE International Conference on Consumer Electronics-Taiwan (ICCE-TW). IEEE, 2021. http://dx.doi.org/10.1109/icce-tw52618.2021.9603044.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
10

De Carvalho Junior, Antonio Sousa Vieira, e Helton Hideraldo Biscaro. "Blood Flow SPH Simulation with Elastic Deformation of Blood Vessels". In 2019 IEEE 19th International Conference on Bioinformatics and Bioengineering (BIBE). IEEE, 2019. http://dx.doi.org/10.1109/bibe.2019.00102.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri

Rapporti di organizzazioni sul tema "Blood flow"

1

Bodo, Michael, Frederick Pearce, Stephen Van Albert e Rocco Armonda. Rheoencephalogram Reflects Cerebral Blood Flow Autoregulation in Pigs. Fort Belvoir, VA: Defense Technical Information Center, gennaio 2007. http://dx.doi.org/10.21236/ada473927.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
2

Kovitaya, Manaswee, Lloyd D. Tripp, Chelette Jr. e Tamara L. Middle Cerebral Artery Blood Flow Velocity After Exposure to Sustained +Gz. Fort Belvoir, VA: Defense Technical Information Center, giugno 1997. http://dx.doi.org/10.21236/ada337565.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
3

Robinson, Scott B., Christina M. Kesick, Margaret A. Kolka e Lou A. Stephenson. Topical Nitroglycerin Ointment (2%) Applied to Forearm Skin Increases Skin Blood Flow. Fort Belvoir, VA: Defense Technical Information Center, gennaio 2001. http://dx.doi.org/10.21236/ada391955.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
4

Kanjilal, Partha P., e Richard R. Gonzalez. Assessment of Cardiovascular Dynamics Using Periodicity Attributes Derived from Peripheral Blood Flow Signals. Fort Belvoir, VA: Defense Technical Information Center, agosto 2002. http://dx.doi.org/10.21236/ada411618.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
5

Bednarczyk, Edward M. A Comparison of Cerebral Blood Flow in Migraineurs during Headache-Free and Treatment Periods. Fort Belvoir, VA: Defense Technical Information Center, ottobre 1996. http://dx.doi.org/10.21236/ada328296.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
6

Li, Rui, Kun Yang, Chee Chen Soon, Tengku Fadilah Tengku Kamalden e Alif Syamim Syazwan Ramli. Effects of Blood Flow Restriction Intervention on Sports Performance in Athletes: A Systematic Review. INPLASY - International Platform of Registered Systematic Review and Meta-analysis Protocols, marzo 2023. http://dx.doi.org/10.37766/inplasy2023.3.0058.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
7

Yang, Kun, Rui Li, Tengku Fadilah Tengku Kamalden, Chen Soon Chee, Johan Abdul Kahar e Shaowen Qian. Effects of Blood Flow Restriction Training on Physical Fitness Among Athletes: A Systematic Review. INPLASY - International Platform of Registered Systematic Review and Meta-analysis Protocols, febbraio 2023. http://dx.doi.org/10.37766/inplasy2023.2.0040.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
8

Bednarczyk, Edward M. A Comparison of Cerebral Blood Flow in Migraineurs During Headache, Headache-Free and Treatment Periods. Fort Belvoir, VA: Defense Technical Information Center, gennaio 1999. http://dx.doi.org/10.21236/ada374068.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
9

Holdsworth, Clark, Steven Copp, Daniel Hirai, Scott Ferguson, Timothy Musch e David Poole. Effects of dietary fish oil on exercising muscle blood flow in chronic heart failure rats. Peeref, giugno 2022. http://dx.doi.org/10.54985/peeref.2206p4902539.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
10

Luo, Shengyao. Effects of Blood Flow Restriction Training on physical performance among the elderly: a systematic review. INPLASY - International Platform of Registered Systematic Review and Meta-analysis Protocols, luglio 2024. http://dx.doi.org/10.37766/inplasy2024.7.0047.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
Offriamo sconti su tutti i piani premium per gli autori le cui opere sono incluse in raccolte letterarie tematiche. Contattaci per ottenere un codice promozionale unico!

Vai alla bibliografia