Articoli di riviste sul tema "Blood-brain barrier"

Segui questo link per vedere altri tipi di pubblicazioni sul tema: Blood-brain barrier.

Cita una fonte nei formati APA, MLA, Chicago, Harvard e in molti altri stili

Scegli il tipo di fonte:

Vedi i top-50 articoli di riviste per l'attività di ricerca sul tema "Blood-brain barrier".

Accanto a ogni fonte nell'elenco di riferimenti c'è un pulsante "Aggiungi alla bibliografia". Premilo e genereremo automaticamente la citazione bibliografica dell'opera scelta nello stile citazionale di cui hai bisogno: APA, MLA, Harvard, Chicago, Vancouver ecc.

Puoi anche scaricare il testo completo della pubblicazione scientifica nel formato .pdf e leggere online l'abstract (il sommario) dell'opera se è presente nei metadati.

Vedi gli articoli di riviste di molte aree scientifiche e compila una bibliografia corretta.

1

KANDA, Takashi. "Blood-Brain Barrier and Blood-Nerve Barrier". Yamaguchi Medical Journal 54, n. 1 (2005): 5–11. http://dx.doi.org/10.2342/ymj.54.5.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
2

Shalaby, Mohamed Adel. "Blood-Brain Barrier". Al-Azhar Medical Journal 45, n. 3 (luglio 2016): i—vi. http://dx.doi.org/10.12816/0033115.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
3

Lawther, Bradley K., Sajith Kumar e Hari Krovvidi. "Blood–brain barrier". Continuing Education in Anaesthesia Critical Care & Pain 11, n. 4 (agosto 2011): 128–32. http://dx.doi.org/10.1093/bjaceaccp/mkr018.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
4

Dunn, Jeff F., e Albert M. Isaacs. "The impact of hypoxia on blood-brain, blood-CSF, and CSF-brain barriers". Journal of Applied Physiology 131, n. 3 (1 settembre 2021): 977–85. http://dx.doi.org/10.1152/japplphysiol.00108.2020.

Testo completo
Abstract (sommario):
The blood-brain barrier (BBB), blood-cerebrospinal fluid (CSF) barrier (BCSFB), and CSF-brain barriers (CSFBB) are highly regulated barriers in the central nervous system comprising complex multicellular structures that separate nerves and glia from blood and CSF, respectively. Barrier damage has been implicated in the pathophysiology of diverse hypoxia-related neurological conditions, including stroke, multiple sclerosis, hydrocephalus, and high-altitude cerebral edema. Much is known about the damage to the BBB in response to hypoxia, but much less is known about the BCSFB and CSFBB. Yet, it is known that these other barriers are implicated in damage after hypoxia or inflammation. In the 1950s, it was shown that the rate of radionucleated human serum albumin passage from plasma to CSF was five times higher during hypoxic than normoxic conditions in dogs, due to BCSFB disruption. Severe hypoxia due to administration of the bacterial toxin lipopolysaccharide is associated with disruption of the CSFBB. This review discusses the anatomy of the BBB, BCSFB, and CSFBB and the impact of hypoxia and associated inflammation on the regulation of those barriers.
Gli stili APA, Harvard, Vancouver, ISO e altri
5

Koziara, J. M., P. R. Lockman, D. D. Allen e R. J. Mumper. "The Blood-Brain Barrier and Brain Drug Delivery". Journal of Nanoscience and Nanotechnology 6, n. 9 (1 settembre 2006): 2712–35. http://dx.doi.org/10.1166/jnn.2006.441.

Testo completo
Abstract (sommario):
The present report encompasses a thorough review of drug delivery to the brain with a particular focus on using drug carriers such as liposomes and nanoparticles. Challenges in brain drug delivery arise from the presence of one of the strictest barriers in vivo—the blood-brain barrier (BBB). This barrier exists at the level of endothelial cells of brain vasculature and its role is to maintain brain homeostasis. To better understand the principles of brain drug delivery, relevant knowledge of the blood-brain barrier anatomy and physiology is briefly reviewed. Several approaches to overcome the BBB have been reviewed including the use of carrier systems. In addition, strategies to enhance brain drug delivery by specific brain targeting are discussed.
Gli stili APA, Harvard, Vancouver, ISO e altri
6

Cho, Choi-Fong. "The Blood-Brain Barrier". Oncology Times 40, n. 2 (gennaio 2018): 1. http://dx.doi.org/10.1097/01.cot.0000530114.97923.aa.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
7

Mizee, Mark Ronald, e Helga Eveline de Vries. "Blood-brain barrier regulation". Tissue Barriers 1, n. 5 (dicembre 2013): e26882. http://dx.doi.org/10.4161/tisb.26882.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
8

Dobbing, John. "The Blood-Brain Barrier". Developmental Medicine & Child Neurology 3, n. 6 (12 novembre 2008): 610–12. http://dx.doi.org/10.1111/j.1469-8749.1961.tb10430.x.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
9

Dobbing, John. "The Blood-Brain Barrier". Developmental Medicine & Child Neurology 3, n. 4 (12 novembre 2008): 311–14. http://dx.doi.org/10.1111/j.1469-8749.1961.tb15323.x.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
10

Daneman, Richard, e Alexandre Prat. "The Blood–Brain Barrier". Cold Spring Harbor Perspectives in Biology 7, n. 1 (gennaio 2015): a020412. http://dx.doi.org/10.1101/cshperspect.a020412.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
11

Goldstein, N., R. Goldstein, D. Terterov, A. A. Kamensky, G. I. Kovalev, Yu A. Zolotarev, G. N. Avakyan e S. Terterov. "Blood-brain barrier unlocked". Biochemistry (Moscow) 77, n. 5 (maggio 2012): 419–24. http://dx.doi.org/10.1134/s000629791205001x.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
12

Goldstein, Gary W., e A. Lorris Betz. "The Blood-Brain Barrier". Scientific American 255, n. 3 (settembre 1986): 74–83. http://dx.doi.org/10.1038/scientificamerican0986-74.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
13

Engelhardt, B. "Blood-Brain Barrier Differentiation". Science 334, n. 6063 (22 dicembre 2011): 1652–53. http://dx.doi.org/10.1126/science.1216853.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
14

Pan, Weihong, e Abba J. Kastin. "The Blood-Brain Barrier". Neuroscientist 23, n. 2 (7 luglio 2016): 124–36. http://dx.doi.org/10.1177/1073858416639005.

Testo completo
Abstract (sommario):
Sleep and its disorders are known to affect the functions of essential organs and systems in the body. However, very little is known about how the blood-brain barrier (BBB) is regulated. A few years ago, we launched a project to determine the impact of sleep fragmentation and chronic sleep restriction on BBB functions, including permeability to fluorescent tracers, tight junction protein expression and distribution, glucose and other solute transporter activities, and mediation of cellular mechanisms. Recent publications and relevant literature allow us to summarize here the sleep-BBB interactions in five sections: (1) the structural basis enabling the BBB to serve as a huge regulatory interface; (2) BBB transport and permeation of substances participating in sleep-wake regulation; (3) the circadian rhythm of BBB function; (4) the effect of experimental sleep disruption maneuvers on BBB activities, including regional heterogeneity, possible threshold effect, and reversibility; and (5) implications of sleep disruption-induced BBB dysfunction in neurodegeneration and CNS autoimmune diseases. After reading the review, the general audience should be convinced that the BBB is an important mediating interface for sleep-wake regulation and a crucial relay station of mind-body crosstalk. The pharmaceutical industry should take into consideration that sleep disruption alters the pharmacokinetics of BBB permeation and CNS drug delivery, being attentive to the chrono timing and activation of co-transporters in subjects with sleep disorders.
Gli stili APA, Harvard, Vancouver, ISO e altri
15

JOÓ, FERENC. "The blood–brain barrier". Nature 329, n. 6136 (settembre 1987): 208. http://dx.doi.org/10.1038/329208b0.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
16

Pardridge, William M. "Blood-Brain Barrier Genomics". Stroke 38, n. 2 (febbraio 2007): 686–90. http://dx.doi.org/10.1161/01.str.0000247887.61831.74.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
17

Palmer, Alan M. "The blood–brain barrier". Neurobiology of Disease 37, n. 1 (gennaio 2010): 1–2. http://dx.doi.org/10.1016/j.nbd.2009.09.023.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
18

Li, Jian Yi, Ruben J. Boado e William M. Pardridge. "Blood—Brain Barrier Genomics". Journal of Cerebral Blood Flow & Metabolism 21, n. 1 (gennaio 2001): 61–68. http://dx.doi.org/10.1097/00004647-200101000-00008.

Testo completo
Abstract (sommario):
The blood–brain barrier (BBB) is formed by the brain microvascular endothelium, and the unique transport properties of the BBB are derived from tissue-specific gene expression within this cell. The current studies developed a gene microarray approach specific for the BBB by purifying the initial mRNA from isolated rat brain capillaries to generate tester cDNA. A polymerase chain reaction–based subtraction cloning method, suppression subtractive hybridization (SSH), was used, and the BBB cDNA was subtracted with driver cDNA produced from mRNA isolated from rat liver and kidney. Screening 5% of the subtracted tester cDNA resulted in identification of 50 gene products and more than 80% of those were selectively expressed at the BBB; these included novel gene sequences not found in existing databases, ESTs, and known genes that were not known to be selectively expressed at the BBB. Genes in the latter category include tissue plasminogen activator, insulin-like growth factor-2, PC-3 gene product, myelin basic protein, regulator of G protein signaling 5, utrophin, IκB, connexin-45, the class I major histocompatibility complex, the rat homologue of the transcription factors hbrm or EZH1, and organic anion transporting polypeptide type 2. Knowledge of tissue-specific gene expression at the BBB could lead to new targets for brain drug delivery and could elucidate mechanisms of brain pathology at the microvascular level.
Gli stili APA, Harvard, Vancouver, ISO e altri
19

Stoker, Andrew W. "Blood–brain barrier breached". Trends in Genetics 17, n. 3 (marzo 2001): 129. http://dx.doi.org/10.1016/s0168-9525(01)02246-6.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
20

Dyrna, Felix, Sophie Hanske, Martin Krueger e Ingo Bechmann. "The Blood-Brain Barrier". Journal of Neuroimmune Pharmacology 8, n. 4 (6 giugno 2013): 763–73. http://dx.doi.org/10.1007/s11481-013-9473-5.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
21

Younger, David S. "The Blood-Brain Barrier". Neurologic Clinics 37, n. 2 (maggio 2019): 235–48. http://dx.doi.org/10.1016/j.ncl.2019.01.009.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
22

Bradbury, MW. "The blood-brain barrier". Experimental Physiology 78, n. 4 (1 luglio 1993): 453–72. http://dx.doi.org/10.1113/expphysiol.1993.sp003698.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
23

Fehervari, Zoltan. "Blood–brain barrier integrity". Nature Immunology 20, n. 1 (11 dicembre 2018): 1. http://dx.doi.org/10.1038/s41590-018-0286-9.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
24

Serlin, Yonatan, Jonathan Ofer, Gal Ben-Arie, Ronel Veksler, Gal Ifergane, Ilan Shelef, Jeffrey Minuk, Anat Horev e Alon Friedman. "Blood-Brain Barrier Leakage". Stroke 50, n. 5 (maggio 2019): 1266–69. http://dx.doi.org/10.1161/strokeaha.119.025247.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
25

MNH. "The Blood-Brain Barrier". Journal of Neuropathology & Experimental Neurology 62, n. 10 (ottobre 2003): 1086. http://dx.doi.org/10.1093/jnen/62.10.1086.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
26

Wright, Karen. "The Blood-Brain Barrier". Scientific American 260, n. 3 (marzo 1989): 27–30. http://dx.doi.org/10.1038/scientificamerican0389-27.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
27

Pardridge, William M. "Blood–brain barrier delivery". Drug Discovery Today 12, n. 1-2 (gennaio 2007): 54–61. http://dx.doi.org/10.1016/j.drudis.2006.10.013.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
28

Arvanitis, Costas D., Gino B. Ferraro e Rakesh K. Jain. "The blood–brain barrier and blood–tumour barrier in brain tumours and metastases". Nature Reviews Cancer 20, n. 1 (10 ottobre 2019): 26–41. http://dx.doi.org/10.1038/s41568-019-0205-x.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
29

Mineiro, Rafael, Tânia Albuquerque, Ana Raquel Neves, Cecília R. A. Santos, Diana Costa e Telma Quintela. "The Role of Biological Rhythms in New Drug Formulations to Cross the Brain Barriers". International Journal of Molecular Sciences 24, n. 16 (8 agosto 2023): 12541. http://dx.doi.org/10.3390/ijms241612541.

Testo completo
Abstract (sommario):
For brain protection, the blood–brain barrier and blood–cerebrospinal fluid barrier limit the traffic of molecules between blood and brain tissue and between blood and cerebrospinal fluid, respectively. Besides their protective function, brain barriers also limit the passage of therapeutic drugs to the brain, which constitutes a great challenge for the development of therapeutic strategies for brain disorders. This problem has led to the emergence of novel strategies to treat neurological disorders, like the development of nanoformulations to deliver therapeutic agents to the brain. Recently, functional molecular clocks have been identified in the blood–brain barrier and in the blood–cerebrospinal fluid barrier. In fact, circadian rhythms in physiological functions related to drug disposition were also described in brain barriers. This opens the possibility for chronobiological approaches that aim to use time to improve drug efficacy and safety. The conjugation of nanoformulations with chronobiology for neurological disorders is still unexplored. Facing this, here, we reviewed the circadian rhythms in brain barriers, the nanoformulations studied to deliver drugs to the brain, and the nanoformulations with the potential to be conjugated with a chronobiological approach to therapeutic strategies for the brain.
Gli stili APA, Harvard, Vancouver, ISO e altri
30

Moody, Dixon M. "The Blood-Brain Barrier and Blood-Cerebral Spinal Fluid Barrier". Seminars in Cardiothoracic and Vascular Anesthesia 10, n. 2 (giugno 2006): 128–31. http://dx.doi.org/10.1177/1089253206288992.

Testo completo
Abstract (sommario):
An intact blood-brain barrier and normal production, circulation, and absorption of cerebrospinal fluid are critical for normal brain function. Minor disruptions of barrier function are without clinical consequences. Major disruptions accompany most significant acute brain injuries. The anatomic location of the blood-brain barrier is the endothelial cells of arterioles, capillaries, veins, and the epithelial cell surface of the choroid plexus. However, endothelial cells require the presence of glial cells to maintain barrier function. During cardiopulmonary bypass, several factors may result in a temporary disruption of the barrier; the most important are systemic inflammatory response and focal ischemia due to emboli. Lacking a lymphatic system, the brain depends on the circulation of cerebrospinal fluid to remove the products of metabolism, and the circulation of cerebrospinal fluid depends on a vascular systolic pulse wave to drive this fluid antegrade along the brain paravascular spaces. Although it is not possible to identify this paravavscular space histologically, its presence is confirmed by tracer methods.
Gli stili APA, Harvard, Vancouver, ISO e altri
31

Paulson, O. "Blood–brain barrier, brain metabolism and cerebral blood flow". European Neuropsychopharmacology 12, n. 6 (dicembre 2002): 495–501. http://dx.doi.org/10.1016/s0924-977x(02)00098-6.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
32

Schlosshauer, Burkhard, e Heiko Steuer. "The Blood-brain Barrier and the Outer Blood-retina Barrier". Medicinal Chemistry Reviews - Online 2, n. 1 (1 febbraio 2005): 11–26. http://dx.doi.org/10.2174/1567203052997031.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
33

McCabe, Shannon Morgan, e Ningning Zhao. "The Potential Roles of Blood–Brain Barrier and Blood–Cerebrospinal Fluid Barrier in Maintaining Brain Manganese Homeostasis". Nutrients 13, n. 6 (27 maggio 2021): 1833. http://dx.doi.org/10.3390/nu13061833.

Testo completo
Abstract (sommario):
Manganese (Mn) is a trace nutrient necessary for life but becomes neurotoxic at high concentrations in the brain. The brain is a “privileged” organ that is separated from systemic blood circulation mainly by two barriers. Endothelial cells within the brain form tight junctions and act as the blood–brain barrier (BBB), which physically separates circulating blood from the brain parenchyma. Between the blood and the cerebrospinal fluid (CSF) is the choroid plexus (CP), which is a tissue that acts as the blood–CSF barrier (BCB). Pharmaceuticals, proteins, and metals in the systemic circulation are unable to reach the brain and spinal cord unless transported through either of the two brain barriers. The BBB and the BCB consist of tightly connected cells that fulfill the critical role of neuroprotection and control the exchange of materials between the brain environment and blood circulation. Many recent publications provide insights into Mn transport in vivo or in cell models. In this review, we will focus on the current research regarding Mn metabolism in the brain and discuss the potential roles of the BBB and BCB in maintaining brain Mn homeostasis.
Gli stili APA, Harvard, Vancouver, ISO e altri
34

Francesca, Bonomini, e Rita Rezzani. "Aquaporin and Blood Brain Barrier". Current Neuropharmacology 8, n. 2 (1 giugno 2010): 92–96. http://dx.doi.org/10.2174/157015910791233132.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
35

McMahon, Andrew P., e Justin K. Ichida. "Repairing the blood-brain barrier". Science 375, n. 6582 (18 febbraio 2022): 715–16. http://dx.doi.org/10.1126/science.abn7921.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
36

Rustenhoven, Justin, e Jonathan Kipnis. "Bypassing the blood-brain barrier". Science 366, n. 6472 (19 dicembre 2019): 1448–49. http://dx.doi.org/10.1126/science.aay0479.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
37

Chen, Yi-Je, Breanna K. Wallace, Natalie Yuen, David P. Jenkins, Heike Wulff e Martha E. O’Donnell. "Blood–Brain Barrier KCa3.1 Channels". Stroke 46, n. 1 (gennaio 2015): 237–44. http://dx.doi.org/10.1161/strokeaha.114.007445.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
38

Neuwelt, E. A., P. A. Barnett, C. I. McCormick, E. P. Frenkel e J. D. Minna. "Osmotic blood-brain barrier modification". Neurosurgery 17, n. 3 (settembre 1985): 419???23. http://dx.doi.org/10.1097/00006123-198509000-00005.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
39

Schulze, C. "Understanding the Blood-Brain-Barrier". Neuropathology and Applied Neurobiology 23, n. 3 (giugno 1997): 150–51. http://dx.doi.org/10.1046/j.1365-2990.1997.t01-1-90098900.x.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
40

Schulze, Dr C. "Understanding the Blood-Brain-Barrier". Neuropathology and Applied Neurobiology 23, n. 2 (aprile 1997): 150–51. http://dx.doi.org/10.1111/j.1365-2990.1997.tb01197.x.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
41

Stern, Peter. "Developing the blood-brain barrier". Science 361, n. 6404 (23 agosto 2018): 763.11–765. http://dx.doi.org/10.1126/science.361.6404.763-k.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
42

Simpson, Ian A., Nathan M. Appel, Mitsuhiko Hokari, Jun Oki, Geoffrey D. Holman, Fran Maher, Ellen M. Koehler-Stec, Susan J. Vannucci e Quentin R. Smith. "Blood-Brain Barrier Glucose Transporter". Journal of Neurochemistry 72, n. 1 (gennaio 1999): 238–47. http://dx.doi.org/10.1046/j.1471-4159.1999.0720238.x.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
43

Keaney, James, e Matthew Campbell. "The dynamic blood-brain barrier". FEBS Journal 282, n. 21 (8 settembre 2015): 4067–79. http://dx.doi.org/10.1111/febs.13412.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
44

Sánchez-Navarro, Macarena, Ernest Giralt e Meritxell Teixidó. "Blood–brain barrier peptide shuttles". Current Opinion in Chemical Biology 38 (giugno 2017): 134–40. http://dx.doi.org/10.1016/j.cbpa.2017.04.019.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
45

Ermisch, A., H. J. Rühle, R. Landgraf e J. Hess. "Blood—Brain Barrier and Peptides". Journal of Cerebral Blood Flow & Metabolism 5, n. 3 (settembre 1985): 350–57. http://dx.doi.org/10.1038/jcbfm.1985.49.

Testo completo
Abstract (sommario):
The brain is both the source and the recipient of peptide signals. The question is: Do endogenous, blood-borne peptide molecules influence brain function? Brain regions with the tight capillaries of the blood–brain barrier (BBB) extract low but measurable amounts of labeled peptide molecules from an intracarotid bolus injection. In the rat, the extraction fractions of β-casomorphin-5, DesGlyNH2-arginine-vasopressin, arginine-vasopressin, lysine-vasopressin, oxytocin, gonadoliberin, substance P, and β-endorphin, studied in this laboratory, range from 0.5% (substance P) to 2.4% (arginine-vasopressin). Extraction varies little among the 15 examined brain regions. As shown for arginine-vasopressin, the extracted peptides may be bound in part to specific binding sites located on the luminal membrane of the tight endothelial cells. Transport of peptide molecules across the BBB cannot be ruled out, but it is unlikely that endogenous peptides pass the BBB in physiologically significant amounts. In contrast, in brain regions with leaky capillaries, e.g., selected circumventricular organs including the pineal gland, neurohypophysis, and choroid plexus, the peptide fraction extracted approaches that of water. Within the circumventricular organs, the peptide molecules actually reach the cellular elements of the tissue. However, no studies definitively show that peptides reach neurons in the deeper layers of the brain. On the other hand, blood-borne peptides influence the BBB permeability by altering the transport of essential substances. The effect may be mediated by specific peptide binding sites located at the luminal membrane of the endothelium. It is possible that the effect of peptides on the BBB is necessary for proper brain function. There is some evidence that peptides, released centrally into the synaptic clefts as well as peripherally into the bloodstream, support complex brain performances by both of these pathways.
Gli stili APA, Harvard, Vancouver, ISO e altri
46

Bjorklund, Anders, e Clive Svendsen. "Breaking the brain-blood barrier". Nature 397, n. 6720 (febbraio 1999): 569–70. http://dx.doi.org/10.1038/17495.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
47

Tuomanen, Elaine. "Breaching the Blood-Brain Barrier". Scientific American 268, n. 2 (febbraio 1993): 80–84. http://dx.doi.org/10.1038/scientificamerican0293-80.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
48

Petrovskaya, A. V., E. P. Barykin, A. M. Tverskoi, K. B. Varshavskaya, V. A. Mitkevich, I. Yu Petrushanko e A. A. Makarov. "Blood–Brain Barrier Transwell Modeling". Molecular Biology 56, n. 6 (dicembre 2022): 1020–27. http://dx.doi.org/10.1134/s0026893322060140.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
49

Hampton, Tracy. "Restoring the Blood-Brain Barrier". JAMA 309, n. 5 (6 febbraio 2013): 431. http://dx.doi.org/10.1001/jama.2013.267.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
50

ÖZTAŞ, BARİA. "SEX AND BLOOD-BRAIN BARRIER". Pharmacological Research 37, n. 3 (marzo 1998): 165–67. http://dx.doi.org/10.1006/phrs.1997.0243.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
Offriamo sconti su tutti i piani premium per gli autori le cui opere sono incluse in raccolte letterarie tematiche. Contattaci per ottenere un codice promozionale unico!

Vai alla bibliografia