Segui questo link per vedere altri tipi di pubblicazioni sul tema: Biotechnological potential.

Articoli di riviste sul tema "Biotechnological potential"

Cita una fonte nei formati APA, MLA, Chicago, Harvard e in molti altri stili

Scegli il tipo di fonte:

Vedi i top-50 articoli di riviste per l'attività di ricerca sul tema "Biotechnological potential".

Accanto a ogni fonte nell'elenco di riferimenti c'è un pulsante "Aggiungi alla bibliografia". Premilo e genereremo automaticamente la citazione bibliografica dell'opera scelta nello stile citazionale di cui hai bisogno: APA, MLA, Harvard, Chicago, Vancouver ecc.

Puoi anche scaricare il testo completo della pubblicazione scientifica nel formato .pdf e leggere online l'abstract (il sommario) dell'opera se è presente nei metadati.

Vedi gli articoli di riviste di molte aree scientifiche e compila una bibliografia corretta.

1

Al-Hoqani, Umaima, Rosanna Young e Saul Purton. "The biotechnological potential of Nannochloropsis". Perspectives in Phycology 4, n. 1 (1 maggio 2017): 1–15. http://dx.doi.org/10.1127/pip/2016/0065.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
2

Pirog, T. P., D. A. Lutsai e F. V. Muchnyk. "Biotechnological Potential of the Acinetobacter Genus Bacteria". Mikrobiolohichnyi Zhurnal 83, n. 3 (17 giugno 2021): 92–109. http://dx.doi.org/10.15407/microbiolj83.03.092.

Testo completo
Abstract (sommario):
Until recently, there were rare scientific reports on the biotechnological potential of non-pathogenic bacteria of the Acinetobacter genus. Although the first reports about the practically valuable properties of these bacteria date back to the 70s and 80s of the twentieth century and concerned the synthesis of the emulsan bioemulsifier. In the last decade, interest in representatives of the Acinetobacter genus as objects of biotechnology has significantly increased. The review presents current literature data on the synthesis by bacteria of this genus of high-molecular emulsifiers, low-molecular biosurfactants of glyco- and aminolipid nature, enzymes (lipase, agarase, chondroitinase), phytohormones, as well as their ability to solubilize phosphates and decompose various xenobiotics (aliphatic and aromatic hydrocarbons, pesticides, insecticides). Prospects for practical application of Acinetobacter bacteria and the metabolites synthesized by them in environmental technologies, agriculture, various industries and medicine are discussed. The data of own experimental studies on the synthesis and biological activity (antimicrobial, anti-adhesive, ability to destroy biofilms) of biosurfactants synthesized by A. calcoaceticus IMV B-7241 strain and their role in the degradation of oil pollutants, including complex ones with heavy metals, are presented. The ability of A. calcoaceticus IMV B-7241 to the simultaneous synthesis of phytohormones (auxins, cytokinins, gibberellins) and biosurfactants with antimicrobial activity against phytopathogenic bacteria allows us to consider this strain as promising for practical use in crop production to increase crop yields.
Gli stili APA, Harvard, Vancouver, ISO e altri
3

Funk, I. A., e A. N. Irkitova. "BIOTECHNOLOGICAL POTENTIAL OF BIFIDOBACTERIA". Acta Biologica Sibirica 2, n. 4 (26 dicembre 2016): 67. http://dx.doi.org/10.14258/abs.v2i4.1707.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
4

Nishihara, Hiroshi, Tokumitsu Okamura, Rolf D. Schmid, Achim Hauck e Matthias Reuß. "Biotechnological potential of P450 monooxygenases". Journal of Biotechnology 56, n. 1 (luglio 1997): 57–61. http://dx.doi.org/10.1016/s0168-1656(97)00071-0.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
5

Abe, Fumiyoshi, e Koki Horikoshi. "The biotechnological potential of piezophiles". Trends in Biotechnology 19, n. 3 (marzo 2001): 102–8. http://dx.doi.org/10.1016/s0167-7799(00)01539-0.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
6

Awasthi, Abhishek Kumar, Quanyin Tan e Jinhui Li. "Biotechnological Potential for Microplastic Waste". Trends in Biotechnology 38, n. 11 (novembre 2020): 1196–99. http://dx.doi.org/10.1016/j.tibtech.2020.03.002.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
7

Chen, Feng. "Microalgae and their biotechnological potential". Journal of Biotechnology 136 (ottobre 2008): S521. http://dx.doi.org/10.1016/j.jbiotec.2008.07.1225.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
8

Lewis, Tom E., Peter D. Nichols e Thomas A. McMeekin. "The Biotechnological Potential of Thraustochytrids". Marine Biotechnology 1, n. 6 (novembre 1999): 580–87. http://dx.doi.org/10.1007/pl00011813.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
9

Ryan, Michael P., e Gary Walsh. "The biotechnological potential of whey". Reviews in Environmental Science and Bio/Technology 15, n. 3 (19 agosto 2016): 479–98. http://dx.doi.org/10.1007/s11157-016-9402-1.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
10

Santos-Gandelman, Juliana, Marcia Giambiagi-deMarval, Walter Oelemann e Marinella Laport. "Biotechnological Potential of Sponge-Associated Bacteria". Current Pharmaceutical Biotechnology 15, n. 2 (11 luglio 2014): 143–55. http://dx.doi.org/10.2174/1389201015666140711115033.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
11

Kim, Dockyu, Ki Young Choi, Miyoun Yoo, Gerben J. Zylstra e Eungbin Kim. "Biotechnological Potential of Rhodococcus Biodegradative Pathways". Journal of Microbiology and Biotechnology 28, n. 7 (28 luglio 2018): 1037–51. http://dx.doi.org/10.4014/jmb.1712.12017.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
12

Katrolia, Priti, Eranna Rajashekhara, Qiaojuan Yan e Zhengqiang Jiang. "Biotechnological potential of microbial α-galactosidases". Critical Reviews in Biotechnology 34, n. 4 (13 agosto 2013): 307–17. http://dx.doi.org/10.3109/07388551.2013.794124.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
13

Szymanowska-Powałowska, Daria, Dorota Orczyk e Katarzyna Leja. "Biotechnological potential of Clostridium butyricum bacteria". Brazilian Journal of Microbiology 45, n. 3 (settembre 2014): 892–901. http://dx.doi.org/10.1590/s1517-83822014000300019.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
14

Kristiansson, Helena, e David J. Timson. "Galactokinases: Potential Biotechnological Applications as Biocatalysts". Current Biotechnology e 1, n. 2 (1 aprile 2012): 148–54. http://dx.doi.org/10.2174/2211550111201020148.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
15

Boozarpour, Sohrab, e Madjid Momeni-Moghaddam. "Biotechnological Potential of Chicken Stem Cells". Journal of Genes and Cells 1, n. 2 (1 aprile 2015): 46. http://dx.doi.org/10.15562/gnc.18.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
16

Athanasakoglou, Anastasia, e Sotirios C. Kampranis. "Diatom isoprenoids: Advances and biotechnological potential". Biotechnology Advances 37, n. 8 (dicembre 2019): 107417. http://dx.doi.org/10.1016/j.biotechadv.2019.107417.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
17

Chi, Zhen-Ming, Tong Zhang, Tian-Shu Cao, Xiao-Yan Liu, Wei Cui e Chun-Hai Zhao. "Biotechnological potential of inulin for bioprocesses". Bioresource Technology 102, n. 6 (marzo 2011): 4295–303. http://dx.doi.org/10.1016/j.biortech.2010.12.086.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
18

Fusetani, Nobuhiro. "Biotechnological potential of marine natural products". Pure and Applied Chemistry 82, n. 1 (3 gennaio 2010): 17–26. http://dx.doi.org/10.1351/pac-con-09-01-11.

Testo completo
Abstract (sommario):
The number of marine natural products (MNPs) that have been applied to biotechnological industry is very limited, although nearly 20 000 new compounds were discovered from marine organisms since the birth of MNPs in the early 1970s. However, it is apparent that they have a significant potential as pharmaceuticals, cosmetics, nutraceuticals, research tools, and others. This article focuses on selective antitumor metabolites isolated from marine sponges and tunicates and their modes of action, as well as promising candidates for nontoxic antifoulants discovered from marine organisms.
Gli stili APA, Harvard, Vancouver, ISO e altri
19

Florczak, Tomasz, Joanna Krysiak, Krzysztof Morawski, Klaudia Jadczak, Katarzyna Szulczewska, Iga Jodłowska e Aneta Białkowska. "Biotechnological potential of cold-adapted enzymes". New Biotechnology 33 (luglio 2016): S120. http://dx.doi.org/10.1016/j.nbt.2016.06.1140.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
20

O'Sullivan, L. A., e E. Mahenthiralingam. "Biotechnological potential within the genus Burkholderia". Letters in Applied Microbiology 41, n. 1 (luglio 2005): 8–11. http://dx.doi.org/10.1111/j.1472-765x.2005.01758.x.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
21

FENDRIHAN, SERGIU, e CRISTIAN-EMILIAN POP. "Biotechnological potential of plant associated microorganisms". Romanian Biotechnological Letters 26, n. 3 (11 aprile 2021): 2700–2706. http://dx.doi.org/10.25083/rbl/26.3/2700-2706.

Testo completo
Abstract (sommario):
This paper shortly reviews the potential of plants associated microorganisms collectively termed “phytomicrobiome” (epiphytes, endophytes, root microbiome and phyllosphere microbiota), fungi and bacteria, that produce valuable molecules which can be use in pharma industry, in medicine and in different other industries as well as in environment protection and bioremediation. In the last ten years many papers on this subject were issued following scientific investigations, attracting the attention of the scientific community as an answer to some of our problems.
Gli stili APA, Harvard, Vancouver, ISO e altri
22

Qian, Xiujuan, Lin Chen, Yuan Sui, Chong Chen, Wenming Zhang, Jie Zhou, Weiliang Dong, Min Jiang, Fengxue Xin e Katrin Ochsenreither. "Biotechnological potential and applications of microbial consortia". Biotechnology Advances 40 (maggio 2020): 107500. http://dx.doi.org/10.1016/j.biotechadv.2019.107500.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
23

Malavasi, Veronica, Santina Soru e Giacomo Cao. "Extremophile Microalgae: the potential for biotechnological application". Journal of Phycology 56, n. 3 (3 febbraio 2020): 559–73. http://dx.doi.org/10.1111/jpy.12965.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
24

Tavares, Letícia S., Marcelo de O. Santos, Lyderson F. Viccini, João S. Moreira, Robert N. G. Miller e Octávio L. Franco. "Biotechnological potential of antimicrobial peptides from flowers". Peptides 29, n. 10 (ottobre 2008): 1842–51. http://dx.doi.org/10.1016/j.peptides.2008.06.003.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
25

Santos, Sílvio B., Ana Rita Costa, Carla Carvalho, Franklin L. Nóbrega e Joana Azeredo. "Exploiting Bacteriophage Proteomes: The Hidden Biotechnological Potential". Trends in Biotechnology 36, n. 9 (settembre 2018): 966–84. http://dx.doi.org/10.1016/j.tibtech.2018.04.006.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
26

Bhattacharya, Indrani, Song Yan, Jay Shankar Singh Yadav, R. D. Tyagi e R. Y. Surampalli. "Saccharomyces unisporus: Biotechnological Potential and Present Status". Comprehensive Reviews in Food Science and Food Safety 12, n. 4 (12 giugno 2013): 353–63. http://dx.doi.org/10.1111/1541-4337.12016.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
27

Rawat, Hemant Kumar, Hemant Soni, Helen Treichel e Naveen Kango. "Biotechnological potential of microbial inulinases: Recent perspective". Critical Reviews in Food Science and Nutrition 57, n. 18 (10 marzo 2016): 3818–29. http://dx.doi.org/10.1080/10408398.2016.1147419.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
28

Silva, Iasmim, Luana Coelho e Leonor Silva. "Biotechnological Potential of the Brazilian Caatinga Biome". Advances in Research 5, n. 1 (10 gennaio 2015): 1–17. http://dx.doi.org/10.9734/air/2015/17426.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
29

Duarte, Luís C., Maria P. Esteves, Florbela Carvalheiro e Francisco M. Gírio. "Biotechnological valorization potential indicator for lignocellulosic materials". Biotechnology Journal 2, n. 12 (dicembre 2007): 1556–63. http://dx.doi.org/10.1002/biot.200700183.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
30

Olson, Gregory J., e Robert M. Kelly. "Microbiological Metal Transformations: Biotechnological Applications and Potential". Biotechnology Progress 2, n. 1 (marzo 1986): 1–15. http://dx.doi.org/10.1002/btpr.5420020104.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
31

Mapelli, Francesca, Ramona Marasco, Annalisa Balloi, Eleonora Rolli, Francesca Cappitelli, Daniele Daffonchio e Sara Borin. "Mineral–microbe interactions: Biotechnological potential of bioweathering". Journal of Biotechnology 157, n. 4 (febbraio 2012): 473–81. http://dx.doi.org/10.1016/j.jbiotec.2011.11.013.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
32

Alber, Birgit E. "Biotechnological potential of the ethylmalonyl-CoA pathway". Applied Microbiology and Biotechnology 89, n. 1 (30 settembre 2010): 17–25. http://dx.doi.org/10.1007/s00253-010-2873-z.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
33

Lara-Márquez, Alicia, María G. Zavala-Páramo, Everardo López-Romero e Horacio Cano Camacho. "Biotechnological potential of pectinolytic complexes of fungi". Biotechnology Letters 33, n. 5 (19 gennaio 2011): 859–68. http://dx.doi.org/10.1007/s10529-011-0520-0.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
34

DIJKHUIZEN, L. "Methanol, a potential feedstock for biotechnological processes". Trends in Biotechnology 3, n. 10 (ottobre 1985): 262–67. http://dx.doi.org/10.1016/0167-7799(85)90026-5.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
35

Zurbriggen, Beat, Klaus Mosbach e Franz Meussdoerffer. "A yeast lysis mutant: potential biotechnological applications". Journal of Biotechnology 4, n. 3 (luglio 1986): 159–70. http://dx.doi.org/10.1016/0168-1656(86)90043-x.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
36

Singh, Aparna, e Anil K. Singh. "Haloarchaea: worth exploring for their biotechnological potential". Biotechnology Letters 39, n. 12 (12 settembre 2017): 1793–800. http://dx.doi.org/10.1007/s10529-017-2434-y.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
37

Stout, L., e K. Nüsslein. "Biotechnological potential of aquatic plant–microbe interactions". Current Opinion in Biotechnology 21, n. 3 (giugno 2010): 339–45. http://dx.doi.org/10.1016/j.copbio.2010.04.004.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
38

Lemos, Marco F. L., Sara C. Novais, Susana F. J. Silva e Carina Félix. "Marine Resources Application Potential for Biotechnological Purposes". Applied Sciences 11, n. 13 (30 giugno 2021): 6074. http://dx.doi.org/10.3390/app11136074.

Testo completo
Abstract (sommario):
Blue biotechnology plays a major role in converting marine biomass into societal value; therefore, it is a key pillar for many marine economy developmental frameworks and sustainability strategies, such as the Blue Growth Strategy, diverse Sea Basin Strategies (e [...]
Gli stili APA, Harvard, Vancouver, ISO e altri
39

Hagedoorn, Peter Leon, Frank Hollmann e Ulf Hanefeld. "Novel oleate hydratases and potential biotechnological applications". Applied Microbiology and Biotechnology 105, n. 16-17 (agosto 2021): 6159–72. http://dx.doi.org/10.1007/s00253-021-11465-x.

Testo completo
Abstract (sommario):
Abstract Oleate hydratase catalyses the addition of water to the CC double bond of oleic acid to produce (R)-10-hydroxystearic acid. The enzyme requires an FAD cofactor that functions to optimise the active site structure. A wide range of unsaturated fatty acids can be hydrated at the C10 and in some cases the C13 position. The substrate scope can be expanded using ‘decoy’ small carboxylic acids to convert small chain alkenes to secondary alcohols, albeit at low conversion rates. Systematic protein engineering and directed evolution to widen the substrate scope and increase the conversion rate is possible, supported by new high throughput screening assays that have been developed. Multi-enzyme cascades allow the formation of a wide range of products including keto-fatty acids, secondary alcohols, secondary amines and α,ω-dicarboxylic acids. Key points • Phylogenetically distinct oleate hydratases may exhibit mechanistic differences. • Protein engineering to improve productivity and substrate scope is possible. • Multi-enzymatic cascades greatly widen the product portfolio.
Gli stili APA, Harvard, Vancouver, ISO e altri
40

Debabov, V. G. "Acetogens: Biochemistry, Bioenergetics, Genetics, and Biotechnological Potential". Microbiology 90, n. 3 (maggio 2021): 273–97. http://dx.doi.org/10.1134/s0026261721030024.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
41

Esteves, Ana Cristina, Márcia Saraiva, António Correia e Artur Alves. "Botryosphaeriales fungi produce extracellular enzymes with biotechnological potential". Canadian Journal of Microbiology 60, n. 5 (maggio 2014): 332–42. http://dx.doi.org/10.1139/cjm-2014-0134.

Testo completo
Abstract (sommario):
Phytopathogenic fungi are known for producing an arsenal of extracellular enzymes whose involvement in the infection mechanism has been suggested. However, these enzymes are largely unknown and their biotechnological potential also remains poorly understood. In this study, the production and thermostability of extracellular enzymes produced by phytopathogenic Botryosphaeriaceae was investigated. Hydrolytic and oxidative activities were detected and quantified at different temperatures. Most strains (70%; 37/53) were able to produce simultaneously cellulases, laccases, xylanases, pectinases, pectin lyases, amylases, lipases, and proteases. Surprisingly for mesophilic filamentous fungi, several enzymes proved to be thermostable: cellulases from Neofusicoccum mediterraneum CAA 001 and from Dothiorella prunicola CBS 124723, lipases from Diplodia pinea (CAA 015 and CBS 109726), and proteases from Melanops tulasnei CBS 116806 were more active at 70 °C than at any of the other temperatures tested. In addition, lipases produced by Diplodia pinea were found to be significantly more active than any other known lipase from Botryosphaeriales. The thermal activity profile and the wide array of activities secreted by these fungi make them optimal producers of biotechnologically relevant enzymes that may be applied in the food and the health industries (proteases), the pulp-and-paper and biofuel industries (cellulases), or even in the detergent industry (lipases, proteases, amylases, and cellulases).
Gli stili APA, Harvard, Vancouver, ISO e altri
42

Sekan, Alona S., Olena S. Myronycheva, Olov Karlsson, Andrii P. Gryganskyi e Yaroslave B. Blume. "Green potential ofPleurotusspp. in biotechnology". PeerJ 7 (29 marzo 2019): e6664. http://dx.doi.org/10.7717/peerj.6664.

Testo completo
Abstract (sommario):
BackgroundThe genusPleurotusis most exploitable xylotrophic fungi, with valuable biotechnological, medical, and nutritional properties. The relevant features of the representatives of this genus to provide attractive low-cost industrial tools have been reported in numerous studies to resolve the pressure of ecological issues. Additionally, a number ofPleurotusspecies are highly adaptive, do not require any special conditions for growth, and possess specific resistance to contaminating diseases and pests. The unique properties ofPleurotusspecies widely used in many environmental technologies, such as organic solid waste recycling, chemical pollutant degradation, and bioethanol production.MethodologyThe literature study encompasses peer-reviewed journals identified by systematic searches of electronic databases such as Google Scholar, NCBI, Springer, ResearchGate, ScienceDirect, and ISI Web of Knowledge. The search scheme was divided into several steps, as described below.ResultsIn this review, we describe studies examining the biotechnological feasibility ofPleurotusspp. to elucidate the importance of this genus for use in green technology. Here, we review areas of application of the genusPleurotusas a prospective biotechnological tool.ConclusionThe incomplete description of some fungal biochemical pathways emphasises the future research goals for this fungal culture.
Gli stili APA, Harvard, Vancouver, ISO e altri
43

AINSWORTH, ELIZABETH A., CRAIG R. YENDREK, JEFFREY A. SKONECZKA e STEPHEN P. LONG. "Accelerating yield potential in soybean: potential targets for biotechnological improvement". Plant, Cell & Environment 35, n. 1 (21 luglio 2011): 38–52. http://dx.doi.org/10.1111/j.1365-3040.2011.02378.x.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
44

Odjadjare, Ejovwokoghene C., Taurai Mutanda e Ademola O. Olaniran. "Potential biotechnological application of microalgae: a critical review". Critical Reviews in Biotechnology 37, n. 1 (23 novembre 2015): 37–52. http://dx.doi.org/10.3109/07388551.2015.1108956.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
45

Bowman, John P., Gyu C. J. Abell e Carol A. Mancuso Nichols. "Psychrophilic Extremophiles from Antarctica: Biodiversity and Biotechnological Potential". Ocean and Polar Research 27, n. 2 (30 giugno 2005): 221–30. http://dx.doi.org/10.4217/opr.2005.27.2.221.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
46

Gardères, Johan, Marie-Lise Bourguet-Kondracki, Bojan Hamer, Renato Batel, Heinz Schröder e Werner Müller. "Porifera Lectins: Diversity, Physiological Roles and Biotechnological Potential". Marine Drugs 13, n. 8 (7 agosto 2015): 5059–101. http://dx.doi.org/10.3390/md13085059.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
47

Rai, Mahendra K., e Girish Tidke. "Biotechnological Potential of Mushrooms: Drugs and Dye Production". International Journal of Medicinal Mushrooms 7, n. 3 (2005): 452–55. http://dx.doi.org/10.1615/intjmedmushr.v7.i3.900.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
48

Tidke, Girish, e Mahendra K. Rai. "Biotechnological Potential of Mushrooms: Drugs and Dye Production". International Journal of Medicinal Mushrooms 8, n. 4 (2006): 351–60. http://dx.doi.org/10.1615/intjmedmushr.v8.i4.60.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
49

Subashchandrabose, Suresh R., Balasubramanian Ramakrishnan, Mallavarapu Megharaj, Kadiyala Venkateswarlu e Ravi Naidu. "Consortia of cyanobacteria/microalgae and bacteria: Biotechnological potential". Biotechnology Advances 29, n. 6 (novembre 2011): 896–907. http://dx.doi.org/10.1016/j.biotechadv.2011.07.009.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
50

Puchart, Vladimír. "Glycoside phosphorylases: Structure, catalytic properties and biotechnological potential". Biotechnology Advances 33, n. 2 (marzo 2015): 261–76. http://dx.doi.org/10.1016/j.biotechadv.2015.02.002.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
Offriamo sconti su tutti i piani premium per gli autori le cui opere sono incluse in raccolte letterarie tematiche. Contattaci per ottenere un codice promozionale unico!

Vai alla bibliografia