Indice
Letteratura scientifica selezionata sul tema "Biomolecular encryption"
Cita una fonte nei formati APA, MLA, Chicago, Harvard e in molti altri stili
Consulta la lista di attuali articoli, libri, tesi, atti di convegni e altre fonti scientifiche attinenti al tema "Biomolecular encryption".
Accanto a ogni fonte nell'elenco di riferimenti c'è un pulsante "Aggiungi alla bibliografia". Premilo e genereremo automaticamente la citazione bibliografica dell'opera scelta nello stile citazionale di cui hai bisogno: APA, MLA, Harvard, Chicago, Vancouver ecc.
Puoi anche scaricare il testo completo della pubblicazione scientifica nel formato .pdf e leggere online l'abstract (il sommario) dell'opera se è presente nei metadati.
Articoli di riviste sul tema "Biomolecular encryption"
Fischer, T., M. Neebe, T. Juchem e N. A. Hampp. "Biomolecular optical data storage and data encryption". IEEE Transactions on Nanobioscience 2, n. 1 (marzo 2003): 1–5. http://dx.doi.org/10.1109/tnb.2003.810163.
Testo completoK, Menaka. "ENHANCING INFORMATION ENCRYPTION WITH BIOMOLECULAR SEQUENCES USING NDES ALGORITHM". International Journal of Advanced Research in Computer Science 8, n. 9 (30 settembre 2017): 482–85. http://dx.doi.org/10.26483/ijarcs.v8i9.5006.
Testo completoBenyahia, Kadda, Abdelkader Khobzaoui e Soumia Benbakreti. "DNA sequences for robust encryption: a strategy for IoT security enhancement". STUDIES IN ENGINEERING AND EXACT SCIENCES 5, n. 1 (22 aprile 2024): 1296–316. http://dx.doi.org/10.54021/seesv5n1-067.
Testo completoAbbasi, Ali Asghar, Mahdi Mazinani e Rahil Hosseini. "Evolutionary-based image encryption using biomolecules and non-coupled map lattice". Optics & Laser Technology 140 (agosto 2021): 106974. http://dx.doi.org/10.1016/j.optlastec.2021.106974.
Testo completoAbbasi, Ali Asghar, Mahdi Mazinani e Rahil Hosseini. "Evolutionary-based image encryption using biomolecules operators and non-coupled map lattice". Optik 219 (ottobre 2020): 164949. http://dx.doi.org/10.1016/j.ijleo.2020.164949.
Testo completoGao, Rui, Zhuang Cai, Jianbang Wang e Huajie Liu. "Condensed DNA Nanosphere for DNA Origami Cryptography". Chemistry 5, n. 4 (8 novembre 2023): 2406–17. http://dx.doi.org/10.3390/chemistry5040159.
Testo completoSun, Lining. "(Digital Presentation) Tailored Rare Earth-Doped Nanomaterials Toward Information Storage and Deep Learning Decoding". ECS Meeting Abstracts MA2022-02, n. 51 (9 ottobre 2022): 1981. http://dx.doi.org/10.1149/ma2022-02511981mtgabs.
Testo completoZhang, Yinan, Fei Wang, Jie Chao, Mo Xie, Huajie Liu, Muchen Pan, Enzo Kopperger et al. "DNA origami cryptography for secure communication". Nature Communications 10, n. 1 (29 novembre 2019). http://dx.doi.org/10.1038/s41467-019-13517-3.
Testo completoSheng, Chengju, Xiujuan Gao, Yanjun Ding e Mingming Guo. "Water‐Soluble Luminescent Polymers with Room Temperature Phosphorescence Based on the α‐Amino Acids". Macromolecular Rapid Communications, 15 maggio 2024. http://dx.doi.org/10.1002/marc.202400201.
Testo completoLiu, Xin, Yang Xu, Dan Luo, Gang Xu, Neal Xiong e Xiu-Bo Chen. "The secure judgment of graphic similarity against malicious adversaries and its applications". Scientific Reports 13, n. 1 (21 marzo 2023). http://dx.doi.org/10.1038/s41598-023-30741-6.
Testo completoTesi sul tema "Biomolecular encryption"
Berton, Chloé. "Sécurité des données stockées sur molécules d’ADN". Electronic Thesis or Diss., Ecole nationale supérieure Mines-Télécom Atlantique Bretagne Pays de la Loire, 2024. http://www.theses.fr/2024IMTA0431.
Testo completoThe volume of digital data produced worldwide every year is increasing exponentially, and current storage solutions are reaching their limits. In this context, data storage on DNA molecules holds great promise. Storing up to 10¹⁸ bytes per gram of DNA for almost no energy consumption, it has a lifespan 100 times longer than hard disks. As this storage technology is still under development, the opportunity presents itself to natively integrate data security mechanisms. This is the aim of this thesis. Our first contribution is a risk analysis of the entire storage chain, which has enabled us to identify vulnerabilities in digital and biological processes, particularly in terms of confidentiality, integrity, availability and traceability. A second contribution is the identification of elementary biological operators for simple manipulations of DNA. Using these operators, we have developed a DNACipher encryption solution that requires biomolecular decryption (DNADecipher) of the molecules before the data can be read correctly. This third contribution, based on enzymes, required the development of a coding algorithm for digital data into DNA sequences, a contribution called DSWE. This algorithm respects the constraints of biological processes (e.g. homopolymers) and our encryption solution. Our final contribution is an experimental validation of our secure storage chain. This is the first proof of concept showing that it is possible to secure this new storage medium using biomolecular manipulations