Letteratura scientifica selezionata sul tema "Biogeophysical effects"
Cita una fonte nei formati APA, MLA, Chicago, Harvard e in molti altri stili
Consulta la lista di attuali articoli, libri, tesi, atti di convegni e altre fonti scientifiche attinenti al tema "Biogeophysical effects".
Accanto a ogni fonte nell'elenco di riferimenti c'è un pulsante "Aggiungi alla bibliografia". Premilo e genereremo automaticamente la citazione bibliografica dell'opera scelta nello stile citazionale di cui hai bisogno: APA, MLA, Harvard, Chicago, Vancouver ecc.
Puoi anche scaricare il testo completo della pubblicazione scientifica nel formato .pdf e leggere online l'abstract (il sommario) dell'opera se è presente nei metadati.
Articoli di riviste sul tema "Biogeophysical effects"
Breil, Marcus, Felix Krawczyk e Joaquim G. Pinto. "The response of the regional longwave radiation balance and climate system in Europe to an idealized afforestation experiment". Earth System Dynamics 14, n. 1 (27 febbraio 2023): 243–53. http://dx.doi.org/10.5194/esd-14-243-2023.
Testo completoWang, Lang, Amos P. K. Tai, Chi-Yung Tam, Mehliyar Sadiq, Peng Wang e Kevin K. W. Cheung. "Impacts of future land use and land cover change on mid-21st-century surface ozone air quality: distinguishing between the biogeophysical and biogeochemical effects". Atmospheric Chemistry and Physics 20, n. 19 (5 ottobre 2020): 11349–69. http://dx.doi.org/10.5194/acp-20-11349-2020.
Testo completoHuang, L., J. Zhai, C. Y. Sun, J. Y. Liu, J. Ning e G. S. Zhao. "Biogeophysical Forcing of Land-Use Changes on Local Temperatures across Different Climate Regimes in China". Journal of Climate 31, n. 17 (settembre 2018): 7053–68. http://dx.doi.org/10.1175/jcli-d-17-0116.1.
Testo completoDavies-Barnard, T., P. J. Valdes, J. S. Singarayer e C. D. Jones. "Climatic Impacts of Land-Use Change due to Crop Yield Increases and a Universal Carbon Tax from a Scenario Model*". Journal of Climate 27, n. 4 (10 febbraio 2014): 1413–24. http://dx.doi.org/10.1175/jcli-d-13-00154.1.
Testo completoDavies-Barnard, Taraka, Andy Ridgwell, Joy Singarayer e Paul Valdes. "Quantifying the influence of the terrestrial biosphere on glacial–interglacial climate dynamics". Climate of the Past 13, n. 10 (26 ottobre 2017): 1381–401. http://dx.doi.org/10.5194/cp-13-1381-2017.
Testo completoBala, G., K. Caldeira, A. Mirin, M. Wickett, C. Delire e T. J. Phillips. "Biogeophysical effects of CO2 fertilization on global climate". Tellus B: Chemical and Physical Meteorology 58, n. 5 (gennaio 2006): 620–27. http://dx.doi.org/10.1111/j.1600-0889.2006.00210.x.
Testo completoMahmood, Rezaul, Roger A. Pielke, Kenneth G. Hubbard, Dev Niyogi, Paul A. Dirmeyer, Clive McAlpine, Andrew M. Carleton et al. "Land cover changes and their biogeophysical effects on climate". International Journal of Climatology 34, n. 4 (21 giugno 2013): 929–53. http://dx.doi.org/10.1002/joc.3736.
Testo completoWang, Ye, Xiaodong Yan e Zhaomin Wang. "Effects of regional afforestation on global climate". Journal of Water and Climate Change 6, n. 2 (30 agosto 2014): 191–99. http://dx.doi.org/10.2166/wcc.2014.136.
Testo completoMeier, Ronny, Edouard L. Davin, Quentin Lejeune, Mathias Hauser, Yan Li, Brecht Martens, Natalie M. Schultz, Shannon Sterling e Wim Thiery. "Evaluating and improving the Community Land Model's sensitivity to land cover". Biogeosciences 15, n. 15 (8 agosto 2018): 4731–57. http://dx.doi.org/10.5194/bg-15-4731-2018.
Testo completoNath, Shruti, Lukas Gudmundsson, Jonas Schwaab, Gregory Duveiller, Steven J. De Hertog, Suqi Guo, Felix Havermann et al. "TIMBER v0.1: a conceptual framework for emulating temperature responses to tree cover change". Geoscientific Model Development 16, n. 14 (28 luglio 2023): 4283–313. http://dx.doi.org/10.5194/gmd-16-4283-2023.
Testo completoTesi sul tema "Biogeophysical effects"
Davies-Barnard, T. "Climate and crop interactions : the biogeophysical effects on climate and vegetation". Thesis, University of Bristol, 2014. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.685042.
Testo completoDiop, Souleymane. "Dynamique de l'albédo de surface et bénéfice climatique de l'agriculture de conservation au Zimbabwe sub-humide". Electronic Thesis or Diss., université Paris-Saclay, 2024. http://www.theses.fr/2024UPASB066.
Testo completoIn Sub-Saharan Africa, studies of potential climate change mitigation levers by CA focus more on biogeochemical effects (C storage, GHG emissions) while biogeophysical effects (albedo effects, energy fluxes) are often ignored. In this context, it is very relevant to delve into the effects of CA on agriculture's biogeophysical contributions to climate in order to identify potential mitigation levers associated with changes in practices and possible synergies with the biogeochemical effects. We conducted studies to quantify the biogeophysical effects through measurements of surface albedo, heat radiation, surface temperature, water content in soil, and dynamics of crop growth during two growing years in Zimbabwe on two types of contrasting soil: a sandy, light-coloured abruptic Lixisol and a clayey, dark-coloured xanthic Ferralsol. Three cropping practices are compared in this study: conventional tillage (CT), no-tillage (NT) and no-tillage with mulch (NTM). The results showed an increase in surface albedo following the adoption of NT practice compared to CT regardless of soil type. The contribution of crop residues to surface compared with CT lead to contrasting effects according to soil types. Indeed, the residues contribute to an increase in surface albedo on dark clay soils and contribute to its decrease on light sandy soils. These albedo changes have led to negative radiative forcing associated with a cooling climatic effect on the NT regardless of soil type and contrasting effects for the NTM, with a cooling effect on dark clay soils and a warming effect on light sandy soils. We compared these surface albedo-induced radiative forcings with the biogeochemical effects of carbon (C) storage and N2O emissions induced by these same practices. The results obtained showed that over 30 years of CA practice, albedo changes related to NT and NTM practices have climatic effects ranging from -1.27 to +1.15 t CO2-eq ha-1 year-1, comparable to the potential for carbon storage in soils in Sub-Saharan Africa. On dark clay soils, these practices enhance the cooling effect, while on light sandy soils, they cause a warming effect in the short term, negating the climate benefits of long-term stored C. To better understand the determinants of albedo dynamics and to be able to simulate them according to practices, the STICS model was used, revealing limitations in the consideration of the effect of senescent tissues and surface moisture on the dynamics of surface albedo. New formalisms were then proposed and tested, which allowed to improve the simulations of the surface albedo. This study highlights the importance of integrating biogeophysical and biogeochemical effects to better assess climate impacts of agricultural practices and optimize adaptation and mitigation measures
Garcia, Alejandro. "The Effect of Microbial Growth on the Spectral Induced Polarization Response in Hanford Vadose Zone Sediment in the Presence of Autunite". FIU Digital Commons, 2018. https://digitalcommons.fiu.edu/etd/3728.
Testo completoCapitoli di libri sul tema "Biogeophysical effects"
Lorenz, Klaus, e Rattan Lal. "Biogeophysical and Biogeochemical Climate Effects of Organic Agriculture". In Organic Agriculture and Climate Change, 177–200. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-17215-1_4.
Testo completoAtti di convegni sul tema "Biogeophysical effects"
Diner, David J. "Atmospheric Remote Sensing with the Eos Multi-angle Imaging SpectroRadiometer". In Optical Remote Sensing of the Atmosphere. Washington, D.C.: Optica Publishing Group, 1990. http://dx.doi.org/10.1364/orsa.1990.md5.
Testo completo