Letteratura scientifica selezionata sul tema "BEACH-domain containing protein"

Cita una fonte nei formati APA, MLA, Chicago, Harvard e in molti altri stili

Scegli il tipo di fonte:

Consulta la lista di attuali articoli, libri, tesi, atti di convegni e altre fonti scientifiche attinenti al tema "BEACH-domain containing protein".

Accanto a ogni fonte nell'elenco di riferimenti c'è un pulsante "Aggiungi alla bibliografia". Premilo e genereremo automaticamente la citazione bibliografica dell'opera scelta nello stile citazionale di cui hai bisogno: APA, MLA, Harvard, Chicago, Vancouver ecc.

Puoi anche scaricare il testo completo della pubblicazione scientifica nel formato .pdf e leggere online l'abstract (il sommario) dell'opera se è presente nei metadati.

Articoli di riviste sul tema "BEACH-domain containing protein":

1

Liu, Xuezhao, Yang Li, Xin Wang, Ruxiao Xing, Kai Liu, Qiwen Gan, Changyong Tang et al. "The BEACH-containing protein WDR81 coordinates p62 and LC3C to promote aggrephagy". Journal of Cell Biology 216, n. 5 (12 aprile 2017): 1301–20. http://dx.doi.org/10.1083/jcb.201608039.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
Abstract (sommario):
Autophagy-dependent clearance of ubiquitinated and aggregated proteins is critical to protein quality control, but the underlying mechanisms are not well understood. Here, we report the essential role of the BEACH (beige and Chediak–Higashi) and WD40 repeat-containing protein WDR81 in eliminating ubiquitinated proteins through autophagy. WDR81 associates with ubiquitin (Ub)-positive protein foci, and its loss causes accumulation of Ub proteins and the autophagy cargo receptor p62. WDR81 interacts with p62, facilitating recognition of Ub proteins by p62. Furthermore, WDR81 interacts with LC3C through canonical LC3-interacting regions in the BEACH domain, promoting LC3C recruitment to ubiquitinated proteins. Inactivation of LC3C or defective autophagy results in accumulation of Ub protein aggregates enriched for WDR81. In mice, WDR81 inactivation causes accumulation of p62 bodies in cortical and striatal neurons in the brain. These data suggest that WDR81 coordinates p62 and LC3C to facilitate autophagic removal of Ub proteins, and provide important insights into CAMRQ2 syndrome, a WDR81-related developmental disorder.
2

Theisen, Derek J., Jesse T. Davidson, Carlos G. Briseño, Marco Gargaro, Elvin J. Lauron, Qiuling Wang, Pritesh Desai et al. "WDFY4 is required for cross-presentation in response to viral and tumor antigens". Science 362, n. 6415 (8 novembre 2018): 694–99. http://dx.doi.org/10.1126/science.aat5030.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
Abstract (sommario):
During the process of cross-presentation, viral or tumor-derived antigens are presented to CD8+ T cells by Batf3-dependent CD8α+/XCR1+ classical dendritic cells (cDC1s). We designed a functional CRISPR screen for previously unknown regulators of cross-presentation, and identified the BEACH domain–containing protein WDFY4 as essential for cross-presentation of cell-associated antigens by cDC1s in mice. However, WDFY4 was not required for major histocompatibility complex class II presentation, nor for cross-presentation by monocyte-derived dendritic cells. In contrast to Batf3–/– mice, Wdfy4–/– mice displayed normal lymphoid and nonlymphoid cDC1 populations that produce interleukin-12 and protect against Toxoplasma gondii infection. However, similar to Batf3–/– mice, Wdfy4–/– mice failed to prime virus-specific CD8+ T cells in vivo or induce tumor rejection, revealing a critical role for cross-presentation in antiviral and antitumor immunity.
3

Aarts, Cathelijn E. M., Kate Downes, Arie J. Hoogendijk, Evelien G. G. Sprenkeler, Roel P. Gazendam, Rémi Favier, Marie Favier et al. "Neutrophil specific granule and NETosis defects in gray platelet syndrome". Blood Advances 5, n. 2 (25 gennaio 2021): 549–64. http://dx.doi.org/10.1182/bloodadvances.2020002442.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
Abstract (sommario):
Abstract Gray platelet syndrome (GPS) is an autosomal recessive bleeding disorder characterized by a lack of α-granules in platelets and progressive myelofibrosis. Rare loss-of-function variants in neurobeachin-like 2 (NBEAL2), a member of the family of beige and Chédiak-Higashi (BEACH) genes, are causal of GPS. It is suggested that BEACH domain containing proteins are involved in fusion, fission, and trafficking of vesicles and granules. Studies in knockout mice suggest that NBEAL2 may control the formation and retention of granules in neutrophils. We found that neutrophils obtained from the peripheral blood from 13 patients with GPS have a normal distribution of azurophilic granules but show a deficiency of specific granules (SGs), as confirmed by immunoelectron microscopy and mass spectrometry proteomics analyses. CD34+ hematopoietic stem cells (HSCs) from patients with GPS differentiated into mature neutrophils also lacked NBEAL2 expression but showed similar SG protein expression as control cells. This is indicative of normal granulopoiesis in GPS and identifies NBEAL2 as a potentially important regulator of granule release. Patient neutrophil functions, including production of reactive oxygen species, chemotaxis, and killing of bacteria and fungi, were intact. NETosis was absent in circulating GPS neutrophils. Lack of NETosis is suggested to be independent of NBEAL2 expression but associated with SG defects instead, as indicated by comparison with HSC-derived neutrophils. Since patients with GPS do not excessively suffer from infections, the consequence of the reduced SG content and lack of NETosis for innate immunity remains to be explored.
4

Kahr, Walter H. "Molecular Triggers of Granule Formation in Megakaryocytes and Platelets". Blood 120, n. 21 (16 novembre 2012): SCI—34—SCI—34. http://dx.doi.org/10.1182/blood.v120.21.sci-34.sci-34.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
Abstract (sommario):
Abstract Abstract SCI-34 Platelet secretory granules develop within maturing bone marrow-resident megakaryocytes, where α-granules, δ-granules, and lysosomes are transported to extending proplatelets (1) and undergo further maturation after platelets are released into the circulation. Mature platelets contain 50 to 80 membrane-enclosed α-granules, three to eight dense (δ-) granules, and a few lysosomes. δ-granules store calcium, phosphate, ADP, ATP, and serotonin, which play important roles during platelet activation. α-granules store numerous soluble and membrane-bound proteins, including adhesion molecules, cytokines, chemokines, coagulation and fibrinolytic proteins, immunologic modulators, and an assortment of complement, growth, and pro- and antiangiogenic factors. These play important roles in clotting, angiogenesis, inflammation, wound healing, and bone remodeling, and provide defenses against infections. Insights into megakaryocyte and platelet δ-granule development have come from studying inherited δ-granule deficiencies such as Hermansky-Pudlak syndrome (HPS) and Chediak-Higashi syndrome (CHS; MIM214500), for which mouse models also exist. Several genes/proteins linked to the regulation of vesicle trafficking have been implicated in δ-granule formation. These include components of BLOC (biogenesis of lysosome-related organelles complex) protein complexes (BLOC-1, −2, and −3), known vesicle-trafficking proteins (VPS33A and the β3A and δ subunit of AP-3), and the BEACH domain, containing protein LYST. Less is known about α-granule development, in which two inherited disorders result in platelets lacking α-granules: ARC syndrome (Arthrogryposis, Renal dysfunction, and Cholestasis; MIM208085) and gray platelet syndrome (GPS; MIM139090). GPS is characterized by variable thrombocytopenia and large, gray-appearing platelets on blood smears, with α-granules and α-granule proteins markedly decreased or absent. We and others recently determined that GPS is caused by mutations in NBEAL2, encoding a BEACH protein (2, 3, 4). Our work has also shown that the large α-granule-deficient platelets in ARC syndrome can arise due to mutations in VPS33B, encoding the Sec1/Munc18 (SM) protein VPS33B involved in vesicular trafficking (5). SM proteins are known to interact with membrane-associated soluble N-ethylmaleimide-sensitive fusion (NSF)-attachment protein receptors (SNAREs) of the syntaxin subfamily. Recently we have also identified VPS16B as a VPS33B-binding protein. A patient with homozygous missense mutations in C14orf133, encoding VPS16B, has ARC syndrome, with platelets lacking α-granules and stored α-granule proteins. Thus VPS16B is also required for megakaryocyte and platelet α-granule formation, and, in contrast to GPS, in which platelets have α-granule membrane proteins such as P-selectin, VPS16 null platelets lack P-selectin. The observation that GPS and ARC platelets lack α-granules but contain δ-granules, while HPS platelets are devoid of δ-granules but contain α-granules, suggests there are distinct pathways for δ-granule and α-granule biogenesis in maturing megakaryocytes. Immunofluorescence microscopy suggests that VPS16B and VPS33B act along the trans-Golgi network/late endosome/α-granule vesicular trafficking pathway during formation of α-granules in megakaryocytes. It is predicted that complexes containing VPS33B and VPS16B facilitate docking and fusion of intracellular vesicles during α-granule formation, while NBEAL2 promotes the maturation of nascent α-granule vesicles. Disclosures: No relevant conflicts of interest to declare.
5

Spitzer, S. G., B. J. Warn-Cramer, C. K. Kasper e S. P. Bajaj. "Replacement of isoleucine-397 by threonine in the clotting proteinase factor IXa (Los Angeles and Long Beach variants) affects macromolecular catalysis but not l-tosylarginine methyl ester hydrolysis. Lack of correlation between the ox brain prothrombin time and the mutation site in the variant proteins". Biochemical Journal 265, n. 1 (1 gennaio 1990): 219–25. http://dx.doi.org/10.1042/bj2650219.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
Abstract (sommario):
Previously, from the plasma of unrelated haemophilia-B patients, we isolated two non-functional Factor IX variants, namely Los Angeles (IXLA) and Long Beach (IXLB). Both variants could be cleaved to yield Factor IXa-like molecules, but were defective in catalysing the cleavage of Factor X (macromolecular substrate) and in binding to antithrombin III (macromolecular inhibitor). In the present study we have identified the mutation of IXLA by amplifying the exons (including flanking regions) as well as the 5′ end of the gene by polymerase-chain-reaction (PCR) method and sequencing the amplified DNA by the dideoxy chain-termination method. Comparison of the normal IX and IXLA sequences revealed only one base substitution (T----C) in exon VIII of IXLA, with a predicted replacement of Ile-397 to Thr in the mature protein. This mutation is the same as found recently for IXLB. The observation that IXLB and IXLA have the same mutation is an unexpected finding, since, on the basis of their ox brain prothrombin time (PT, a test that measures the ability of the variant Factor IX molecules to inhibit the activation of Factor X by Factor VIIa-tissue factor complex), these variants have been classified into two different groups and were thought to be genetically different. Our observation thus suggests that the ox brain PT does not reflect the locus of mutation in the coding region of the variant molecules. However, our analysis suggests that the ox brain PT is related to Factor IX antigen concentration in the patient's plasma. Importantly, although the mutation in IXLA or IXLB protein is in the catalytic domain, purified IXaLA and IXaLB hydrolyse L-tosylarginine methyl ester at rates very similar to that of normal IXa. These data, in conjunction with our recent data on Factor IXBm Lake Elsinore (Ala-390----Val mutant), strengthen a conclusion that the peptide region containing residues 390-397 of normal Factor IXa plays an essential role in macromolecular substrate catalysis and inhibitor binding. However, the two mutations noted thus far in this region do not distort S1 binding site in the Factor IXa enzyme.
6

Cullinane, Andrew R., Alejandro A. Schäffer e Marjan Huizing. "The BEACH Is Hot: A LYST of Emerging Roles for BEACH-Domain Containing Proteins in Human Disease". Traffic 14, n. 7 (24 aprile 2013): 749–66. http://dx.doi.org/10.1111/tra.12069.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
7

Lyu, Xia, Janine A. Lamb e Hector Chinoy. "The clinical relevance of WDFY4 in autoimmune diseases in diverse ancestral populations". Rheumatology, 20 marzo 2024. http://dx.doi.org/10.1093/rheumatology/keae183.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
Abstract (sommario):
Abstract WD repeat- and FYVE domain-containing protein 4 (WDFY4), coded by a gene on 10q11.23, is a member of the BEACH (Beige and Chediak-Higashi) domain-containing family. Genome-wide association studies identified WDFY4 variants as a risk factor for SLE in Asian and European populations. WDFY4 variants are also associated with RA and primary biliary cholangitis, in different ancestry populations. The WDFY4 protein plays an essential role in the cross-presentation of classic dendritic cells, reactive oxygen species-induced apoptosis of CD8+ T cells, and non-canonical autophagic activity in B cells. A novel variant rs7919656 was identified in Japanese clinically amyopathic dermatomyositis patients, with a highly expressed truncated isoform augmenting the melanoma differentiation-associated gene 5 (MDA5) signalling pathway. The same variant was later found to be significantly associated with RP-ILD in Chinese MDA5+DM patients. Here, we briefly review the association of WDFY4 with autoimmune diseases and its known function in immune response.
8

Wegner, Philine, Julia Drube, Lisa Ziegler, Birgit Strotmann, Raphaela Marquardt, Claudia Küchler, Marco Groth, Bernhard Nieswandt, Nico Andreas e Sebastian Drube. "The Neurobeachin‐like 2 protein (NBEAL2) controls the homeostatic level of the ribosomal protein RPS6 in mast cells". Immunology, 25 gennaio 2024. http://dx.doi.org/10.1111/imm.13756.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
Abstract (sommario):
AbstractThe Beige and Chediak‐Higashi (BEACH) domain‐containing, Neurobeachin‐like 2 (NBEAL2) protein is a molecule with a molecular weight of 300 kDa. Inactivation of NBEAL2 by loss‐of‐function mutations in humans as well as deletion of the Nbeal2 gene in mice results in functional defects in cells of the innate immune system such as neutrophils, NK‐cells, megakaryocytes, platelets and of mast cells (MCs). To investigate the detailed function of NBEAL2 in murine MCs we generated MCs from wild type (wt) and Nbeal2−/− mice, and deleted Nbeal2 by CRISPR/Cas9 technology in the murine mast cell line MC/9. We also predicted the structure of NBEAL2 to infer its function and to examine potential mechanisms for its association with interaction partners by using the deep learning‐based method RoseTTAFold and the Pymol© software. The function of NBEAL2 was analysed by molecular and immunological techniques such as co‐immunoprecipitation (co‐IP) experiments, western blotting, enzyme‐linked immunosorbent assay and flow cytometry. We identified RPS6 as an interaction partner of NBEAL2. Thereby, the NBEAL2/RPS6 complex formation is probably required to control the protein homeostasis of RPS6 in MCs. Consequently, inactivation of NBEAL2 leads to accumulation of strongly p90RSK‐phosphorylated RPS6 molecules which results in the development of an abnormal MC phenotype characterised by prolonged growth factor‐independent survival and in a pro‐inflammatory MC‐phenotype.
9

Cole, Eric S., Wolfgang Maier, Ewa Joachimiak, Yu-yang Jiang, Chinkyu Lee, Erik Collet, Carl Chmelik et al. "The Tetrahymena bcd1 mutant implicates endosome trafficking in ciliate, cortical pattern formation". Molecular Biology of the Cell, 10 maggio 2023. http://dx.doi.org/10.1091/mbc.e22-11-0501.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
Abstract (sommario):
Ciliates, such as Tetrahymena thermophila, evolved complex mechanisms to determine both the location and dimensions of cortical organelles such as the oral apparatus (OA: involved in phagocytosis) cytoproct (Cyp: for eliminating wastes) and contractile vacuole pores (CVPs: involved in water expulsion). Mutations have been recovered in Tetrahymena that affect both the localization of such organelles along anterior-posterior and circumferential body axes, and their dimensions. Here we describe BCD1, a ciliate pattern-gene that encodes a conserved beige-BEACH-domain containing protein a with possible PKA-anchoring activity. Similar proteins have been implicated in endosome trafficking, and are linked to human Chediak-Higashi syndrome and autism. Mutations in the BCD1 gene broaden cortical organelle domains as they assemble during pre-division development. The Bcd1 protein localizes to membrane pockets at the base of every cilium that are active in endocytosis. PKA activity has been shown to promote endocytosis in other organisms, so we blocked clathrin-mediated endocytosis (using ‘dynasore’) and inhibited PKA (using H89). In both cases, treatment produced partial phenocopies of the bcd1 pattern mutant. This study supports a model in which the dimensions of diverse cortical organelle assembly-platforms may be determined by regulated balance between constitutive exocytic delivery and PKA-regulated endocytic retrieval of organelle materials and determinants.
10

Muellerleile, Julia, Aline Blistein, Astrid Rohlmann, Frederieke Scheiwe, Markus Missler, Stephan W. Schwarzacher e Peter Jedlicka. "Enhanced LTP of population spikes in the dentate gyrus of mice haploinsufficient for neurobeachin". Scientific Reports 10, n. 1 (29 settembre 2020). http://dx.doi.org/10.1038/s41598-020-72925-4.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
Abstract (sommario):
Abstract Deletion of the autism candidate molecule neurobeachin (Nbea), a large PH-BEACH-domain containing neuronal protein, has been shown to affect synaptic function by interfering with neurotransmitter receptor targeting and dendritic spine formation. Previous analysis of mice lacking one allele of the Nbea gene identified impaired spatial learning and memory in addition to altered autism-related behaviours. However, no functional data from living heterozygous Nbea mice (Nbea+/−) are available to corroborate the behavioural phenotype. Here, we explored the consequences of Nbea haploinsufficiency on excitation/inhibition balance and synaptic plasticity in the intact hippocampal dentate gyrus of Nbea+/− animals in vivo by electrophysiological recordings. Based on field potential recordings, we show that Nbea+/− mice display enhanced LTP of the granule cell population spike, but no differences in basal synaptic transmission, synapse numbers, short-term plasticity, or network inhibition. These data indicate that Nbea haploinsufficiency causes remarkably specific alterations to granule cell excitability in vivo, which may contribute to the behavioural abnormalities in Nbea+/− mice and to related symptoms in patients.

Tesi sul tema "BEACH-domain containing protein":

1

Koebke, Eva [Verfasser], Martin [Gutachter] Hülskamp e Ute [Gutachter] Höcker. "The BEACH domain containing protein SPIRRIG in an interplay with TZF proteins and the characterization of SPIRRIG in M. polymorpha / Eva Koebke ; Gutachter: Martin Hülskamp, Ute Höcker". Köln : Universitäts- und Stadtbibliothek Köln, 2020. http://d-nb.info/122807187X/34.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
2

Delage, Laure. "Des déficiences génétiques comme modèles naturels pour l'étude de la régulation des checkpoints immunitaires et la caractérisation des réponses auto-immunes". Electronic Thesis or Diss., Université Paris Cité, 2021. http://www.theses.fr/2021UNIP5190.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
Abstract (sommario):
Des mutations récessives de NBEAL2 ont été décrites chez des patients atteints du syndrome des plaquettes grises (SPG). Ce syndrome se caractérise par une macro-thrombopénie, avec des plaquettes dénuées de granules-alpha, conduisant à des troubles de la coagulation, souvent associés à une splénomégalie. Ainsi, NBEAL2 a un rôle crucial dans le trafic des granules-alpha plaquettaires. En outre, notre laboratoire a montré que les patients avec un déficit en NBEAL2 peuvent présenter des caractéristiques cliniques semblables aux syndromes lymphoprolifératifs auto-immuns ; suggérant un rôle de NBEAL2 dans l'homéostasie immunitaire et la tolérance. Une cohorte internationale plus large de patients SPG a confirmé et décrit de nouvelles anomalies immunitaires chez ces patients (maladies auto-immunes, autoanticorps, lymphopénies). Si le rôle de NBEAL2 dans le trafic des granules est souvent étudié, le mécanisme exact conduisant au développement des manifestations auto-immunes chez les patients SPG reste inconnu. NBEAL2 appartient à une famille de protéines, impliquées dans le trafic vésiculaire, et possédant toutes un domaine BEACH conservé. Dans cette famille de protéines à domaine BEACH, une des protéines les plus proche de NBEAL2 est LRBA. LRBA est impliqué dans le recyclage de CTLA-4, un checkpoint immunitaire inhibiteur. CTLA-4 joue un rôle crucial dans la régulation des réponses immunitaires et la tolérance. Des mutations récessives de LRBA conduisent à des caractéristiques cliniques semblables aux déficiences partielles en CTLA-4 : auto-immunité, infiltrations lymphocytaires et lymphopénie B progressive. En condition physiologique, LRBA empêche la dégradation lysosomale de CTLA-4 et permet son recyclage à la membrane plasmatique. Par analogie avec LRBA, nous avons étudié l'importance de NBEAL2 dans le trafic intracellulaire des checkpoints immunitaires et nous avons apporté un nouveau regard sur son rôle dans les lymphocytes. NBEAL2 est ainsi une protéine d'échafaudage, se liant à LRBA, et impliquée dans le trafic de CTLA-4 ainsi que le trafic vésiculaire en général. Ces travaux apportent de nouvelles connaissances sur la régulation de CTLA-4 dans les lymphocytes T activés, une nouvelle liste de partenaires pour la protéine NBEAL2 ainsi qu'un nouveau modèle pour le trafic vésiculaire dans lequel est impliqué NBEAL2. Enfin, une meilleure compréhension des mécanismes conduisant à l'auto-immunité chez les patients atteints du syndrome des plaquettes grises pourrait conduire à un diagnostic plus précoce et un traitement adapté
Recessive NBEAL2 mutations have been reported in patients with Gray Platelet Syndrome (GPS). This syndrome is characterized by a macro-thrombocytopenia, with platelets lacking alpha-granules, leading to bleeding disorders, often associated with splenomegaly. Thus, NBEAL2 plays a crucial role in the trafficking of alpha-granules in platelets. Moreover, our lab has also described NBEAL2 deficiencies in patients presenting clinical features of the autoimmune lymphoproliferative syndrome, suggesting a role of NBEAL2 in immune homeostasis and tolerance. A broader international cohort of GPS patients has been described, revealing immune system abnormalities (autoimmune diseases, autoantibodies, lymphopenia). If the role of NBEAL2 in the traffic of granules is often investigated, the exact mechanism leading to the development of autoimmune manifestations in GPS patients remains unknown. NBEAL2 belongs to a protein family involved in vesicular trafficking, all of which possess a conserved BEACH domain. Within this BEACH-domain containing proteins family, one of the closest members to NBEAL2 is LRBA. LRBA is involved in the recycling of CTLA-4, an inhibitory immune checkpoint. CTLA-4 plays a crucial role in the regulation of immune responses and tolerance. Recessive mutations of LRBA lead to similar clinical features as partial CTLA-4 deficiency: autoimmunity, lymphocytic infiltrations, and progressive B lymphopenia. Physiologically, LRBA prevents the lysosomal degradation of CTLA-4 and allows its recycling to the membrane. By analogy with LRBA, we investigated the importance of NBEAL2 in immune checkpoints intracellular trafficking and we brought new insights on its role in lymphocytes. Thus, NBEAL2 is a scaffold protein, binding LRBA, and involved in CTLA-4 trafficking as well as in vesicular trafficking in general. This work brings new knowledge to the regulation of CTLA-4 in activated T lymphocytes, a list of new partners for NBEAL2 protein and a new model of vesicular trafficking in which NBEAL2 is involved. Finally, a better understanding of the mechanisms leading to autoimmunity in patients with gray platelets syndrome could lead to better diagnosis and treatment management

Vai alla bibliografia