Letteratura scientifica selezionata sul tema "Bayesian"
Cita una fonte nei formati APA, MLA, Chicago, Harvard e in molti altri stili
Consulta la lista di attuali articoli, libri, tesi, atti di convegni e altre fonti scientifiche attinenti al tema "Bayesian".
Accanto a ogni fonte nell'elenco di riferimenti c'è un pulsante "Aggiungi alla bibliografia". Premilo e genereremo automaticamente la citazione bibliografica dell'opera scelta nello stile citazionale di cui hai bisogno: APA, MLA, Harvard, Chicago, Vancouver ecc.
Puoi anche scaricare il testo completo della pubblicazione scientifica nel formato .pdf e leggere online l'abstract (il sommario) dell'opera se è presente nei metadati.
Articoli di riviste sul tema "Bayesian"
Hutchon, David J. R. "Why clinicians are natural bayesians: Bayesian confusion". BMJ 330, n. 7504 (9 giugno 2005): 1390.2. http://dx.doi.org/10.1136/bmj.330.7504.1390-a.
Testo completoDavidson, Russell. "An Agnostic Look at Bayesian Statistics and Econometrics". Review of Economic Analysis 2, n. 2 (6 agosto 2010): 153–68. http://dx.doi.org/10.15353/rea.v2i2.1470.
Testo completoEl-Gamal, Mahmoud A., e Rangarajan K. Sundaram. "Bayesian economists … Bayesian agents". Journal of Economic Dynamics and Control 17, n. 3 (maggio 1993): 355–83. http://dx.doi.org/10.1016/0165-1889(93)90002-a.
Testo completoHicks, Tyler, Liliana Rodríguez-Campos e Jeong Hoon Choi. "Bayesian Posterior Odds Ratios". American Journal of Evaluation 39, n. 2 (23 maggio 2017): 278–89. http://dx.doi.org/10.1177/1098214017704302.
Testo completoSchwab, Andreas, e William H. Starbuck. "Bayesian Studies: Why We All Should Be Bayesians". Academy of Management Proceedings 2018, n. 1 (agosto 2018): 18255. http://dx.doi.org/10.5465/ambpp.2018.18255symposium.
Testo completoKrackhardt, David, Andreas Schwab e William H. Starbuck. "Bayesian Statistics: Why We All Should Be Bayesians". Academy of Management Proceedings 2017, n. 1 (agosto 2017): 15147. http://dx.doi.org/10.5465/ambpp.2017.15147symposium.
Testo completoSHEARER, Robert, e William SHEARER. "THE BAYESIAN ANTINOMY RESOLVED". International Journal of Theology, Philosophy and Science 3, n. 5 (20 novembre 2019): 5–11. http://dx.doi.org/10.26520/ijtps.2019.3.5.5-11.
Testo completoHuang, Hening. "A new modified Bayesian method for measurement uncertainty analysis and the unification of frequentist and Bayesian inference". Journal of Probability and Statistical Science 20, n. 1 (3 ottobre 2022): 52–79. http://dx.doi.org/10.37119/jpss2022.v20i1.515.
Testo completoWijayanti, Rina. "PENAKSIRAN PARAMETER ANALISIS REGRESI COX DAN ANALISIS SURVIVAL BAYESIAN". PRISMATIKA: Jurnal Pendidikan dan Riset Matematika 1, n. 2 (1 giugno 2019): 16–26. http://dx.doi.org/10.33503/prismatika.v1i2.427.
Testo completoRIZAL, MUHAMMAD, e Sri Utami Zuliana. "FORECASTING USING SARIMA AND BAYESIAN STRUCTURAL TIME SERIES METHOD FOR RANGE SEASONAL TIME". Proceedings of The International Conference on Data Science and Official Statistics 2023, n. 1 (29 dicembre 2023): 382–91. http://dx.doi.org/10.34123/icdsos.v2023i1.402.
Testo completoTesi sul tema "Bayesian"
Kennedy, Marc. "Bayesian quadrature and Bayesian rescaling". Thesis, University of Nottingham, 1996. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.319655.
Testo completoNappa, Dario. "Bayesian classification using Bayesian additive and regression trees". Ann Arbor, Mich. : ProQuest, 2008. http://gateway.proquest.com/openurl?url_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&res_dat=xri:pqdiss&rft_dat=xri:pqdiss:3336814.
Testo completoTitle from PDF title page (viewed Mar. 16, 2009). Source: Dissertation Abstracts International, Volume: 69-12, Section: B, page: . Adviser: Xinlei Wang. Includes bibliographical references.
Yu, Qingzhao. "Bayesian synthesis". Columbus, Ohio : Ohio State University, 2006. http://rave.ohiolink.edu/etdc/view?acc%5Fnum=osu1155324080.
Testo completoDuggan, John Palfrey Thomas R. Palfrey Thomas R. "Bayesian implementation /". Diss., Pasadena, Calif. : California Institute of Technology, 1995. http://resolver.caltech.edu/CaltechETD:etd-09182007-084408.
Testo completoFilho, Paulo Cilas Marques. "Análise bayesiana de densidades aleatórias simples". Universidade de São Paulo, 2011. http://www.teses.usp.br/teses/disponiveis/45/45133/tde-25052012-184549/.
Testo completoWe define, from a known partition in subintervals of a bounded interval of the real line, a prior distribution over a class of densities with respect to Lebesgue measure constructing a random density whose realizations are nonnegative simple functions that integrate to one and have a constant value on each subinterval of the partition. These simple random densities are used in the Bayesian analysis of a set of absolutely continuous observables and the prior distribution is proved to be closed under sampling. We explore the prior and posterior distributions through stochastic simulations and find Bayesian solutions to the problem of density estimation. Simulations results show the asymptotic behavior of the posterior distribution as we increase the size of the analyzed data samples. When the partition is unknown, we propose a choice criterion based on the information contained in the sample. In spite of the fact that the expectation of a simple random density is always a discontinuous density, we get smooth estimates solving a decision problem where the states of nature are realizations of the simple random density and the actions are smooth densities of a suitable class.
Cheng, Dunlei Stamey James D. "Topics in Bayesian sample size determination and Bayesian model selection". Waco, Tex. : Baylor University, 2007. http://hdl.handle.net/2104/5039.
Testo completoTseng, Shih-Hsien. "Bayesian and Semi-Bayesian regression applied to manufacturing wooden products". The Ohio State University, 2008. http://rave.ohiolink.edu/etdc/view?acc_num=osu1199240473.
Testo completoPramanik, Santanu. "The Bayesian and approximate Bayesian methods in small area estimation". College Park, Md.: University of Maryland, 2008. http://hdl.handle.net/1903/8856.
Testo completoThesis research directed by: Joint Program in Survey Methodology. Title from t.p. of PDF. Includes bibliographical references. Published by UMI Dissertation Services, Ann Arbor, Mich. Also available in paper.
Næss, Arild Brandrud. "Bayesian Text Categorization". Thesis, Norwegian University of Science and Technology, Department of Mathematical Sciences, 2007. http://urn.kb.se/resolve?urn=urn:nbn:no:ntnu:diva-9665.
Testo completoNatural language processing is an interdisciplinary field of research which studies the problems and possibilities of automated generation and understanding of natural human languages. Text categorization is a central subfield of natural language processing. Automatically assigning categories to digital texts has a wide range of applications in todays information societyfrom filtering spam to creating web hierarchies and digital newspaper archives. It is a discipline that lends itself more naturally to machine learning than to knowledge engineering; statistical approaches to text categorization are therefore a promising field of inquiry. We provide a survey of the state of the art in text categorization, presenting the most widespread methods in use, and placing particular emphasis on support vector machinesan optimization algorithm that has emerged as the benchmark method in text categorization in the past ten years. We then turn our attention to Bayesian logistic regression, a fairly new, and largely unstudied method in text categorization. We see how this method has certain similarities to the support vector machine method, but also differs from it in crucial respects. Notably, Bayesian logistic regression provides us with a statistical framework. It can be claimed to be more modular, in the sense that it is more open to modifications and supplementations by other statistical methods; whereas the support vector machine method remains more of a black box. We present results of thorough testing of the BBR toolkit for Bayesian logistic regression on three separate data sets. We demonstrate which of BBRs parameters are of importance; and we show that its results compare favorably to those of the SVMli ght toolkit for support vector machines. We also present two extensions to the BBR toolkit. One attempts to incorporate domain knowledge by way of the prior probability distributions of single words; the other tries to make use of uncategorized documents to boost learning accuracy.
Maezawa, Akira. "Bayesian Music Alignment". 京都大学 (Kyoto University), 2015. http://hdl.handle.net/2433/199430.
Testo completoLibri sul tema "Bayesian"
M, Smith Adrian F., a cura di. Bayesian theory. Chichester, Eng: Wiley, 1994.
Cerca il testo completoKamenica, Emir. Bayesian persuasion. Cambridge, MA: National Bureau of Economic Research, 2009.
Cerca il testo completoInc, ebrary, a cura di. Bayesian econometrics. Bingley: Emerald JAI, 2008.
Cerca il testo completoBazett, Trefor. Bayesian Inference. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-95792-6.
Testo completoZenker, Frank, a cura di. Bayesian Argumentation. Dordrecht: Springer Netherlands, 2013. http://dx.doi.org/10.1007/978-94-007-5357-0.
Testo completovan Oijen, Marcel. Bayesian Compendium. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-55897-0.
Testo completoHarney, Hanns Ludwig. Bayesian Inference. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-41644-1.
Testo completoHjort, Nils Lid, Chris Holmes, Peter Muller e Stephen G. Walker, a cura di. Bayesian Nonparametrics. Cambridge: Cambridge University Press, 2009. http://dx.doi.org/10.1017/cbo9780511802478.
Testo completoHamada, Michael S., Alyson G. Wilson, C. Shane Reese e Harry F. Martz. Bayesian Reliability. New York, NY: Springer New York, 2008. http://dx.doi.org/10.1007/978-0-387-77950-8.
Testo completoHarney, Hanns L. Bayesian Inference. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/978-3-662-06006-3.
Testo completoCapitoli di libri sul tema "Bayesian"
Basu, Sanjib. "Bayesian Robustness and Bayesian Nonparametrics". In Robust Bayesian Analysis, 223–40. New York, NY: Springer New York, 2000. http://dx.doi.org/10.1007/978-1-4612-1306-2_12.
Testo completoZenker, Frank. "Bayesian Argumentation: The Practical Side of Probability". In Bayesian Argumentation, 1–11. Dordrecht: Springer Netherlands, 2012. http://dx.doi.org/10.1007/978-94-007-5357-0_1.
Testo completoPfeifer, Niki. "On Argument Strength". In Bayesian Argumentation, 185–93. Dordrecht: Springer Netherlands, 2012. http://dx.doi.org/10.1007/978-94-007-5357-0_10.
Testo completoBlamey, Jonny. "Upping the Stakes and the Preface Paradox". In Bayesian Argumentation, 195–210. Dordrecht: Springer Netherlands, 2012. http://dx.doi.org/10.1007/978-94-007-5357-0_11.
Testo completoHahn, Ulrike, Mike Oaksford e Adam J. L. Harris. "Testimony and Argument: A Bayesian Perspective". In Bayesian Argumentation, 15–38. Dordrecht: Springer Netherlands, 2012. http://dx.doi.org/10.1007/978-94-007-5357-0_2.
Testo completoOaksford, Mike, e Ulrike Hahn. "Why Are We Convinced by the Ad Hominem Argument?: Bayesian Source Reliability and Pragma-Dialectical Discussion Rules". In Bayesian Argumentation, 39–58. Dordrecht: Springer Netherlands, 2012. http://dx.doi.org/10.1007/978-94-007-5357-0_3.
Testo completoGrabmair, Matthias, e Kevin D. Ashley. "A Survey of Uncertainties and Their Consequences in Probabilistic Legal Argumentation". In Bayesian Argumentation, 61–85. Dordrecht: Springer Netherlands, 2012. http://dx.doi.org/10.1007/978-94-007-5357-0_4.
Testo completoPundik, Amit. "Was It Wrong to Use Statistics in R v Clark? A Case Study of the Use of Statistical Evidence in Criminal Courts". In Bayesian Argumentation, 87–109. Dordrecht: Springer Netherlands, 2012. http://dx.doi.org/10.1007/978-94-007-5357-0_5.
Testo completoOlsson, Erik J. "A Bayesian Simulation Model of Group Deliberation and Polarization". In Bayesian Argumentation, 113–33. Dordrecht: Springer Netherlands, 2012. http://dx.doi.org/10.1007/978-94-007-5357-0_6.
Testo completoBetz, Gregor. "Degrees of Justification, Bayes’ Rule, and Rationality". In Bayesian Argumentation, 135–46. Dordrecht: Springer Netherlands, 2012. http://dx.doi.org/10.1007/978-94-007-5357-0_7.
Testo completoAtti di convegni sul tema "Bayesian"
Giner Sanz, Juan José, Montserrat García Gabaldón, Emma María Ortega Navarro, Yang Shao-Horn e Valentín Pérez Herranz. "A Labview® program for illustrating the basic concepts of Bayesian inference". In IN-RED 2019: V Congreso de Innovación Educativa y Docencia en Red. València: Editorial Universitat Politècnica de València, 2019. http://dx.doi.org/10.4995/inred2019.2019.10369.
Testo completoDe Ath, George, Richard M. Everson e Jonathan E. Fieldsend. "How Bayesian should Bayesian optimisation be?" In GECCO '21: Genetic and Evolutionary Computation Conference. New York, NY, USA: ACM, 2021. http://dx.doi.org/10.1145/3449726.3463164.
Testo completoMahler, Ronald P. S. "Bayesian versus 'plain-vanilla Bayesian' multitarget statistics". In Defense and Security, a cura di Ivan Kadar. SPIE, 2004. http://dx.doi.org/10.1117/12.544505.
Testo completoHuber, Marco F. "Bayesian Perceptron: Towards fully Bayesian Neural Networks". In 2020 59th IEEE Conference on Decision and Control (CDC). IEEE, 2020. http://dx.doi.org/10.1109/cdc42340.2020.9303764.
Testo completoBi, Xiaojun, e Shumin Zhai. "Bayesian touch". In UIST'13: The 26th Annual ACM Symposium on User Interface Software and Technology. New York, NY, USA: ACM, 2013. http://dx.doi.org/10.1145/2501988.2502058.
Testo completoScargle, Jeffrey D. "Bayesian blocks". In The 19th international workshop on bayesium inference and maximum entropy methods in science and engineering. AIP, 2001. http://dx.doi.org/10.1063/1.1381860.
Testo completoMansour, Yishay, Aleksandrs Slivkins, Vasilis Syrgkanis e Zhiwei Steven Wu. "Bayesian Exploration". In EC '16: ACM Conference on Economics and Computation. New York, NY, USA: ACM, 2016. http://dx.doi.org/10.1145/2940716.2940755.
Testo completoAlon, Noga, Yuval Emek, Michal Feldman e Moshe Tennenholtz. "Bayesian ignorance". In Proceeding of the 29th ACM SIGACT-SIGOPS symposium. New York, New York, USA: ACM Press, 2010. http://dx.doi.org/10.1145/1835698.1835785.
Testo completoCouckuyt, Ivo, Sebastian Rojas Gonzalez e Juergen Branke. "Bayesian optimization". In GECCO '22: Genetic and Evolutionary Computation Conference. New York, NY, USA: ACM, 2022. http://dx.doi.org/10.1145/3520304.3533654.
Testo completoCaulfield, H. John. "Bayesian imaging". In SPIE's International Symposium on Optical Science, Engineering, and Instrumentation, a cura di Suganda Jutamulia e Toshimitsu Asakura. SPIE, 1998. http://dx.doi.org/10.1117/12.326803.
Testo completoRapporti di organizzazioni sul tema "Bayesian"
Kyburg, Henry, e Jr. Bayesian and Non-Bayesian Evidential Updating. Fort Belvoir, VA: Defense Technical Information Center, gennaio 1985. http://dx.doi.org/10.21236/ada250538.
Testo completoKamenica, Emir, e Matthew Gentzkow. Bayesian Persuasion. Cambridge, MA: National Bureau of Economic Research, novembre 2009. http://dx.doi.org/10.3386/w15540.
Testo completoBaley, Isaac, e Laura Veldkamp. Bayesian Learning. Cambridge, MA: National Bureau of Economic Research, ottobre 2021. http://dx.doi.org/10.3386/w29338.
Testo completoAndrews, Stephen A., e David E. Sigeti. Bayesian Hypothesis Testing. Office of Scientific and Technical Information (OSTI), novembre 2017. http://dx.doi.org/10.2172/1409741.
Testo completoSantos, Eugene, Santos Jr. e Eugene. Bayesian Knowledge-Bases. Fort Belvoir, VA: Defense Technical Information Center, agosto 1996. http://dx.doi.org/10.21236/ada324260.
Testo completoBaks, Klaas, Andrew Metrick e Jessica Wachter. Bayesian Performance Evaluation. Cambridge, MA: National Bureau of Economic Research, aprile 1999. http://dx.doi.org/10.3386/w7069.
Testo completoWallstrom, Timothy C. Brittleness and Bayesian Inference. Office of Scientific and Technical Information (OSTI), agosto 2013. http://dx.doi.org/10.2172/1090691.
Testo completoWallstrom, Timothy C., e David M. Higdon. Is Bayesian inference "brittle"? Office of Scientific and Technical Information (OSTI), agosto 2013. http://dx.doi.org/10.2172/1090693.
Testo completoKyburg, Henry E., e Jr. The Basic Bayesian Blunder. Fort Belvoir, VA: Defense Technical Information Center, gennaio 1989. http://dx.doi.org/10.21236/ada250978.
Testo completoLozano-Perez, Tomas, e Leslie Kaelbling. Effective Bayesian Transfer Learning. Fort Belvoir, VA: Defense Technical Information Center, marzo 2010. http://dx.doi.org/10.21236/ada516458.
Testo completo