Articoli di riviste sul tema "Bandit Contextuel"
Cita una fonte nei formati APA, MLA, Chicago, Harvard e in molti altri stili
Vedi i top-50 articoli di riviste per l'attività di ricerca sul tema "Bandit Contextuel".
Accanto a ogni fonte nell'elenco di riferimenti c'è un pulsante "Aggiungi alla bibliografia". Premilo e genereremo automaticamente la citazione bibliografica dell'opera scelta nello stile citazionale di cui hai bisogno: APA, MLA, Harvard, Chicago, Vancouver ecc.
Puoi anche scaricare il testo completo della pubblicazione scientifica nel formato .pdf e leggere online l'abstract (il sommario) dell'opera se è presente nei metadati.
Vedi gli articoli di riviste di molte aree scientifiche e compila una bibliografia corretta.
Gisselbrecht, Thibault, Sylvain Lamprier e Patrick Gallinari. "Collecte ciblée à partir de flux de données en ligne dans les médias sociaux. Une approche de bandit contextuel". Document numérique 19, n. 2-3 (30 dicembre 2016): 11–30. http://dx.doi.org/10.3166/dn.19.2-3.11-30.
Testo completoDimakopoulou, Maria, Zhengyuan Zhou, Susan Athey e Guido Imbens. "Balanced Linear Contextual Bandits". Proceedings of the AAAI Conference on Artificial Intelligence 33 (17 luglio 2019): 3445–53. http://dx.doi.org/10.1609/aaai.v33i01.33013445.
Testo completoTong, Ruoyi. "A survey of the application and technical improvement of the multi-armed bandit". Applied and Computational Engineering 77, n. 1 (16 luglio 2024): 25–31. http://dx.doi.org/10.54254/2755-2721/77/20240631.
Testo completoYang, Luting, Jianyi Yang e Shaolei Ren. "Contextual Bandits with Delayed Feedback and Semi-supervised Learning (Student Abstract)". Proceedings of the AAAI Conference on Artificial Intelligence 35, n. 18 (18 maggio 2021): 15943–44. http://dx.doi.org/10.1609/aaai.v35i18.17968.
Testo completoSharaf, Amr, e Hal Daumé III. "Meta-Learning Effective Exploration Strategies for Contextual Bandits". Proceedings of the AAAI Conference on Artificial Intelligence 35, n. 11 (18 maggio 2021): 9541–48. http://dx.doi.org/10.1609/aaai.v35i11.17149.
Testo completoDu, Yihan, Siwei Wang e Longbo Huang. "A One-Size-Fits-All Solution to Conservative Bandit Problems". Proceedings of the AAAI Conference on Artificial Intelligence 35, n. 8 (18 maggio 2021): 7254–61. http://dx.doi.org/10.1609/aaai.v35i8.16891.
Testo completoVaratharajah, Yogatheesan, e Brent Berry. "A Contextual-Bandit-Based Approach for Informed Decision-Making in Clinical Trials". Life 12, n. 8 (21 agosto 2022): 1277. http://dx.doi.org/10.3390/life12081277.
Testo completoLi, Jialian, Chao Du e Jun Zhu. "A Bayesian Approach for Subset Selection in Contextual Bandits". Proceedings of the AAAI Conference on Artificial Intelligence 35, n. 9 (18 maggio 2021): 8384–91. http://dx.doi.org/10.1609/aaai.v35i9.17019.
Testo completoQu, Jiaming. "Survey of dynamic pricing based on Multi-Armed Bandit algorithms". Applied and Computational Engineering 37, n. 1 (22 gennaio 2024): 160–65. http://dx.doi.org/10.54254/2755-2721/37/20230497.
Testo completoAtsidakou, Alexia, Constantine Caramanis, Evangelia Gergatsouli, Orestis Papadigenopoulos e Christos Tzamos. "Contextual Pandora’s Box". Proceedings of the AAAI Conference on Artificial Intelligence 38, n. 10 (24 marzo 2024): 10944–52. http://dx.doi.org/10.1609/aaai.v38i10.28969.
Testo completoZhang, Qianqian. "Real-world Applications of Bandit Algorithms: Insights and Innovations". Transactions on Computer Science and Intelligent Systems Research 5 (12 agosto 2024): 753–58. http://dx.doi.org/10.62051/ge4sk783.
Testo completoWang, Zhiyong, Xutong Liu, Shuai Li e John C. S. Lui. "Efficient Explorative Key-Term Selection Strategies for Conversational Contextual Bandits". Proceedings of the AAAI Conference on Artificial Intelligence 37, n. 8 (26 giugno 2023): 10288–95. http://dx.doi.org/10.1609/aaai.v37i8.26225.
Testo completoBansal, Nipun, Manju Bala e Kapil Sharma. "FuzzyBandit An Autonomous Personalized Model Based on Contextual Multi Arm Bandits Using Explainable AI". Defence Science Journal 74, n. 4 (26 aprile 2024): 496–504. http://dx.doi.org/10.14429/dsj.74.19330.
Testo completoTang, Qiao, Hong Xie, Yunni Xia, Jia Lee e Qingsheng Zhu. "Robust Contextual Bandits via Bootstrapping". Proceedings of the AAAI Conference on Artificial Intelligence 35, n. 13 (18 maggio 2021): 12182–89. http://dx.doi.org/10.1609/aaai.v35i13.17446.
Testo completoWu, Jiazhen. "In-depth Exploration and Implementation of Multi-Armed Bandit Models Across Diverse Fields". Highlights in Science, Engineering and Technology 94 (26 aprile 2024): 201–5. http://dx.doi.org/10.54097/d3ez0n61.
Testo completoWang, Kun. "Conservative Contextual Combinatorial Cascading Bandit". IEEE Access 9 (2021): 151434–43. http://dx.doi.org/10.1109/access.2021.3124416.
Testo completoElwood, Adam, Marco Leonardi, Ashraf Mohamed e Alessandro Rozza. "Maximum Entropy Exploration in Contextual Bandits with Neural Networks and Energy Based Models". Entropy 25, n. 2 (18 gennaio 2023): 188. http://dx.doi.org/10.3390/e25020188.
Testo completoBaheri, Ali. "Multilevel Constrained Bandits: A Hierarchical Upper Confidence Bound Approach with Safety Guarantees". Mathematics 13, n. 1 (3 gennaio 2025): 149. https://doi.org/10.3390/math13010149.
Testo completoStrong, Emily, Bernard Kleynhans e Serdar Kadıoğlu. "MABWISER: Parallelizable Contextual Multi-armed Bandits". International Journal on Artificial Intelligence Tools 30, n. 04 (giugno 2021): 2150021. http://dx.doi.org/10.1142/s0218213021500214.
Testo completoLee, Kyungbok, Myunghee Cho Paik, Min-hwan Oh e Gi-Soo Kim. "Mixed-Effects Contextual Bandits". Proceedings of the AAAI Conference on Artificial Intelligence 38, n. 12 (24 marzo 2024): 13409–17. http://dx.doi.org/10.1609/aaai.v38i12.29243.
Testo completoOh, Min-hwan, e Garud Iyengar. "Multinomial Logit Contextual Bandits: Provable Optimality and Practicality". Proceedings of the AAAI Conference on Artificial Intelligence 35, n. 10 (18 maggio 2021): 9205–13. http://dx.doi.org/10.1609/aaai.v35i10.17111.
Testo completoZhao, Yisen. "Enhancing conversational recommendation systems through the integration of KNN with ConLinUCB contextual bandits". Applied and Computational Engineering 68, n. 1 (6 giugno 2024): 8–16. http://dx.doi.org/10.54254/2755-2721/68/20241388.
Testo completoChen, Qiufan. "A survey on contextual multi-armed bandits". Applied and Computational Engineering 53, n. 1 (28 marzo 2024): 287–95. http://dx.doi.org/10.54254/2755-2721/53/20241593.
Testo completoMohaghegh Neyshabouri, Mohammadreza, Kaan Gokcesu, Hakan Gokcesu, Huseyin Ozkan e Suleyman Serdar Kozat. "Asymptotically Optimal Contextual Bandit Algorithm Using Hierarchical Structures". IEEE Transactions on Neural Networks and Learning Systems 30, n. 3 (marzo 2019): 923–37. http://dx.doi.org/10.1109/tnnls.2018.2854796.
Testo completoGu, Haoran, Yunni Xia, Hong Xie, Xiaoyu Shi e Mingsheng Shang. "Robust and efficient algorithms for conversational contextual bandit". Information Sciences 657 (febbraio 2024): 119993. http://dx.doi.org/10.1016/j.ins.2023.119993.
Testo completoNarita, Yusuke, Shota Yasui e Kohei Yata. "Efficient Counterfactual Learning from Bandit Feedback". Proceedings of the AAAI Conference on Artificial Intelligence 33 (17 luglio 2019): 4634–41. http://dx.doi.org/10.1609/aaai.v33i01.33014634.
Testo completoLi, Zhaoyu, e Qian Ai. "Managing Considerable Distributed Resources for Demand Response: A Resource Selection Strategy Based on Contextual Bandit". Electronics 12, n. 13 (23 giugno 2023): 2783. http://dx.doi.org/10.3390/electronics12132783.
Testo completoHuang, Wen, e Xintao Wu. "Robustly Improving Bandit Algorithms with Confounded and Selection Biased Offline Data: A Causal Approach". Proceedings of the AAAI Conference on Artificial Intelligence 38, n. 18 (24 marzo 2024): 20438–46. http://dx.doi.org/10.1609/aaai.v38i18.30027.
Testo completoSpieker, Helge, e Arnaud Gotlieb. "Adaptive metamorphic testing with contextual bandits". Journal of Systems and Software 165 (luglio 2020): 110574. http://dx.doi.org/10.1016/j.jss.2020.110574.
Testo completoJagerman, Rolf, Ilya Markov e Maarten De Rijke. "Safe Exploration for Optimizing Contextual Bandits". ACM Transactions on Information Systems 38, n. 3 (26 giugno 2020): 1–23. http://dx.doi.org/10.1145/3385670.
Testo completoKakadiya, Ashutosh, Sriraam Natarajan e Balaraman Ravindran. "Relational Boosted Bandits". Proceedings of the AAAI Conference on Artificial Intelligence 35, n. 13 (18 maggio 2021): 12123–30. http://dx.doi.org/10.1609/aaai.v35i13.17439.
Testo completoSeifi, Farshad, e Seyed Taghi Akhavan Niaki. "Optimizing contextual bandit hyperparameters: A dynamic transfer learning-based framework". International Journal of Industrial Engineering Computations 15, n. 4 (2024): 951–64. http://dx.doi.org/10.5267/j.ijiec.2024.6.003.
Testo completoZhao, Yafei, e Long Yang. "Constrained contextual bandit algorithm for limited-budget recommendation system". Engineering Applications of Artificial Intelligence 128 (febbraio 2024): 107558. http://dx.doi.org/10.1016/j.engappai.2023.107558.
Testo completoYang, Jianyi, e Shaolei Ren. "Robust Bandit Learning with Imperfect Context". Proceedings of the AAAI Conference on Artificial Intelligence 35, n. 12 (18 maggio 2021): 10594–602. http://dx.doi.org/10.1609/aaai.v35i12.17267.
Testo completoLiu, Zizhuo. "Investigation of progress and application related to Multi-Armed Bandit algorithms". Applied and Computational Engineering 37, n. 1 (22 gennaio 2024): 155–59. http://dx.doi.org/10.54254/2755-2721/37/20230496.
Testo completoSemenov, Alexander, Maciej Rysz, Gaurav Pandey e Guanglin Xu. "Diversity in news recommendations using contextual bandits". Expert Systems with Applications 195 (giugno 2022): 116478. http://dx.doi.org/10.1016/j.eswa.2021.116478.
Testo completoSui, Guoxin, e Yong Yu. "Bayesian Contextual Bandits for Hyper Parameter Optimization". IEEE Access 8 (2020): 42971–79. http://dx.doi.org/10.1109/access.2020.2977129.
Testo completoTekin, Cem, e Mihaela van der Schaar. "Distributed Online Learning via Cooperative Contextual Bandits". IEEE Transactions on Signal Processing 63, n. 14 (luglio 2015): 3700–3714. http://dx.doi.org/10.1109/tsp.2015.2430837.
Testo completoQin, Yuzhen, Yingcong Li, Fabio Pasqualetti, Maryam Fazel e Samet Oymak. "Stochastic Contextual Bandits with Long Horizon Rewards". Proceedings of the AAAI Conference on Artificial Intelligence 37, n. 8 (26 giugno 2023): 9525–33. http://dx.doi.org/10.1609/aaai.v37i8.26140.
Testo completoXu, Xiao, Fang Dong, Yanghua Li, Shaojian He e Xin Li. "Contextual-Bandit Based Personalized Recommendation with Time-Varying User Interests". Proceedings of the AAAI Conference on Artificial Intelligence 34, n. 04 (3 aprile 2020): 6518–25. http://dx.doi.org/10.1609/aaai.v34i04.6125.
Testo completoTekin, Cem, e Eralp Turgay. "Multi-objective Contextual Multi-armed Bandit With a Dominant Objective". IEEE Transactions on Signal Processing 66, n. 14 (15 luglio 2018): 3799–813. http://dx.doi.org/10.1109/tsp.2018.2841822.
Testo completoYoon, Gyugeun, e Joseph Y. J. Chow. "Contextual Bandit-Based Sequential Transit Route Design under Demand Uncertainty". Transportation Research Record: Journal of the Transportation Research Board 2674, n. 5 (maggio 2020): 613–25. http://dx.doi.org/10.1177/0361198120917388.
Testo completoLi, Litao. "Exploring Multi-Armed Bandit algorithms: Performance analysis in dynamic environments". Applied and Computational Engineering 34, n. 1 (22 gennaio 2024): 252–59. http://dx.doi.org/10.54254/2755-2721/34/20230338.
Testo completoZhu, Tan, Guannan Liang, Chunjiang Zhu, Haining Li e Jinbo Bi. "An Efficient Algorithm for Deep Stochastic Contextual Bandits". Proceedings of the AAAI Conference on Artificial Intelligence 35, n. 12 (18 maggio 2021): 11193–201. http://dx.doi.org/10.1609/aaai.v35i12.17335.
Testo completoMartín H., José Antonio, e Ana M. Vargas. "Linear Bayes policy for learning in contextual-bandits". Expert Systems with Applications 40, n. 18 (dicembre 2013): 7400–7406. http://dx.doi.org/10.1016/j.eswa.2013.07.041.
Testo completoRaghavan, Manish, Aleksandrs Slivkins, Jennifer Wortman Vaughan e Zhiwei Steven Wu. "Greedy Algorithm Almost Dominates in Smoothed Contextual Bandits". SIAM Journal on Computing 52, n. 2 (12 aprile 2023): 487–524. http://dx.doi.org/10.1137/19m1247115.
Testo completoAyala-Romero, Jose A., Andres Garcia-Saavedra e Xavier Costa-Perez. "Risk-Aware Continuous Control with Neural Contextual Bandits". Proceedings of the AAAI Conference on Artificial Intelligence 38, n. 19 (24 marzo 2024): 20930–38. http://dx.doi.org/10.1609/aaai.v38i19.30083.
Testo completoPilani, Akshay, Kritagya Mathur, Himanshu Agrawal, Deeksha Chandola, Vinay Anand Tikkiwal e Arun Kumar. "Contextual Bandit Approach-based Recommendation System for Personalized Web-based Services". Applied Artificial Intelligence 35, n. 7 (6 aprile 2021): 489–504. http://dx.doi.org/10.1080/08839514.2021.1883855.
Testo completoLi, Xinbin, Jiajia Liu, Lei Yan, Song Han e Xinping Guan. "Relay Selection in Underwater Acoustic Cooperative Networks: A Contextual Bandit Approach". IEEE Communications Letters 21, n. 2 (febbraio 2017): 382–85. http://dx.doi.org/10.1109/lcomm.2016.2625300.
Testo completoGisselbrecht, Thibault, Sylvain Lamprier e Patrick Gallinari. "Dynamic Data Capture from Social Media Streams: A Contextual Bandit Approach". Proceedings of the International AAAI Conference on Web and Social Media 10, n. 1 (4 agosto 2021): 131–40. http://dx.doi.org/10.1609/icwsm.v10i1.14734.
Testo completo