Tesi sul tema "Artificial neural networks"
Cita una fonte nei formati APA, MLA, Chicago, Harvard e in molti altri stili
Vedi i top-50 saggi (tesi di laurea o di dottorato) per l'attività di ricerca sul tema "Artificial neural networks".
Accanto a ogni fonte nell'elenco di riferimenti c'è un pulsante "Aggiungi alla bibliografia". Premilo e genereremo automaticamente la citazione bibliografica dell'opera scelta nello stile citazionale di cui hai bisogno: APA, MLA, Harvard, Chicago, Vancouver ecc.
Puoi anche scaricare il testo completo della pubblicazione scientifica nel formato .pdf e leggere online l'abstract (il sommario) dell'opera se è presente nei metadati.
Vedi le tesi di molte aree scientifiche e compila una bibliografia corretta.
Boychenko, I. V., e G. I. Litvinenko. "Artificial neural networks". Thesis, Вид-во СумДУ, 2009. http://essuir.sumdu.edu.ua/handle/123456789/17044.
Testo completoMenneer, Tamaryn Stable Ia. "Quantum artificial neural networks". Thesis, University of Exeter, 1999. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.286530.
Testo completoChambers, Mark Andrew. "Queuing network construction using artificial neural networks /". The Ohio State University, 2000. http://rave.ohiolink.edu/etdc/view?acc_num=osu1488193665234291.
Testo completoOrr, Ewan. "Evolving Turing's Artificial Neural Networks". Thesis, University of Canterbury. Department of Physics and Astronomy, 2010. http://hdl.handle.net/10092/4620.
Testo completoVaroonchotikul, Pichaid. "Flood forecasting using artificial neural networks /". Lisse : Balkema, 2003. http://www.e-streams.com/es0704/es0704_3168.html.
Testo completoFraticelli, Chiara. "Λc reconstruction with artificial neural networks". Bachelor's thesis, Alma Mater Studiorum - Università di Bologna, 2020. http://amslaurea.unibo.it/19985/.
Testo completoMillevik, Daniel, e Michael Wang. "Stock Forecasting Using Artificial Neural Networks". Thesis, KTH, Skolan för datavetenskap och kommunikation (CSC), 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-166455.
Testo completoDenna rapport studerar ifall artificiella neuronnät (ANN) potentiellt kan tillämpas på den finansiella marknaden för att förutspå aktiepriser. Det undersöks även hur antalet neuroner i nätverket och hur fördelningen av träningsdatat i träning, validering och testning, påverkar nätverkets noggrannhet. Tester utfördes på en ''two layer feedforward neural network'' (FFNN) med hjälp av MATLAB och dess Neural Network Toolbox. Dessa utfördes genom att samla fem år av historisk data för ''Dow Jones Industrial Average'' (DJIA) aktieindex som används för att träna nätverket. Slutligen så tränas nätverket i omgångar med olika konfigurationer bestående av ändringar på antalet neuroner och fördelningen av träningsdatat. Detta för att utföra tester på ett separat år av DJIA aktieindex. Den bästa noggrannheten som erhölls vid förutsägning av stängningspriset i börsen efter en dag är ca 99\%. Det finns konfigurationer som ger sämre noggrannhet. Dessa är i synnerhet konfigurationer med ett stort antal neuroner samt de med låg andel träningsdata. Slutsatsen är att det finns potential vid användning av artificiella neuronnät men det är inte praktiskt användbart att bara förutspå aktiepriser en dag framåt. Det är viktigt att anpassa nätverket till det givna problemet och dess komplexitet. Därför ska antalet neuroner i nätverket väljas därefter. Det är också nödvändigt att träna om nätverket ett flertal gånger för att erhålla ett med bra prestanda. Utöver fördelningen av träningsdatat så är det viktigare att samla tillräckligt med data för träningen av nätverket för att försäkra sig om att den anpassar och generaliserar sig till det aktuella problemet.
Prasad, Jayan Ganesh Information Technology & Electrical Engineering Australian Defence Force Academy UNSW. "Financial forecasting using artificial neural networks". Awarded by:University of New South Wales - Australian Defence Force Academy. School of Information Technology and Electrical Engineering, 2008. http://handle.unsw.edu.au/1959.4/38700.
Testo completoNg, Roger K. W. "Rapid prototyping of artificial neural networks". Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1996. http://www.collectionscanada.ca/obj/s4/f2/dsk2/ftp04/mq23440.pdf.
Testo completoHook, Jaroslav. "Are artificial neural networks learning machines?" Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1998. http://www.collectionscanada.ca/obj/s4/f2/dsk2/ftp01/MQ38651.pdf.
Testo completoCoulibaly, Paulin. "Artificial neural networks for hydrological forecasting". Thesis, National Library of Canada = Bibliothèque nationale du Canada, 2000. http://www.collectionscanada.ca/obj/s4/f2/dsk1/tape4/PQDD_0028/NQ52236.pdf.
Testo completoBaker, Thomas Edward. "Implementation limits for artificial neural networks". Full text open access at:, 1990. http://content.ohsu.edu/u?/etd,268.
Testo completoGarvin, Alan David Morris. "Self-structuring of artificial neural networks". Thesis, University of Cambridge, 1994. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.307948.
Testo completoWatkins, Bruce E. "Data compression using artificial neural networks". Thesis, Monterey, California. Naval Postgraduate School, 1991. http://hdl.handle.net/10945/25801.
Testo completoThis thesis investigates the application of artificial neural networks for the compression of image data. An algorithm is developed using the competitive learning paradigm which takes advantage of the parallel processing and classification capability of neural networks to produce an efficient implementation of vector quantization. Multi-Stage, tree searched, and classification vector quantization codebook design techniques are adapted to the neural network design to reduce the computational cost and hardware requirements. The results show that the new algorithm provides a substantial reduction in computational costs and an improvement in performance.
Gulliford, Sarah Louise. "Artificial neural networks applied to radiotherapy". Thesis, Institute of Cancer Research (University Of London), 2003. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.404474.
Testo completoTownsend, Joseph Paul. "Artificial development of neural-symbolic networks". Thesis, University of Exeter, 2014. http://hdl.handle.net/10871/15162.
Testo completoZhong, Xiaolin. "Robot calibration using artificial neural networks". Thesis, Edinburgh Napier University, 1995. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.295387.
Testo completoLukashev, A. "Basics of artificial neural networks (ANNs)". Thesis, Київський національний університет технологій та дизайну, 2018. https://er.knutd.edu.ua/handle/123456789/11353.
Testo completoRodríguez, Villegas Antoni. "Polyp segmentation using artificial neural networks". Thesis, Linnéuniversitetet, Institutionen för datavetenskap och medieteknik (DM), 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:lnu:diva-98001.
Testo completoLind, Benjamin. "Artificial Neural Networks for Image Improvement". Thesis, Linköpings universitet, Datorseende, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-137661.
Testo completoMiranda, Trujillo Luis Carlos. "Artificial Neural Networks in Greenhouse Modelling". Doctoral thesis, Humboldt-Universität zu Berlin, 2018. http://dx.doi.org/10.18452/19354.
Testo completoOne facet of the current developments in precision horticulture is the highly technified production under cover. The intensive production in modern greenhouses heavily relies on instrumentation and control techniques to automate many tasks. Among these techniques are control strategies, which can also include some methods developed within the field of Artificial Intelligence. This document presents research on Artificial Neural Networks (ANN), a technique derived from Artificial Intelligence, and aims to shed light on their applicability in greenhouse vegetable production. In particular, this work focuses on the suitability of ANN-based models for greenhouse environmental control. To this end, two models were built: A short-term climate prediction model (air temperature and relative humidity in time scale of minutes), and a model of the plant response to the climate, the latter regarding phytometric measurements of leaf temperature, transpiration rate and photosynthesis rate. A dataset comprising three years of tomato cultivation was used to build and test the models. It was found that this kind of models is very sensitive to the fine-tuning of the metaparameters and that they can produce different results even with the same architecture. Nevertheless, it was shown that ANN are useful to simulate complex biological signals and to estimate future microclimate trends. Furthermore, two connection schemes are proposed to assemble several models in order to generate more complex simulations, like long-term prediction chains and photosynthesis forecasts. It was concluded that ANN could be used in greenhouse automation systems as part of the control strategy, as they are robust and can cope with the complexity of the system. However, a number of problems and difficulties are pointed out, including the importance of the architecture, the need for large datasets to build the models and problems arising from different time constants in the whole greenhouse system.
Guiga, Linda. "Software protections for artificial neural networks". Electronic Thesis or Diss., Institut polytechnique de Paris, 2022. http://www.theses.fr/2022IPPAT024.
Testo completoIn a context where Neural Networks (NNs) are very present in our daily lives, be it through smartphones, face and biometrics recognition or even in the medical field, their security is of the utmost importance. If such models leak information, not only could it imperil the privacy of sensitive data, but it could also infringe on intellectual property.Selecting the correct architecture and training the corresponding parameters is time-consuming -- it can take months -- and requires large computational resources. This is why an NN constitutes intellectual property. Moreover, once a malicious user knows the architecture and/or the parameters, multiple attacks can be carried out, such as adversarial ones. Adversarial attackers craft a malicious datapoint by adding a small noise to the original input, such that the noise is undetectable to the human eye but fools the model. Such attacks could be the basis of impersonations. Membership attacks, which aim at leaking information about the training dataset, are also facilitated by the knowledge of a model. More generally, when a malicious user has access to a model, she also has access to the manifold of the model's outputs, making it easier for her to fool the model.Protecting NNs is therefore paramount. However, since 2016, they have been the target of increasingly powerful reverse-engineering attacks. Mathematical reverse-engineering attacks solve equations or study a model's internal structure to reveal its parameters. On the other hand, side-channel attacks exploit leaks in a model's implementation -- such as in the cache or power consumption -- to uncover the parameters and architecture. In this thesis, we seek to protect NN models by changing their internal structure and their software implementation.To this aim, we propose four novel countermeasures. In the first three, we consider a gray-box context where the attacker has partial access to the model, and we leverage parasitic models to counter three types of attacks.We first tackle mathematical attacks that recover a model's parameters based on its internal structure. We propose to add one -- or multiple -- parasitic Convolutional Neural Networks (CNNs) at various locations in the base model and measure the incurred change in the structure by observing the modification in generated adversarial samples.However, the previous method does not thwart side-channel attacks that extract the parameters through the analysis of power or electromagnetic consumption. To mitigate such attacks, we propose to add dynamism to the previous protocol. Instead of considering one -- or several -- fixed parasite(s), we incorporate different parasites at each run, at the entrance of the base model. This enables us to hide a model's input, necessary for precise weight extraction. We show the impact of this dynamic incorporation through two simulated attacks.Along the way, we observe that parasitic models affect adversarial examples. Our third contribution is derived from this, as we suggest a novel method to mitigate adversarial attacks. To this effect, we dynamically incorporate another type of parasite: autoencoders. We demonstrate the efficiency of this countermeasure against common adversarial attacks.In a second part, we focus on a black-box context where the attacker knows neither the architecture nor the parameters. Architecture extraction attacks rely on the sequential execution of NNs. The fourth and last contribution we present in this thesis consists in reordering neuron computations. We propose to compute neuron values by blocks in a depth-first fashion, and add randomness to this execution. We prove that this new way of carrying out CNN computations prevents a potential attacker from recovering a small enough set of possible architectures for the initial model
Bolt, George Ravuama. "Fault tolerance in artificial neural networks : are neural networks inherently fault tolerant?" Thesis, University of York, 1992. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.317683.
Testo completoNAPOLI, CHRISTIAN. "A-I: Artificial intelligence". Doctoral thesis, Università degli studi di Catania, 2016. http://hdl.handle.net/20.500.11769/490996.
Testo completoLindefelt, Lisa. "Predicting gene expression using artificial neural networks". Thesis, University of Skövde, Department of Computer Science, 2002. http://urn.kb.se/resolve?urn=urn:nbn:se:his:diva-707.
Testo completoToday one of the greatest aims within the area of bioinformatics is to gain a complete understanding of the functionality of genes and the systems behind gene regulation. Regulatory relationships among genes seem to be of a complex nature since transcriptional control is the result of complex networks interpreting a variety of inputs. It is therefore essential to develop analytical tools detecting complex genetic relationships.
This project examines the possibility of the data mining technique artificial neural network (ANN) detecting regulatory relationships between genes. As an initial step for finding regulatory relationships with the help of ANN the goal of this project is to train an ANN to predict the expression of an individual gene. The genes predicted are the nuclear receptor PPAR-g and the insulin receptor. Predictions of the two target genes respectively were made using different datasets of gene expression data as input for the ANN. The results of the predictions of PPAR-g indicate that it is not possible to predict the expression of PPAR-g under the circumstances for this experiment. The results of the predictions of the insulin receptor indicate that it is not possible to discard using ANN for predicting the gene expression of an individual gene.
Cavaco, Philip. "Artificial Grammar Recognition Using Spiking Neural Networks". Thesis, Mälardalen University, School of Innovation, Design and Engineering, 2009. http://urn.kb.se/resolve?urn=urn:nbn:se:mdh:diva-5875.
Testo completoThis thesis explores the feasibility of Artificial Grammar (AG) recognition using spiking neural networks. A biologically inspired minicolumn model is designed as the base computational unit. Two network topographies are defined with different ideologies. Both networks consists of minicolumn models, referred to as nodes, connected with excitatory and inhibitory connections. The first network contains nodes for every bigram and trigram producible by the grammar’s finite state machine (FSM). The second network has only nodes required to identify unique internal states of the FSM. The networks produce predictable activity for tested input strings. Future work to improve the performance of the networks is discussed. The modeling framework developed can be used by neurophysiological research to implement network layouts and compare simulated performance characteristics to actual subject performance.
Guler, Altug. "Seismic Vulnerability Assessment Using Artificial Neural Networks". Master's thesis, METU, 2005. http://etd.lib.metu.edu.tr/upload/12606067/index.pdf.
Testo completoFrøyen, Even Bruvik. "Exploring Learning in Evolutionary Artificial Neural Networks". Thesis, Norges teknisk-naturvitenskapelige universitet, Institutt for datateknikk og informasjonsvitenskap, 2011. http://urn.kb.se/resolve?urn=urn:nbn:no:ntnu:diva-15689.
Testo completoTurner, Joe. "Application of artificial neural networks in pharmacokinetics /". Connect to full text, 2003. http://setis.library.usyd.edu.au/adt/public_html/adt-NU/public/adt-NU20031007.090937/index.html.
Testo completoGou, Zhenkun. "Canonical correlation analysis and artificial neural networks". Thesis, University of the West of Scotland, 2003. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.269409.
Testo completoHasan, Usama. "Artificial neural networks for voltage collapse monitoring". Thesis, Imperial College London, 1998. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.286623.
Testo completoPorter, Nicholas David. "Facial feature processing using artificial neural networks". Thesis, University of Warwick, 1998. http://wrap.warwick.ac.uk/59539/.
Testo completoMuthuraman, Sethuraman. "The evolution of modular artificial neural networks". Thesis, Robert Gordon University, 2005. http://hdl.handle.net/10059/284.
Testo completoChen, Jian-Rong. "Theory and applications of artificial neural networks". Thesis, Durham University, 1991. http://etheses.dur.ac.uk/6240/.
Testo completoD'Souza, Winston Anthony. "Real-time applications of artificial neural networks". Thesis, University of Aberdeen, 2007. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.445136.
Testo completoZhu, Kangmin. "ECG feature recognition using artificial neural networks". Thesis, University of Essex, 1992. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.316072.
Testo completoKurd, Zeshan. "Artificial neural networks in safety-critical applications". Thesis, University of York, 2005. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.428472.
Testo completoRust, Alistair Gibson. "Developmental self-organisation in artificial neural networks". Thesis, University of Hertfordshire, 1998. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.268042.
Testo completoFerguson, Alistair. "Learning in RAM-based artificial neural networks". Thesis, University of Hertfordshire, 1995. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.283866.
Testo completoBerry, Ian Michael. "Data classification using unsupervised artificial neural networks". Thesis, University of Sussex, 1997. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.390079.
Testo completoGavrilov, Alexander I. "Welding process engineering with artificial neural networks". Thesis, De Montfort University, 2005. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.420851.
Testo completoABELEM, ANTONIO JORGE GOMES. "ARTIFICIAL NEURAL NETWORKS IN TIME SERIES FORECASTING". PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO, 1994. http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=8489@1.
Testo completoEsta dissertação investiga a utilização de Redes Neurais Artificiais (RNAs) na previsão de séries temporais, em particular de séries financeiras, consideradas uma classe especial de séries temporais, caracteristicamente ruídos e sem periodicidade aparente. O trabalho envolve quatro partes principais: um estudo sobre redes neurais artificiais e séries temporais; a modelagem das RNAs para previsão de séries temporais; o desenvolvimento de um ambiente de simulação; e o estudo de caso. No estudo sobre Redes Neurais Artificiais e séries temporais fez-se um levantamento preliminar das aplicações de RNAs na previsão de séries. Constatou-se a predominância do uso do algoritmos de retropropagação do erro para o treinamento das redes, bem como dos modelos estatísticos de regressão, de médias móveis e de alisamento exponencial nas comparações com os resultados da rede. Na modelagem das RNAs de retropropagação do erro considerou-se três fatores determinantes no desempenho da rede: convergência, generalização e escalabilidade. Para o controle destes fatores usou-se mecanismos como; escolha da função de ativação dos neurônios - sigmóide ou tangente hiperbólica; escolha da função erro - MSE (Mean Square Error) ou MAD (Mean Absolutd Deviation); e escolha dos parâmetros de controle do gradiente descendente e do temapo de treinamento - taxa de aprendizado e termo de momento. Por fim, definiu-se a arquitetura da rede em função da técnica utilizada para a identificação de regularidades na série (windowing) e da otimização dos fatores indicadores de desempenho da rede. O ambiente de simulação foi desenvolvido em linguagem C e contém 3.600 linhas de códigos divididas em três módulos principais: interface com o usuário, simulação e funções secundárias. O módulo de interface com o usuário é responsável pela configuração e parametrização da rede, como também pela visualização gráfica dos resultados; módulo de simulação executa as fases de treinamento e testes das RNAs; o módulo de funções secundárias cuida do pré/pós-processamento dos dados, da manipulação de arquivos e dos cálculos dos métodos de avaliação empregados. No estudo de caso, as RNAs foram modeladas para fazer previsões da série do preço do ouro no mercado internacional. Foram feitas previsões univariadas single e multi-step e previsões multivariadas utilizando taxas de câmbio de moedas estrangeiras. Os métodos utilizandos para a avaliação do desempenho da rede foram: coeficiente U de Theil, MSE (Mean Square Error), NRMSE (Normalized Root Mean Square Error), POCID (Percentage Of Change In Direction), scattergram e comparação gráfica. Os resultados obtidos, além de avaliados com os métodos acima, foram comparados com o modelo de Box-Jenkins e comprovaram a superioridade das RNAs no tratamento de dados não-lineares e altamente ruidosos.
This dissertation investigates the use of Artificial Neural Nerworks (ANNs) in time series forecastig, especially financial time series, which are typically noisy and with no apparent periodicity. The dissertation covers four major parts: the study of Artificial Neural Networks and time series; the desing of ANNs applied to time series forecasting; the development of a simulation enironment; and a case study. The first part of this dissertation involved the study of Artficial Neural Netwrks and time series theory, resulting in an overview of ANNs utilization in time series forecasting. This overview confirmed the predominance of Backpropagations as the training algorithm, as well as the employment of statistical models, such as regression and moving average, for the Neural Network evaluation. In the design of ANNS, three performance measures were considered: covergence, generalization and scalability. To control these parameters, the following methods were applied: choice of activation function - sigmoid or hiperbolic tangent; choice of cost function - MSE (Mean Square Error) or MAD (Mean Absolute Deviation); choise of parameteres for controlling the gradiente descendent and learning times - the learning rate and momentum term; and network architecture. The simulation environment was developed in C language, with 3,600 lines of code distributed in three main modules: the user interface, the simulaton and the support functions modules. The user interface module is responsaible for the network configuration and for the graphical visualization. The simulation module performs the training and testing of ANNs. The support functions module takes care of the pre and pos processin, the files management and the metrics calculation. The case study concerned with the designing of an ANN to forescast the gold price in the international market. Two kinds of prediction were used: univariate - single and multi-step, and multivariate. The metrics used to evaluate the ANN performance were: U of Theil`s coeficient, MSE (Mean Square Error), NRMSE (Normalized Mean Saquare Error), POCID (Percentage Of Cnage In Direction), scattergram and graphical comparison. The results were also comapred with the Box-Jenkins model, confirming the superiority of ANN in handling non-linear and noisy data.
Han, Ying. "Analysing time series using artificial neural networks". Thesis, University of the West of Scotland, 2003. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.398318.
Testo completoKendall, Gary David. "Non-linear modelling through artificial neural networks". Thesis, King's College London (University of London), 1998. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.300608.
Testo completoNordström, Tomas. "Highly parallel computers for artificial neural networks". Doctoral thesis, Luleå tekniska universitet, 1995. http://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-25655.
Testo completoGodkänd; 1995; 20070426 (ysko)
Vieira, Cristiano Ribeiro. "Forecasting financial markets with artificial neural networks". Master's thesis, Instituto Superior de Economia e Gestão, 2013. http://hdl.handle.net/10400.5/6340.
Testo completoArtificial Neural Networks are exible nonlinear mathematical models widely used in forecasting. This work is intended to investigate the support these models can give to nancial economists predicting prices movements of oil and gas companies listed in stock exchanges. Multilayer Perceptron models with logistic activation functions achieved better results predicting the direction of stocks returns than traditional linear regressions and better performances in companies with lower market capitalization. Furthermore, multilayer perceptron with eight hidden units in the hidden layer had better predictive ability than a neural network with four hidden neurons.
Dermelov, D. O. "Artificial neural networks in self-driving cars". Thesis, Київський національний університет технологій та дизайну, 2019. https://er.knutd.edu.ua/handle/123456789/14355.
Testo completoHaskett, Kevin Joseph. "Iris Biometric Identification Using Artificial Neural Networks". DigitalCommons@CalPoly, 2018. https://digitalcommons.calpoly.edu/theses/1947.
Testo completoEdara, Praveen Kumar. "Mode Choice Modeling Using Artificial Neural Networks". Thesis, Virginia Tech, 2003. http://hdl.handle.net/10919/9845.
Testo completoMaster of Science
Muralidharan, Nair Mithun. "Statistical Leakage Estimation Using Artificial Neural Networks". University of Cincinnati / OhioLINK, 2014. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1413471610.
Testo completo