Tesi sul tema "Approximate identity neural networks"
Cita una fonte nei formati APA, MLA, Chicago, Harvard e in molti altri stili
Vedi i top-24 saggi (tesi di laurea o di dottorato) per l'attività di ricerca sul tema "Approximate identity neural networks".
Accanto a ogni fonte nell'elenco di riferimenti c'è un pulsante "Aggiungi alla bibliografia". Premilo e genereremo automaticamente la citazione bibliografica dell'opera scelta nello stile citazionale di cui hai bisogno: APA, MLA, Harvard, Chicago, Vancouver ecc.
Puoi anche scaricare il testo completo della pubblicazione scientifica nel formato .pdf e leggere online l'abstract (il sommario) dell'opera se è presente nei metadati.
Vedi le tesi di molte aree scientifiche e compila una bibliografia corretta.
Ling, Hong. "Implementation of Stochastic Neural Networks for Approximating Random Processes". Master's thesis, Lincoln University. Environment, Society and Design Division, 2007. http://theses.lincoln.ac.nz/public/adt-NZLIU20080108.124352/.
Testo completoGarces, Freddy. "Dynamic neural networks for approximate input- output linearisation-decoupling of dynamic systems". Thesis, University of Reading, 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.368662.
Testo completoLi, Yingzhen. "Approximate inference : new visions". Thesis, University of Cambridge, 2018. https://www.repository.cam.ac.uk/handle/1810/277549.
Testo completoLiu, Leo M. Eng Massachusetts Institute of Technology. "Acoustic models for speech recognition using Deep Neural Networks based on approximate math". Thesis, Massachusetts Institute of Technology, 2015. http://hdl.handle.net/1721.1/100633.
Testo completoThis electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
Cataloged from student-submitted PDF version of thesis.
Includes bibliographical references (pages 81-83).
Deep Neural Networks (DNNs) are eective models for machine learning. Unfortunately, training a DNN is extremely time-consuming, even with the aid of a graphics processing unit (GPU). DNN training is especially slow for tasks with large datasets. Existing approaches for speeding up the process involve parallelizing the Stochastic Gradient Descent (SGD) algorithm used to train DNNs. Those approaches do not guarantee the same results as normal SGD since they introduce non-trivial changes into the algorithm. A new approach for faster training that avoids signicant changes to SGD is to use low-precision hardware. The low-precision hardware is faster than a GPU, but it performs arithmetic with 1% error. In this arithmetic, 98 + 2 = 99:776 and 10 * 10 = 100:863. This thesis determines whether DNNs would still be able to produce state-of-the-art results using this low-precision arithmetic. To answer this question, we implement an approximate DNN that uses the low-precision arithmetic and evaluate it on the TIMIT phoneme recognition task and the WSJ speech recognition task. For both tasks, we nd that acoustic models based on approximate DNNs perform as well as ones based on conventional DNNs; both produce similar recognition error rates. The approximate DNN is able to match the conventional DNN only if it uses Kahan summations to preserve precision. These results show that DNNs can run on low-precision hardware without the arithmetic causing any loss in recognition ability. The low-precision hardware is therefore a suitable approach for speeding up DNN training.
by Leo Liu.
M. Eng.
Scotti, Andrea. "Graph Neural Networks and Learned Approximate Message Passing Algorithms for Massive MIMO Detection". Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-284500.
Testo completoMassiv MIMO (multiple-input and multiple-output) är en metod som förbättrarprestandan i trådlösa kommunikationssystem genom att ett stort antal antenneranvänds i både sändare och mottagare. I den femte generationens (5G)mobila kommunikationssystem är Massiv MIMO en mycket viktig teknologiför att möta det växande antalet mobilanvändare och tillgodose användarnasbehov. Samtidigt ökar beräkningskomplexiteten för att återfinna den överfördainformationen i en trådlös Massiv MIMO-upplänk när antalet antenner ökar.Faktum är att den optimala ML-detektorn (maximum likelihood) har en beräkningskomplexitetsom ökar exponentiellt med antalet sändare. En av huvudutmaningarnainom detta område är därför att hitta den bästa suboptimalaMIMO-detekteringsalgoritmen med hänsyn till både prestanda och komplexitet.I detta arbete visar vi hur MIMO-detektering kan representeras av ett MarkovRandom Field (MRF) och använder loopy belief-fortplantning (LBP) föratt lösa det motsvarande MAP-slutledningsproblemet (maximum a posteriori).Vi föreslår sedan en ny algoritm (BP-MMSE) som kombinerar LBP ochMMSE (minimum mean square error) för att lösa problemet vid högre modulationsordningarsom QAM-16 (kvadratamplitudsmodulation) och QAM-64.För att undvika komplexiteten med att beräkna MMSE så använder vi oss avgraf neurala nätverk (GNN) för att lära en message-passing algoritm som löserslutledningsproblemet med samma graf. En message-passing algoritm måstegiven en komplett graf utbyta kvadraten av antalet noder meddelanden. För attminska message-passing algoritmers beräkningskomplexitet vet vi att approximativmessage-passing (AMP) kan härledas från LBP i gränsvärdet av storasystem för att lösa MIMO-detektering med oberoende och likafördelade (i.i.d)Gaussiska kanaler. Vi visar sedan hur AMP med dämpning (DAMP) kan vararobust med låg- till mellan-korrelerade kanaler.Avslutningsvis föreslår vi en iterativ djup neuralt nätverk algoritm medlåg beräkningskomplexitet (Pseudo-MMNet) för att lösa MIMO-detektering ikanaler med hög korrelation på bekostnad av online-träning för varje realiseringav kanalen. Pseudo-MMNet är baserad på MMnet som presenteras i [23](istället för AMP) och minskar signifikant online-träningskomplexiteten somgör MMNet orealistisk att använda. Alla föreslagna algoritmer är empirisktutvärderade för stora MIMO-system och högre ordningar av modulation.
Gaur, Yamini. "Exploring Per-Input Filter Selection and Approximation Techniques for Deep Neural Networks". Thesis, Virginia Tech, 2019. http://hdl.handle.net/10919/90404.
Testo completoMaster of Science
Deep neural networks, just like the human brain can learn important information about the data provided to them and can classify a new input based on the labels corresponding to the provided dataset. Deep learning technology is heavily employed in devices using computer vision, image and video processing and voice detection. The computational overhead incurred in the classification process of DNNs prohibits their use in smaller devices. This research aims to improve network efficiency in deep learning by replacing 32 bit weights in neural networks with less precision weights in an input-dependent manner. Trained neural networks are numerically robust. Different layers develop tolerance to minor variations in network parameters. Therefore, differences induced by low-precision calculations fall well within tolerance limit of the network. However, for aggressive approximation techniques like truncating to 3 and 2 bits, inference accuracy drops severely. We propose a dynamic technique that during run-time, identifies the approximated filters resulting in low inference accuracy for a given input and replaces those filters with the original filters to achieve high inference accuracy. The proposed technique has been tested for image classification on Convolutional Neural Networks. The datasets used are MNIST and CIFAR-10. The Convolutional Neural Networks used are 4-layered CNN, LeNet-5 and AlexNet.
Dumlupinar, Taha. "Approximate Analysis And Condition Assesment Of Reinforced Concrete T-beam Bridges Using Artificial Neural Networks". Master's thesis, METU, 2008. http://etd.lib.metu.edu.tr/upload/3/12609732/index.pdf.
Testo completos T-beam bridge population - based on field test data. Manual calibration of these models are extremely time consuming and laborious. Therefore, a neural network- based method is developed for easy and practical calibration of these models. The ANN model is trained using some training data that are obtained from finite-element analyses and that contain modal and displacement parameters as inputs and structural parameters as outputs. After the training is completed, fieldmeasured data set is fed into the trained ANN model. Then, FE model is updated with the predicted structural parameters from the ANN model. In the final part, Neural Networks (NNs) are used to model the bridge ratings of RC T-beam bridges based on bridge parameters. Bridge load ratings are calculated more accurately by taking into account the actual geometry and detailing of the T-beam bridges. Then, ANN solution is developed to easily compute bridge load ratings.
Tornstad, Magnus. "Evaluating the Practicality of Using a Kronecker-Factored Approximate Curvature Matrix in Newton's Method for Optimization in Neural Networks". Thesis, KTH, Skolan för teknikvetenskap (SCI), 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-275741.
Testo completoAndra ordningens optimeringsmetoder have länge ansetts vara beräkningsmässigt ineffektiva för att lösa optimeringsproblemet inom djup maskininlärning. En alternativ optimiseringsstrategi som använder en Kronecker-faktoriserad approximativ Hessian (KFAC) i Newtons metod för optimering, har föreslagits i tidigare studier. Detta arbete syftar till att utvärdera huruvida metoden är praktisk att använda i djup maskininlärning. Test körs på abstrakta, binära, klassificeringsproblem, samt ett verkligt regressionsproblem: Boston Housing data. Studien fann att KFAC erbjuder stora besparingar i tidskopmlexitet jämfört med när en mer naiv implementation med Gauss-Newton matrisen används. Vidare visade sig losskonvergensen hos både stokastisk gradient descent (SGD) och KFAC beroende av nätverksarkitektur: KFAC tenderade att konvergera snabbare i djupa nätverk, medan SGD tenderade att konvergera snabbare i grunda nätverk. Studien drar slutsatsen att KFAC kan prestera väl för djup maskininlärning jämfört med en grundläggande variant av SGD. KFAC visade sig dock kunna vara mycket känslig för initialvikter. Detta problem kunde lösas genom att låta de första stegen tas av SGD så att KFAC hamnade på en gynnsam bana.
Hanselmann, Thomas. "Approximate dynamic programming with adaptive critics and the algebraic perceptron as a fast neural network related to support vector machines". University of Western Australia. School of Electrical, Electronic and Computer Engineering, 2003. http://theses.library.uwa.edu.au/adt-WU2004.0005.
Testo completoMalfatti, Guilherme Meneguzzi. "Técnicas de agrupamento de dados para computação aproximativa". reponame:Biblioteca Digital de Teses e Dissertações da UFRGS, 2017. http://hdl.handle.net/10183/169096.
Testo completoTwo of the major drivers of increased performance in single-thread applications - increase in operation frequency and exploitation of instruction-level parallelism - have had little advances in the last years due to power constraints. In this context, considering the intrinsic imprecision-tolerance (i.e., outputs may present an acceptable level of noise without compromising the result) of many modern applications, such as image processing and machine learning, approximate computation becomes a promising approach. This technique is based on computing approximate instead of accurate results, which can increase performance and reduce energy consumption at the cost of quality. In the current state of the art, the most common way of exploiting the technique is through neural networks (more specifically, the Multilayer Perceptron model), due to the ability of these structures to learn arbitrary functions and to approximate them. Such networks are usually implemented in a dedicated neural accelerator. However, this implementation requires a large amount of chip area and usually does not offer enough improvements to justify this additional cost. The goal of this work is to propose a new mechanism to address approximate computation, based on approximate reuse of functions and code fragments. This technique automatically groups input and output data by similarity and stores this information in a sofware-controlled memory. Based on these data, the quantized values can be reused through a search to this table, in which the most appropriate output will be selected and, therefore, execution of the original code will be replaced. Applying this technique is effective, achieving an average 97.1% reduction in Energy-Delay-Product (EDP) when compared to neural accelerators.
Romano, Michele. "Near real-time detection and approximate location of pipe bursts and other events in water distribution systems". Thesis, University of Exeter, 2012. http://hdl.handle.net/10871/9862.
Testo completoGómez, Cerdà Vicenç. "Algorithms and complex phenomena in networks: Neural ensembles, statistical, interference and online communities". Doctoral thesis, Universitat Pompeu Fabra, 2008. http://hdl.handle.net/10803/7548.
Testo completoEn la primera part s'estudia un model de neurones estocàstiques inter-comunicades mitjançant potencials d'acció. Proposem una tècnica de modelització a escala mesoscòpica i estudiem una transició de fase en un acoblament crític entre les neurones. Derivem una regla de plasticitat sinàptica local que fa que la xarxa s'auto-organitzi en el punt crític.
Seguidament tractem el problema d'inferència aproximada en xarxes probabilístiques mitjançant un algorisme que corregeix la solució obtinguda via belief propagation en grafs cíclics basada en una expansió en sèries. Afegint termes de correcció que corresponen a cicles generals en la xarxa, s'obté el resultat exacte. Introduïm i analitzem numèricament una manera de truncar aquesta sèrie.
Finalment analizem la interacció social en una comunitat d'Internet caracteritzant l'estructura de la xarxa d'usuaris, els fluxes de discussió en forma de comentaris i els patrons de temps de reacció davant una nova notícia.
This thesis is about algorithms and complex phenomena in networks.
In the first part we study a network model of stochastic spiking neurons. We propose a modelling technique based on a mesoscopic description level and show the presence of a phase transition around a critical coupling strength. We derive a local plasticity which drives the network towards the critical point.
We then deal with approximate inference in probabilistic networks. We develop an algorithm which corrects the belief propagation solution for loopy graphs based on a loop series expansion. By adding correction terms, one for each "generalized loop" in the network, the exact result is recovered. We introduce and analyze numerically a particular way of truncating the series.
Finally, we analyze the social interaction of an Internet community by characterizing the structure of the network of users, their discussion threads and the temporal patterns of reaction times to a new post.
Glaros, Anastasios. "Data-driven Definition of Cell Types Based on Single-cell Gene Expression Data". Thesis, Uppsala universitet, Institutionen för biologisk grundutbildning, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-297498.
Testo completoMatula, Tomáš. "Využití aproximovaných aritmetických obvodů v neuronových sítí". Master's thesis, Vysoké učení technické v Brně. Fakulta informačních technologií, 2019. http://www.nusl.cz/ntk/nusl-399179.
Testo completoRodrigues, Dirceu Zeferino. "Redes neurais, identidade de modelos e resposta da cebola à adubação nitrogenada". Universidade Federal de Viçosa, 2013. http://locus.ufv.br/handle/123456789/4064.
Testo completoThe study of the productivity curves compared with the amount of nitrogen absorbed by the onion crop is fundamentally important for the elaboration of a more efficient fertilization plan in technical terms as well as in economic terms. Many statistical techniques have been proposed, tested, and improved in order to help boost research in this direction. The justification for this research is the need to assess and improve new statistical techniques that help in obtaining accurate information in order to assist in decision making for improving productivity. For this case, this study aimed to use and evaluate two statistical methods with different specific objectives with respect to the evaluation of nitrogen application in the production of onion cultivars. In the first evaluation, statistical techniques based on regression models were used for adjusting curves for some nitrogen levels related to productivity, performing a survey with four onion cultivars in different locations, and then to carry out the evaluation of the grouping possibility of these statistical models using the models identity test. In this step, it was tried to estimate a curve that could represent together the fertilization response pattern in all four evaluated sites. In the second study, the goal was to verify the techniques efficiency based on neural networks. So, the proposal was to see the possibility of using safely this new concept based on artificial neural networks in research related to the onion cultivars response to nitrogen fertilization. In general, this study describes the successful use of new statistical techniques with emphasis on neural networks that help improve the onion productivity and thereafter to implement and disseminate techniques based on computational intelligence for purposes of study prediction and modeling.
O estudo das curvas de produtividade comparadas com a quantidade de nitrogênio absorvido pela cultura da cebola é de fundamental importância para a formulação de um plano de adubação que seja mais eficiente tanto em termos técnicos quanto econômicos. Diversas técnicas estatísticas têm sido propostas, testadas e aprimoradas com o intuito de contribuir para alavancar pesquisas nesta direção. A justificativa para este trabalho de pesquisa está na necessidade de avaliar e aprimorar novas técnicas estatísticas que ajudem na obtenção de informações precisas com a finalidade de auxiliar na tomada de decisão visando melhorar a produtividade. Para isso, este estudo teve como objetivo empregar e avaliar duas metodologias de auxílio à estatística, mas com objetivos específicos distintos com respeito à avaliação da aplicação de nitrogênio na produção dos cultivares da cebola. Na primeira avaliação, objetivou-se utilizar técnicas estatísticas baseadas em modelos de regressão e ajustar curvas para alguns níveis de doses de nitrogênio, relacionadas à produtividade, para uma pesquisa realizada com quatro cultivares em locais distintos de cebola e, em seguida, avaliar a possibilidade de agrupamento desses modelos estatísticos obtidos, utilizando o teste de identidade de modelos. Nesta etapa, procurou-se estimar uma curva que representasse, em conjunto, o padrão de resposta à adubação em todos os quatro locais avaliados. No segundo estudo, a meta era verificar a eficiência de técnicas baseadas em redes neurais. Assim, a proposta foi constatar se já é possível utilizar, com segurança, esse novo conceito baseado em redes neurais artificiais em pesquisas relacionadas à resposta de cultivares de cebola à adubação nitrogenada. De uma maneira geral, o trabalho descreve o êxito da utilização de novas técnicas estatísticas com ênfase em redes neurais que ajudem melhorar a produtividade da cebola para, a partir daí, permitir aplicar e difundir técnicas baseadas em inteligência computacional para fins de estudos de predição e modelagem.
Uppala, Roshni. "Simulating Large Scale Memristor Based Crossbar for Neuromorphic Applications". University of Dayton / OhioLINK, 2015. http://rave.ohiolink.edu/etdc/view?acc_num=dayton1429296073.
Testo completoAndrade, Gustavo Araújo de. "PROGRAMAÇÃO DINÂMICA HEURÍSTICA DUAL E REDES DE FUNÇÕES DE BASE RADIAL PARA SOLUÇÃO DA EQUAÇÃO DE HAMILTON-JACOBI-BELLMAN EM PROBLEMAS DE CONTROLE ÓTIMO". Universidade Federal do Maranhão, 2014. http://tedebc.ufma.br:8080/jspui/handle/tede/517.
Testo completoIn this work the main objective is to present the development of learning algorithms for online application for the solution of algebraic Hamilton-Jacobi-Bellman equation. The concepts covered are focused on developing the methodology for control systems, through techniques that aims to design online adaptive controllers to reject noise sensors, parametric variations and modeling errors. Concepts of neurodynamic programming and reinforcement learning are are discussed to design algorithms where the context of a given operating point causes the control system to adapt and thus present the performance according to specifications design. Are designed methods for online estimation of adaptive critic focusing efforts on techniques for gradient estimating of the environment value function.
Neste trabalho o principal objetivo é apresentar o desenvolvimento de algoritmos de aprendizagem para execução online para a solução da equação algébrica de Hamilton-Jacobi-Bellman. Os conceitos abordados se concentram no desenvolvimento da metodologia para sistemas de controle, por meio de técnicas que tem como objetivo o projeto online de controladores adaptativos são projetados para rejeitar ruídos de sensores, variações paramétricas e erros de modelagem. Conceitos de programação neurodinâmica e aprendizagem por reforço são abordados para desenvolver algoritmos onde a contextualização de determinado ponto de operação faz com que o sistema de controle se adapte e, dessa forma, apresente o desempenho de acordo com as especificações de projeto. Desenvolve-se métodos para a estimação online do crítico adaptativo concentrando os esforços em técnicas de estimação do gradiente da função valor do ambiente.
Chiu, Jih-Sheng, e 邱日聖. "Improving Asymmetric Approximate Search through Neural Networks". Thesis, 2017. http://ndltd.ncl.edu.tw/handle/twwteg.
Testo completo國立嘉義大學
資訊工程學系研究所
106
Due to advance in information technology, we have to deal with growing digital data. The traditional linear search becomes impractical because of the large amount of data, so many researchers turn to develop approximate search methods. Before Approximate search, we have to do the clustering on data. In the search process, we compute the Euclidean distance between query and each cluster center, and then pick enough candidates according to their distances. However, the distance-based approach is not always the best way to pick candidates. In this study, we propose employing neural networks to optimize the relevance between query and each cluster center so that the candidate quality can be further improved. Experiment results, show the proposed method achieve satisfactory accuracy compared with our past work.
"Approximate Neural Networks for Speech Applications in Resource-Constrained Environments". Master's thesis, 2016. http://hdl.handle.net/2286/R.I.39402.
Testo completoDissertation/Thesis
Masters Thesis Computer Science 2016
(9178400), Sanchari Sen. "Efficient and Robust Deep Learning through Approximate Computing". Thesis, 2020.
Cerca il testo completoDeep Neural Networks (DNNs) have greatly advanced the state-of-the-art in a wide range of machine learning tasks involving image, video, speech and text analytics, and are deployed in numerous widely-used products and services. Improvements in the capabilities of hardware platforms such as Graphics Processing Units (GPUs) and specialized accelerators have been instrumental in enabling these advances as they have allowed more complex and accurate networks to be trained and deployed. However, the enormous computational and memory demands of DNNs continue to increase with growing data size and network complexity, posing a continuing challenge to computing system designers. For instance, state-of-the-art image recognition DNNs require hundreds of millions of parameters and hundreds of billions of multiply-accumulate operations while state-of-the-art language models require hundreds of billions of parameters and several trillion operations to process a single input instance. Another major obstacle in the adoption of DNNs, despite their impressive accuracies on a range of datasets, has been their lack of robustness. Specifically, recent efforts have demonstrated that small, carefully-introduced input perturbations can force a DNN to behave in unexpected and erroneous ways, which can have to severe consequences in several safety-critical DNN applications like healthcare and autonomous vehicles. In this dissertation, we explore approximate computing as an avenue to improve the speed and energy efficiency of DNNs, as well as their robustness to input perturbations.
Approximate computing involves executing selected computations of an application in an approximate manner, while generating favorable trade-offs between computational efficiency and output quality. The intrinsic error resilience of machine learning applications makes them excellent candidates for approximate computing, allowing us to achieve execution time and energy reductions with minimal effect on the quality of outputs. This dissertation performs a comprehensive analysis of different approximate computing techniques for improving the execution efficiency of DNNs. Complementary to generic approximation techniques like quantization, it identifies approximation opportunities based on the specific characteristics of three popular classes of networks - Feed-forward Neural Networks (FFNNs), Recurrent Neural Networks (RNNs) and Spiking Neural Networks (SNNs), which vary considerably in their network structure and computational patterns.
First, in the context of feed-forward neural networks, we identify sparsity, or the presence of zero values in the data structures (activations, weights, gradients and errors), to be a major source of redundancy and therefore, an easy target for approximations. We develop lightweight micro-architectural and instruction set extensions to a general-purpose processor core that enable it to dynamically detect zero values when they are loaded and skip future instructions that are rendered redundant by them. Next, we explore LSTMs (the most widely used class of RNNs), which map sequences from an input space to an output space. We propose hardware-agnostic approximations that dynamically skip redundant symbols in the input sequence and discard redundant elements in the state vector to achieve execution time benefits. Following that, we consider SNNs, which are an emerging class of neural networks that represent and process information in the form of sequences of binary spikes. Observing that spike-triggered updates along synaptic connections are the dominant operation in SNNs, we propose hardware and software techniques to identify connections that can be minimally impact the output quality and deactivate them dynamically, skipping any associated updates.
The dissertation also delves into the efficacy of combining multiple approximate computing techniques to improve the execution efficiency of DNNs. In particular, we focus on the combination of quantization, which reduces the precision of DNN data-structures, and pruning, which introduces sparsity in them. We observe that the ability of pruning to reduce the memory demands of quantized DNNs decreases with precision as the overhead of storing non-zero locations alongside the values starts to dominate in different sparse encoding schemes. We analyze this overhead and the overall compression of three different sparse formats across a range of sparsity and precision values and propose a hybrid compression scheme that identifies that optimal sparse format for a pruned low-precision DNN.
Along with improved execution efficiency of DNNs, the dissertation explores an additional advantage of approximate computing in the form of improved robustness. We propose ensembles of quantized DNN models with different numerical precisions as a new approach to increase robustness against adversarial attacks. It is based on the observation that quantized neural networks often demonstrate much higher robustness to adversarial attacks than full precision networks, but at the cost of a substantial loss in accuracy on the original (unperturbed) inputs. We overcome this limitation to achieve the best of both worlds, i.e., the higher unperturbed accuracies of the full precision models combined with the higher robustness of the low precision models, by composing them in an ensemble.
In summary, this dissertation establishes approximate computing as a promising direction to improve the performance, energy efficiency and robustness of neural networks.
Abdella, Mussa Ismael. "The use of genetic algorithms and neural networks to approximate missing data in database". Thesis, 2006. http://hdl.handle.net/10539/105.
Testo completoPereira, Silvério Matos. "Anomaly detection in mobile networks". Master's thesis, 2021. http://hdl.handle.net/10773/31374.
Testo completoBig Data é um tópico de cada vez mais importância, com esta nova fonte de dados é necessário ter em mente os compromissos necessários para a utilizar, requerendo grande cuidado na escolha de algoritmo e implementação, bem como as mudanças necessárias para adaptar algoritmos existentes. Ao mesmo tempo, a interpretação de um número médio de variáveis continua a ser chave em diversas áreas. Nesta tese mostramos como resolver ambos estes problemas sob a lente de algoritmos intitulados "self-organizing". Dois objetivos são cumpridos: A criação de um sistema de deteção de anomalias com ênfase em interpretabilidade e os seus resultados quando aplicado a dados de uma rede móvel, disponibilizados pela Nokia. Propomos e implementamos também modificações ao algoritmo de "Growing Neural Gas", um algoritmo com uso em deteção de anomalias, reconstrução 3D e compressão de dados. Esta modificação é feita usando técnicas de "Approximate Nearest Neighbours", criando um algoritmo capaz de balancear a precisão do modelo desejado com o tempo de execução, estas mudanças fazem com que "Growing Neural Gas" seja usável em cenários com um número grande de variáveis e capaz de produzir modelos de maior dimensão em tempo útil.
Mestrado em Engenharia de Computadores e Telemática
(6634835), Syed Sarwar. "Exploration of Energy Efficient Hardware and Algorithms for Deep Learning". Thesis, 2019.
Cerca il testo completoChapados, Nicolas. "Sequential Machine learning Approaches for Portfolio Management". Thèse, 2009. http://hdl.handle.net/1866/3578.
Testo completoThis thesis considers a number of approaches to make machine learning algorithms better suited to the sequential nature of financial portfolio management tasks. We start by considering the problem of the general composition of learning algorithms that must handle temporal learning tasks, in particular that of creating and efficiently updating the training sets in a sequential simulation framework. We enumerate the desiderata that composition primitives should satisfy, and underscore the difficulty of rigorously and efficiently reaching them. We follow by introducing a set of algorithms that accomplish the desired objectives, presenting a case-study of a real-world complex learning system for financial decision-making that uses those techniques. We then describe a general method to transform a non-Markovian sequential decision problem into a supervised learning problem using a K-best paths search algorithm. We consider an application in financial portfolio management where we train a learning algorithm to directly optimize a Sharpe Ratio (or other risk-averse non-additive) utility function. We illustrate the approach by demonstrating extensive experimental results using a neural network architecture specialized for portfolio management and compare against well-known alternatives. Finally, we introduce a functional representation of time series which allows forecasts to be performed over an unspecified horizon with progressively-revealed information sets. By virtue of using Gaussian processes, a complete covariance matrix between forecasts at several time-steps is available. This information is put to use in an application to actively trade price spreads between commodity futures contracts. The approach delivers impressive out-of-sample risk-adjusted returns after transaction costs on a portfolio of 30 spreads.