Letteratura scientifica selezionata sul tema "Antibody affinity"
Cita una fonte nei formati APA, MLA, Chicago, Harvard e in molti altri stili
Consulta la lista di attuali articoli, libri, tesi, atti di convegni e altre fonti scientifiche attinenti al tema "Antibody affinity".
Accanto a ogni fonte nell'elenco di riferimenti c'è un pulsante "Aggiungi alla bibliografia". Premilo e genereremo automaticamente la citazione bibliografica dell'opera scelta nello stile citazionale di cui hai bisogno: APA, MLA, Harvard, Chicago, Vancouver ecc.
Puoi anche scaricare il testo completo della pubblicazione scientifica nel formato .pdf e leggere online l'abstract (il sommario) dell'opera se è presente nei metadati.
Articoli di riviste sul tema "Antibody affinity"
Azimzadeh, A., e M. H. V. Van Regenmortel. "Antibody affinity measurements". Journal of Molecular Recognition 3, n. 3 (giugno 1990): 108–16. http://dx.doi.org/10.1002/jmr.300030304.
Testo completovan Regenmortel, Marc H. V., e Agnëgs Azimzadeh. "Determination of Antibody Affinity". Journal of Immunoassay 21, n. 2-3 (maggio 2000): 211–34. http://dx.doi.org/10.1080/01971520009349534.
Testo completoWabl, Matthias, Marilia Cascalho e Charles Steinberg. "Hypermutation in antibody affinity maturation". Current Opinion in Immunology 11, n. 2 (aprile 1999): 186–89. http://dx.doi.org/10.1016/s0952-7915(99)80031-4.
Testo completoWebster, D. M., S. Roberts, J. C. Cheetham, R. Griest e A. R. Rees. "Engineering antibody affinity and specificity". International Journal of Cancer 41, S3 (1988): 13–16. http://dx.doi.org/10.1002/ijc.2910410804.
Testo completoNervig, Christine S., e Shawn C. Owen. "Affinity-bound antibody–drug conjugates". Nature Biomedical Engineering 3, n. 11 (novembre 2019): 850–51. http://dx.doi.org/10.1038/s41551-019-0478-0.
Testo completoGriswold, William R. "A Quantitative Relationship Between Antibody Affinity and Antibody Avidity". Immunological Investigations 16, n. 2 (gennaio 1987): 97–106. http://dx.doi.org/10.3109/08820138709030567.
Testo completoYu, Guimei, Kunpeng Li e Wen Jiang. "Antibody-based affinity cryo-EM grid". Methods 100 (maggio 2016): 16–24. http://dx.doi.org/10.1016/j.ymeth.2016.01.010.
Testo completoSteward, Michael W., Carolynne Stanley e Maria D. Furlong. "Antibody affinity maturation in selectively bred high and low-affinity mice". European Journal of Immunology 16, n. 1 (1986): 59–63. http://dx.doi.org/10.1002/eji.1830160112.
Testo completoMakabe, Koki. "Molecular basis of flexible peptide recognition by an antibody". Journal of Biochemistry 167, n. 4 (6 febbraio 2020): 343–45. http://dx.doi.org/10.1093/jb/mvaa017.
Testo completoFukunishi, Hiroaki, Jiro Shimada e Kenji Shiraishi. "Antigen–Antibody Interactions and Structural Flexibility of a Femtomolar-Affinity Antibody". Biochemistry 51, n. 12 (13 marzo 2012): 2597–605. http://dx.doi.org/10.1021/bi3000319.
Testo completoTesi sul tema "Antibody affinity"
Low, Nigel Murray. "Mimicking antibody affinity maturation". Thesis, University of Cambridge, 1996. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.364567.
Testo completoMolari, Marco. "Modeling and Bayesian inference for antibody affinity maturation". Thesis, Université Paris sciences et lettres, 2020. http://www.theses.fr/2020UPSLE017.
Testo completoAffinity Maturation (AM) is the biological process through which our Immune System generates potent Antibodies (Abs) against newly encountered pathogens. This process is also at the base of vaccination, one of the most successful and cost-effective medical procedures ever developed, responsible for saving millions of lives every year. AM still present many open questions, whose answers have the potential of improving the way we vaccinate. The mechanisms at the base of AM are extremely complex, involving non-linear interactions between many different cellular agents. In this context theoretical models and Bayesian Inference are invaluable tools, respectively to link qualitative hypothesis to quantitative descriptions and to extract information from experimental data. In this manuscript we make use of these tools to tackle some of the open questions, such as the non-trivial effect of Ag dosage on the outcome of vaccination
Lang, Birthe Agnetha. "Nanofibrous affinity membranes containing non-antibody binding proteins". Thesis, University of Leeds, 2016. http://etheses.whiterose.ac.uk/15326/.
Testo completoAttiya, Said. "Antibody labeling methods for automated affinity electrophoresis on microchips". Thesis, National Library of Canada = Bibliothèque nationale du Canada, 2000. http://www.collectionscanada.ca/obj/s4/f2/dsk1/tape2/PQDD_0010/NQ59926.pdf.
Testo completoHey, Carolyn McKenzie. "Antibody Purification from Tobacco by Protein A Affinity Chromatography". Thesis, Virginia Tech, 2010. http://hdl.handle.net/10919/42645.
Testo completoMaster of Science
Sundberg, Mårten. "Protein microarrays for validation of affinity binders". Licentiate thesis, KTH, Proteomik, 2011. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-48256.
Testo completoQC 20111117
Development and applications of protein microarrays
The Swedish Human Proteome Resource (HPR) program
Qundos, Ulrika. "Antibody based plasma protein profiling". Doctoral thesis, KTH, Proteomik och nanobioteknologi, 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-126270.
Testo completoQC 20130821
Ye, Jianmin. "The relationship between antibody redox structure and affinity in rainbow trout". W&M ScholarWorks, 2008. https://scholarworks.wm.edu/etd/1539616918.
Testo completoMidelfort, Katarina Senn. "Biophysical characterization of high affinity engineered single chain Fv antibody fragments". Thesis, Massachusetts Institute of Technology, 2004. http://hdl.handle.net/1721.1/30051.
Testo completoVita.
Includes bibliographical references.
High affinity antibody binding interactions are important for both pharmaceutical and biotechnological uses. However, designing higher affinity interactions has remained difficult. Both high affinity interactions from nature and the results from directed evolution affinity maturation processes may yield clues about the important structural and energetic contributions to attain these tight associations. In this Thesis, we investigate affinity maturation of antibodies for very high affinity binding. Two single chain antigen-binding fragment (scFv) antibody systems that were engineered to obtain higher affinity interactions through directed evolution were probed using biophysical techniques to illuminate affinity modulation in proteins. First, anti-c-erbB-2 antibodies and their binding partner, the extracellular domain of the glycoprotein tumor antigen c-erbB-2, were examined. Thermodynamic studies were carried out on the originally identified human scFv and three higher affinity mutants. Although the first two steps included either entropic or enthalpic gains to affinity, the third improvement came from both types. This study demonstrates that a single energetic component is not generally responsible for the increased affinity within a given protein-protein affinity maturation pathway. Second, a family of anti-fluorescein antibodies and their binding to the small molecule fluorescein-biotin were explored. The femtomolar affinity matured anti-fluorescein antibody, 4M5.3, was compared to its wildtype high affinity precursor, 4-4-20. Affinity, thermodynamic, kinetic, and structural characterization of the binding identified 4M5.3 as one of the highest engineered affinity protein binding interactions known and
(cont.) illuminated how subtle structural changes can lead to large consequences for the kinetics and free energy of binding. The affinity mechanisms were further studied by the creation of a series of partial mutants. Context dependent and independent mutational effects on binding affinity indicated the extent of complexity in higher affinity mechanisms attained through directed evolution affinity maturation processes. These studies emphasize the importance of a large number of residues working in concert to create a very high affinity binding molecule. Based on these results, both rational design and directed evolution studies will need to allow for mutations in a spatially broad range around the binding site and involve many biophysical contributions to the binding free energy to reach very high antigen binding affinities.
by Katarina S. Midelfort.
Ph.D.in Molecular Systems Toxicology and Pharmacology
Fernandes, Telma Godinho Barroso Maciel. "Functional monolithic platforms for antibody purification". Doctoral thesis, Faculdade de Ciências e Tecnologia, 2014. http://hdl.handle.net/10362/11550.
Testo completoFundação para a Ciência e Tecnologia - contracts PEst-C/EQB/LA0006/2011, MIT-Pt/BS-CTRM/0051/2008, PTDC/EBB-BIO/102163/2008, PTDC/EBBBIO/ 098961/2008, PTDC/EBB-BIO/118317/2010 and doctoral grant SFRH/ BD/62475/2009, and Fundação Calouste Gulbenkian
Libri sul tema "Antibody affinity"
1933-, Voss Edward W., a cura di. Anti-DNA antibodies in SLE. Boca Raton, Fla: CRC Press, 1988.
Cerca il testo completoCapitoli di libri sul tema "Antibody affinity"
Frenzel, André, Lorin Roskos, Scott Klakamp, Meina Liang, Rosalin Arends e Larry Green. "Antibody Affinity". In Handbook of Therapeutic Antibodies, 115–40. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2014. http://dx.doi.org/10.1002/9783527682423.ch6.
Testo completoMartineau, Pierre. "Affinity Measurements by Competition ELISA". In Antibody Engineering, 657–65. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-01144-3_41.
Testo completoBoschert, Verena, e Peter Scheurich. "Affinity Measurements with Radiolabeled Antibodies". In Antibody Engineering, 695–704. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-01144-3_44.
Testo completoKuroda, Daisuke, e Kouhei Tsumoto. "Antibody Affinity Maturation by Computational Design". In Antibody Engineering, 15–34. New York, NY: Springer New York, 2018. http://dx.doi.org/10.1007/978-1-4939-8648-4_2.
Testo completoBarderas, Rodrigo, Johan Desmet, Philippe Alard e J. Ignacio Casal. "Affinity Maturation by Semi-rational Approaches". In Antibody Engineering, 463–86. Totowa, NJ: Humana Press, 2012. http://dx.doi.org/10.1007/978-1-61779-974-7_27.
Testo completoJohansson, Thomas. "Affinity Measurements Using Quartz Crystal Microbalance (QCM)". In Antibody Engineering, 683–93. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-01144-3_43.
Testo completoTakkinen, Kristiina, Ari Hemminki e Hans Söderlund. "Affinity and Specificity Maturation by CDR Walking". In Antibody Engineering, 540–45. Berlin, Heidelberg: Springer Berlin Heidelberg, 2001. http://dx.doi.org/10.1007/978-3-662-04605-0_38.
Testo completoThie, Holger. "Affinity Maturation by Random Mutagenesis and Phage Display". In Antibody Engineering, 397–409. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-01144-3_26.
Testo completoBumke, Maja A., e Dario Neri. "Affinity Measurements by Band Shift and Competition ELISA". In Antibody Engineering, 385–96. Berlin, Heidelberg: Springer Berlin Heidelberg, 2001. http://dx.doi.org/10.1007/978-3-662-04605-0_28.
Testo completoEven-Desrumeaux, Klervi, e Patrick Chames. "Affinity Determination of Biotinylated Antibodies by Flow Cytometry". In Antibody Engineering, 443–49. Totowa, NJ: Humana Press, 2012. http://dx.doi.org/10.1007/978-1-61779-974-7_25.
Testo completoAtti di convegni sul tema "Antibody affinity"
Berkner, J. A., G. Mitra e J. W. Bloom. "MONOCLONAL ANTIBODY BINDING TO FACTOR VIII:C". In XIth International Congress on Thrombosis and Haemostasis. Schattauer GmbH, 1987. http://dx.doi.org/10.1055/s-0038-1644063.
Testo completoRyu, Tomiko, Akiko Nakayama, Atsushi Oguchi, Tadatoshi Kinoshita, Mutsuyoshi Kazama e Takeshi Abe. "MONOCLONAL ANTIBODY WITH PREFERENTIAL AFFINITY FOR LARGE MULTIMERS OF VON WILLEBRAND FACTOR". In XIth International Congress on Thrombosis and Haemostasis. Schattauer GmbH, 1987. http://dx.doi.org/10.1055/s-0038-1644081.
Testo completoZhou, Zhenhao. "Abstract 340: Development of high affinity anti-CLDN18.2 antibody to treat gastric cancers". In Proceedings: AACR Annual Meeting 2019; March 29-April 3, 2019; Atlanta, GA. American Association for Cancer Research, 2019. http://dx.doi.org/10.1158/1538-7445.am2019-340.
Testo completoHaber, Edgar, Marchall T. Runge, Christoph Bode, Betsy Branscomb e Janet Schnee. "ANTIBODY TARGETED FIBRINOLYSIS". In XIth International Congress on Thrombosis and Haemostasis. Schattauer GmbH, 1987. http://dx.doi.org/10.1055/s-0038-1643723.
Testo completoPontes, Larissa, Marcus Bezerra, Marcela Fonseca, Marcos Lourenzoni e Gilvan Furtado. "Construction, by rational design, and initial characterization of affinity mutants of Rituximab fragment antibody". In IV International Symposium on Immunobiologicals & VII Seminário Anual Científico e Tecnológico. Instituto de Tecnologia em Imunobiológicos, 2019. http://dx.doi.org/10.35259/isi.sact.2019_32703.
Testo completoIshihara, Jun, Ako Ishihara, Aslan Mansurov, Koichi Sasaki, Steve S. Lee, John-Michael Williford, Lambert Potin et al. "Abstract 1553: Collagen affinity improves safety and efficacy of antibody and cytokine cancer immunotherapies". In Proceedings: AACR Annual Meeting 2019; March 29-April 3, 2019; Atlanta, GA. American Association for Cancer Research, 2019. http://dx.doi.org/10.1158/1538-7445.am2019-1553.
Testo completoEun, So-Young, Mijung Lee, Hye-Young Park, Miyoung Oh, Hye In Yum, Aerin Yoon, Eunhee Lee et al. "Abstract LB-113: Enhanced anti-tumor efficacy of CEACAM1-targeting antibody after affinity maturation". In Proceedings: AACR Annual Meeting 2018; April 14-18, 2018; Chicago, IL. American Association for Cancer Research, 2018. http://dx.doi.org/10.1158/1538-7445.am2018-lb-113.
Testo completoIshihara, Jun, Ako Ishihara, Aslan Mansurov, Koichi Sasaki, Steve S. Lee, John-Michael Williford, Lambert Potin et al. "Abstract 1553: Collagen affinity improves safety and efficacy of antibody and cytokine cancer immunotherapies". In Proceedings: AACR Annual Meeting 2019; March 29-April 3, 2019; Atlanta, GA. American Association for Cancer Research, 2019. http://dx.doi.org/10.1158/1538-7445.sabcs18-1553.
Testo completoDoran, Ben, Christy Ritchie, Babu Dhokia, Paul Rogers e David Jones. "Abstract B128: Affinity optimization of an anti‐MUC1 antibody, (HuHMFG1) also enhances ADCC activity". In Abstracts: AACR-NCI-EORTC International Conference: Molecular Targets and Cancer Therapeutics--Nov 15-19, 2009; Boston, MA. American Association for Cancer Research, 2009. http://dx.doi.org/10.1158/1535-7163.targ-09-b128.
Testo completoYOUNG, D., M. W. GRIFFITHS e L. BROVKO. "USE OF BIOLUMINESCENCE FOR THE EVALUATION OF AFFINITY CONSTANTS FOR BACTERIAL CELL-ANTIBODY INTERACTIONS". In Bioluminescence and Chemiluminescence - Progress and Current Applications - 12th International Symposium on Bioluminescence (BL) and Chemiluminescence (CL). WORLD SCIENTIFIC, 2002. http://dx.doi.org/10.1142/9789812776624_0098.
Testo completo