Letteratura scientifica selezionata sul tema "Analysis of encrypted network flow"
Cita una fonte nei formati APA, MLA, Chicago, Harvard e in molti altri stili
Consulta la lista di attuali articoli, libri, tesi, atti di convegni e altre fonti scientifiche attinenti al tema "Analysis of encrypted network flow".
Accanto a ogni fonte nell'elenco di riferimenti c'è un pulsante "Aggiungi alla bibliografia". Premilo e genereremo automaticamente la citazione bibliografica dell'opera scelta nello stile citazionale di cui hai bisogno: APA, MLA, Harvard, Chicago, Vancouver ecc.
Puoi anche scaricare il testo completo della pubblicazione scientifica nel formato .pdf e leggere online l'abstract (il sommario) dell'opera se è presente nei metadati.
Articoli di riviste sul tema "Analysis of encrypted network flow"
Yan, Xiaodan. "Deep Learning-Based Efficient Analysis for Encrypted Traffic". Applied Sciences 13, n. 21 (27 ottobre 2023): 11776. http://dx.doi.org/10.3390/app132111776.
Testo completoJiang, Ziyu. "Bidirectional Flow-Based Image Representation Method for Detecting Network Traffic Service Categories". Highlights in Science, Engineering and Technology 85 (13 marzo 2024): 89–95. http://dx.doi.org/10.54097/mwyge502.
Testo completoMa, Chencheng, Xuehui Du e Lifeng Cao. "Improved KNN Algorithm for Fine-Grained Classification of Encrypted Network Flow". Electronics 9, n. 2 (13 febbraio 2020): 324. http://dx.doi.org/10.3390/electronics9020324.
Testo completoMeghdouri, Fares, Tanja Zseby e Félix Iglesias. "Analysis of Lightweight Feature Vectors for Attack Detection in Network Traffic". Applied Sciences 8, n. 11 (9 novembre 2018): 2196. http://dx.doi.org/10.3390/app8112196.
Testo completoAfzal, Asmara, Mehdi Hussain, Shahzad Saleem, M. Khuram Shahzad, Anthony T. S. Ho e Ki-Hyun Jung. "Encrypted Network Traffic Analysis of Secure Instant Messaging Application: A Case Study of Signal Messenger App". Applied Sciences 11, n. 17 (24 agosto 2021): 7789. http://dx.doi.org/10.3390/app11177789.
Testo completoOh, Chaeyeon, Joonseo Ha e Heejun Roh. "A Survey on TLS-Encrypted Malware Network Traffic Analysis Applicable to Security Operations Centers". Applied Sciences 12, n. 1 (24 dicembre 2021): 155. http://dx.doi.org/10.3390/app12010155.
Testo completoHaywood, Gregor Tamati, e Saleem Noel Bhatti. "Defence against Side-Channel Attacks for Encrypted Network Communication Using Multiple Paths". Cryptography 8, n. 2 (28 maggio 2024): 22. http://dx.doi.org/10.3390/cryptography8020022.
Testo completoHu, Xinyi, Chunxiang Gu, Yihang Chen e Fushan Wei. "CBD: A Deep-Learning-Based Scheme for Encrypted Traffic Classification with a General Pre-Training Method". Sensors 21, n. 24 (9 dicembre 2021): 8231. http://dx.doi.org/10.3390/s21248231.
Testo completoVizitiu, Anamaria, Cosmin-Ioan Nita, Radu Miron Toev, Tudor Suditu, Constantin Suciu e Lucian Mihai Itu. "Framework for Privacy-Preserving Wearable Health Data Analysis: Proof-of-Concept Study for Atrial Fibrillation Detection". Applied Sciences 11, n. 19 (28 settembre 2021): 9049. http://dx.doi.org/10.3390/app11199049.
Testo completoChoudhary, Swapna, e Sanjay Dorle. "Secured SDN Based Blockchain: An Architecture to Improve the Security of VANET". International journal of electrical and computer engineering systems 13, n. 2 (28 febbraio 2022): 145–53. http://dx.doi.org/10.32985/ijeces.13.2.7.
Testo completoTesi sul tema "Analysis of encrypted network flow"
Toure, Almamy. "Collection, analysis and harnessing of communication flows for cyber-attack detection". Electronic Thesis or Diss., Valenciennes, Université Polytechnique Hauts-de-France, 2024. http://www.theses.fr/2024UPHF0023.
Testo completoThe increasing complexity of cyberattacks, characterized by a diversification of attack techniques, an expansion of attack surfaces, and growing interconnectivity of applications with the Internet, makes network traffic management in a professional environment imperative. Companies of all types collect and analyze network flows and logs to ensure the security of exchanged data and prevent the compromise of information systems. However, techniques for collecting and processing network traffic data vary from one dataset to another, and static attack detection approaches have limitations in terms of efficiency and precision, execution time, and scalability. This thesis proposes dynamic approaches for detecting cyberattacks related to network traffic, using feature engineering based on the different communication phases of a network flow, coupled with convolutional neural networks (1D-CNN) and their feature detector. This double extraction allows for better classification of network flows, a reduction in the number of attributes and model execution times, and thus effective attack detection. Companies also face constantly evolving cyber threats, and "zero-day" attacks that exploit previously unknown vulnerabilities are becoming increasingly frequent. Detecting these zero-day attacks requires constant technological monitoring and thorough but time-consuming analysis of the exploitation of these vulnerabilities. The proposed solutions guarantee the detection of certain attack techniques. Therefore, we propose a detection framework for these attacks that covers the entire attack chain, from the data collection phase to the identification of any type of zero-day, even in a constantly evolving environment. Finally, given the obsolescence of existing datasets and data generation techniques for intrusion detection, and the fixed, non-evolving, and non-exhaustive nature of recent attack scenarios, the study of an adapted synthetic data generator while ensuring data confidentiality is addressed. The solutions proposed in this thesis optimize the detection of known and zero-day attack techniques on network flows, improve the accuracy of models, while ensuring the confidentiality and high availability of data and models, with particular attention to the applicability of the solutions in a company network
Izadinia, Vafa Dario. "Fingerprinting Encrypted Tunnel Endpoints". Diss., University of Pretoria, 2005. http://hdl.handle.net/2263/25351.
Testo completoDissertation (MSc (Computer Science))--University of Pretoria, 2005.
Computer Science
unrestricted
Heller, Mark D. "Behavioral analysis of network flow traffic". Thesis, Monterey, California. Naval Postgraduate School, 2010. http://hdl.handle.net/10945/5108.
Testo completoNetwork Behavior Analysis (NBA) is a technique to enhance network security by passively monitoring aggregate traffic patterns and noting unusual action or departures from normal operations. The analysis is typically performed offline, due to the huge volume of input data, in contrast to conventional intrusion prevention solutions based on deep packet inspection, signature detection, and real-time blocking. After establishing a benchmark for normal traffic, an NBA program monitors network activity and flags unknown, new, or unusual patterns that might indicate the presence of a potential threat. NBA also monitors and records trends in bandwidth and protocol use. Computer users in the Department of Defense (DoD) operational networks may use Hypertext Transport Protocol (HTTP) to stream video from multimedia sites like youtube.com, myspace.com, mtv.com, and blackplanet.com. Such streaming may hog bandwidth, a grave concern, given that increasing amounts of operational data are exchanged over the Global Information Grid, and introduce malicious viruses inadvertently. This thesis develops an NBA solution to identify and estimate the bandwidth usage of HTTP streaming video traffic entirely from flow records such as Cisco's NetFlow data.
McClenney, Walter O. "Analysis of the DES, LOKI, and IDEA algorithms for use in an encrypted voice PC network". Thesis, Monterey, Calif. : Springfield, Va. : Naval Postgraduate School ; Available from National Technical Information Service, 1995. http://handle.dtic.mil/100.2/ADA297919.
Testo completoKattadige, Chamara Manoj Madarasinghe. "Network and Content Intelligence for 360 Degree Video Streaming Optimization". Thesis, The University of Sydney, 2023. https://hdl.handle.net/2123/29904.
Testo completoDandachi, Najib H. "Network flow method for power system analysis". Thesis, Imperial College London, 1989. http://hdl.handle.net/10044/1/47398.
Testo completoMartin, Kevin M. "A geographic and functional network flow analysis tool". Thesis, Monterey, California: Naval Postgraduate School, 2014. http://hdl.handle.net/10945/42679.
Testo completoCritical infrastructure systems, such as water and electricity, are important for society and national defense. There is a need for network analysis tools that allow analysts to study potential scenarios to discover vulnerabilities, assess consequences, and evaluate effective solutions to overcome network weaknesses. In order to be useful, models of critical infrastructure systems need to be realistic, both geospatially and functionally. The objective of this thesis is to bridge the gap between geospatial and functional network analysis by developing a software tool that allows users to create and edit networks in a Graphical Information System (GIS) visual environment, and then also run and view the results of functional network models. Our primary contribution is to provide an easy-to-use, graphical interface in the form of a plugin that allows users, regardless of their network expertise, to create networks and exercise network flow models on them. We demonstrate the usefulness of our plugin through the analysis of a fictional case study with a realistic Internet infrastructure. We run several minimum cost flow models with simulated network attacks to assess the robustness of the network.
Zickel, Michael J. "Using ecosystem network analysis to quantify fluid flow". College Park, Md. : University of Maryland, 2005. http://hdl.handle.net/1903/2987.
Testo completoThesis research directed by: Marine, Estuarine, Environmental Sciences Graduate Program. Title from t.p. of PDF. Includes bibliographical references. Published by UMI Dissertation Services, Ann Arbor, Mich. Also available in paper.
Herbert, Alan. "Bolvedere: a scalable network flow threat analysis system". Thesis, Rhodes University, 2019. http://hdl.handle.net/10962/71557.
Testo completoGlockner, Gregory D. "Dynamic network flow with uncertain arc capacities". Diss., Georgia Institute of Technology, 1997. http://hdl.handle.net/1853/30734.
Testo completoLibri sul tema "Analysis of encrypted network flow"
Cherukuri, Aswani Kumar, Sumaiya Thaseen Ikram, Gang Li e Xiao Liu. Encrypted Network Traffic Analysis. Cham: Springer International Publishing, 2024. http://dx.doi.org/10.1007/978-3-031-62909-9.
Testo completoJensen, Paul A. Network flow programming. Malabar, Fla: R.E. Krieger Pub. Co., 1987.
Cerca il testo completoWilliams-Sether, Tara. Analysis of the peak-flow gaging network in North Dakota. Bismarck, N.D: U.S. Dept. of the Interior, U.S. Geological Survey, 1996.
Cerca il testo completoWilliams-Sether, Tara. Analysis of the peak-flow gaging network in North Dakota. Bismarck, N.D: U.S. Dept. of the Interior, U.S. Geological Survey, 1996.
Cerca il testo completoWilliams-Sether, Tara. Analysis of the peak-flow gaging network in North Dakota. Bismarck, N.D: U.S. Dept. of the Interior, U.S. Geological Survey, 1996.
Cerca il testo completoTara, Williams-Sether. Analysis of the peak-flow gaging network in North Dakota. Bismarck, N.D: U.S. Dept. of the Interior, U.S. Geological Survey, 1996.
Cerca il testo completoTara, Williams-Sether. Analysis of the peak-flow gaging network in North Dakota. Bismarck, N.D: U.S. Dept. of the Interior, U.S. Geological Survey, 1996.
Cerca il testo completoWilliams-Sether, Tara. Analysis of the peak-flow gaging network in North Dakota. Bismarck, N.D: U.S. Dept. of the Interior, U.S. Geological Survey, 1996.
Cerca il testo completoTara, Williams-Sether. Analysis of the peak-flow gaging network in North Dakota. Bismarck, N.D: U.S. Dept. of the Interior, U.S. Geological Survey, 1996.
Cerca il testo completoTara, Williams-Sether. Analysis of the peak-flow gaging network in North Dakota. Bismarck, N.D: U.S. Dept. of the Interior, U.S. Geological Survey, 1996.
Cerca il testo completoCapitoli di libri sul tema "Analysis of encrypted network flow"
Cherukuri, Aswani Kumar, Sumaiya Thaseen Ikram, Gang Li e Xiao Liu. "Encrypted Network Traffic Analysis". In Encrypted Network Traffic Analysis, 19–45. Cham: Springer International Publishing, 2024. http://dx.doi.org/10.1007/978-3-031-62909-9_2.
Testo completoCherukuri, Aswani Kumar, Sumaiya Thaseen Ikram, Gang Li e Xiao Liu. "Detection of Anomalous Encrypted Traffic". In Encrypted Network Traffic Analysis, 61–72. Cham: Springer International Publishing, 2024. http://dx.doi.org/10.1007/978-3-031-62909-9_4.
Testo completoCherukuri, Aswani Kumar, Sumaiya Thaseen Ikram, Gang Li e Xiao Liu. "Classification of Encrypted Network Traffic". In Encrypted Network Traffic Analysis, 47–59. Cham: Springer International Publishing, 2024. http://dx.doi.org/10.1007/978-3-031-62909-9_3.
Testo completoCherukuri, Aswani Kumar, Sumaiya Thaseen Ikram, Gang Li e Xiao Liu. "Artificial Intelligence-Based Approaches for Anomaly Detection". In Encrypted Network Traffic Analysis, 73–99. Cham: Springer International Publishing, 2024. http://dx.doi.org/10.1007/978-3-031-62909-9_5.
Testo completoCherukuri, Aswani Kumar, Sumaiya Thaseen Ikram, Gang Li e Xiao Liu. "Introduction". In Encrypted Network Traffic Analysis, 1–17. Cham: Springer International Publishing, 2024. http://dx.doi.org/10.1007/978-3-031-62909-9_1.
Testo completoRennels, Donald C., e Hobart M. Hudson. "Network Analysis". In Pipe Flow, 49–60. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2012. http://dx.doi.org/10.1002/9781118275276.ch5.
Testo completoTian, Yu-Chu, e Jing Gao. "Traffic Flow Analysis". In Network Analysis and Architecture, 79–120. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-99-5648-7_4.
Testo completoHublikar, Shivaraj, e N. Shekar V. Shet. "Hybrid Malicious Encrypted Network Traffic Flow Detection Model". In Computer Networks and Inventive Communication Technologies, 357–75. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-19-3035-5_28.
Testo completoGonen, Serkan, Gokce Karacayilmaz, Harun Artuner, Mehmet Ali Bariskan e Ercan Nurcan Yilmaz. "Cyber Attack Detection with Encrypted Network Connection Analysis". In Lecture Notes in Mechanical Engineering, 622–29. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-99-6062-0_57.
Testo completoKolaczyk, Eric D., e Gábor Csárdi. "Analysis of Network Flow Data". In Use R!, 169–86. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-44129-6_9.
Testo completoAtti di convegni sul tema "Analysis of encrypted network flow"
Francesco Gentile, Antonio, Emilio Greco e Domenico Luca Carnì. "A Real Network Performance Analysis Testbed for Encrypted MQTT in DMS". In 2024 IEEE International Workshop on Metrology for Living Environment (MetroLivEnv), 397–402. IEEE, 2024. http://dx.doi.org/10.1109/metrolivenv60384.2024.10615766.
Testo completoPrashal, Garima, Parasuraman Sumathi e Narayana Prasad Padhy. "Interpretable Deep Bayesian Neural Network for Probabilistic Power Flow Analysis". In 2024 IEEE Power & Energy Society General Meeting (PESGM), 1–5. IEEE, 2024. http://dx.doi.org/10.1109/pesgm51994.2024.10689085.
Testo completoKim, Dongeon, Jihun Han, Jinwoo Lee, Heejun Roh e Wonjun Lee. "Poster: Feasibility of Malware Traffic Analysis through TLS-Encrypted Flow Visualization". In 2020 IEEE 28th International Conference on Network Protocols (ICNP). IEEE, 2020. http://dx.doi.org/10.1109/icnp49622.2020.9259387.
Testo completoFu, Chuanpu, Qi Li e Ke Xu. "Detecting Unknown Encrypted Malicious Traffic in Real Time via Flow Interaction Graph Analysis". In Network and Distributed System Security Symposium. Reston, VA: Internet Society, 2023. http://dx.doi.org/10.14722/ndss.2023.23080.
Testo completoShahbar, Khalid, e A. Nur Zincir-Heywood. "How far can we push flow analysis to identify encrypted anonymity network traffic?" In NOMS 2018 - 2018 IEEE/IFIP Network Operations and Management Symposium. IEEE, 2018. http://dx.doi.org/10.1109/noms.2018.8406156.
Testo completoTalkington, Josh, Ram Dantu e Kirill Morozov. "Verifying OAuth Implementations Through Encrypted Network Analysis". In SACMAT '19: The 24th ACM Symposium on Access Control Models and Technologies. New York, NY, USA: ACM, 2019. http://dx.doi.org/10.1145/3322431.3326449.
Testo completoLiu, Chang, Longtao He, Gang Xiong, Zigang Cao e Zhen Li. "FS-Net: A Flow Sequence Network For Encrypted Traffic Classification". In IEEE INFOCOM 2019 - IEEE Conference on Computer Communications. IEEE, 2019. http://dx.doi.org/10.1109/infocom.2019.8737507.
Testo completoSiby, Sandra, Marc Juarez, Claudia Diaz, Narseo Vallina-Rodriguez e Carmela Troncoso. "Encrypted DNS --> Privacy? A Traffic Analysis Perspective". In Network and Distributed System Security Symposium. Reston, VA: Internet Society, 2020. http://dx.doi.org/10.14722/ndss.2020.24301.
Testo completoJun, Luo, e Xu Chang Yue. "Analysis for an intelligent behavior of encrypted network". In 2020 International Conference on Big Data & Artificial Intelligence & Software Engineering (ICBASE). IEEE, 2020. http://dx.doi.org/10.1109/icbase51474.2020.00061.
Testo completo"SECURITY SENSOR PROVIDING ANALYSIS OF ENCRYPTED NETWORK DATA". In 2nd International Conference on Web Information Systems and Technologies. SciTePress - Science and and Technology Publications, 2006. http://dx.doi.org/10.5220/0001254401720177.
Testo completoRapporti di organizzazioni sul tema "Analysis of encrypted network flow"
Bethel, E. Wes. Query-Driven Network Flow Data Analysis and Visualization. Office of Scientific and Technical Information (OSTI), giugno 2006. http://dx.doi.org/10.2172/888963.
Testo completoBrowning, D. W., e J. B. Thomas. A Numerical Analysis of a Queue with Network Access Flow Control,. Fort Belvoir, VA: Defense Technical Information Center, gennaio 1985. http://dx.doi.org/10.21236/ada157526.
Testo completoBonnett, Michaela, Chimdi Ezeigwe, Meaghan Kennedy e Teri Garstka. Using Social Network Analysis to Link Community Health and Network Strength. Orange Sparkle Ball, luglio 2023. http://dx.doi.org/10.61152/scsf6662.
Testo completoPatel, Reena. Complex network analysis for early detection of failure mechanisms in resilient bio-structures. Engineer Research and Development Center (U.S.), giugno 2021. http://dx.doi.org/10.21079/11681/41042.
Testo completoZhu, Zhihong, Yue Zhuo, Haitao Jin, Boyu Wu e Zhijie Li. Chinese Medicine Therapies for Neurogenic Bladder after Spinal Cord Injury: A protocol for systematic review and network meta-analysis. INPLASY - International Platform of Registered Systematic Review and Meta-analysis Protocols, agosto 2021. http://dx.doi.org/10.37766/inplasy2021.8.0084.
Testo completoWeissinger, Rebecca, Mary Moran, Steve Monroe e Helen Thomas. Springs and seeps monitoring protocol for park units in the Northern Colorado Plateau Network, Version 1.1. National Park Service, giugno 2023. http://dx.doi.org/10.36967/2299467.
Testo completoCandelaria, Christopher, Sergey Borisov, Galina Hale e Julián Caballero. Bank Linkages and International Trade. Inter-American Development Bank, dicembre 2013. http://dx.doi.org/10.18235/0011522.
Testo completoRusso, David, Daniel M. Tartakovsky e Shlomo P. Neuman. Development of Predictive Tools for Contaminant Transport through Variably-Saturated Heterogeneous Composite Porous Formations. United States Department of Agriculture, dicembre 2012. http://dx.doi.org/10.32747/2012.7592658.bard.
Testo completoSiebenaler. L52272 Detection of Small Leaks in Liquid Pipelines - Gap Study of Available Methods. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), febbraio 2007. http://dx.doi.org/10.55274/r0010662.
Testo completoKyllönen, Katriina, Karri Saarnio, Ulla Makkonen e Heidi Hellén. Verification of the validity of air quality measurements related to the Directive 2004/107/EC in 2019-2020 (DIRME2019). Finnish Meteorological Institute, 2020. http://dx.doi.org/10.35614/isbn.9789523361256.
Testo completo