Letteratura scientifica selezionata sul tema "Air-sea interactions"
Cita una fonte nei formati APA, MLA, Chicago, Harvard e in molti altri stili
Consulta la lista di attuali articoli, libri, tesi, atti di convegni e altre fonti scientifiche attinenti al tema "Air-sea interactions".
Accanto a ogni fonte nell'elenco di riferimenti c'è un pulsante "Aggiungi alla bibliografia". Premilo e genereremo automaticamente la citazione bibliografica dell'opera scelta nello stile citazionale di cui hai bisogno: APA, MLA, Harvard, Chicago, Vancouver ecc.
Puoi anche scaricare il testo completo della pubblicazione scientifica nel formato .pdf e leggere online l'abstract (il sommario) dell'opera se è presente nei metadati.
Articoli di riviste sul tema "Air-sea interactions"
Brandt, A., G. Geernaert, A. I. Weinstein e J. Dugan. "Submesoscale air-sea interactions studied". Eos, Transactions American Geophysical Union 74, n. 11 (16 marzo 1993): 122–23. http://dx.doi.org/10.1029/93eo00089.
Testo completoSun, Jielun, e Jeffrey R. French. "Air–Sea Interactions in Light of New Understanding of Air–Land Interactions". Journal of the Atmospheric Sciences 73, n. 10 (21 settembre 2016): 3931–49. http://dx.doi.org/10.1175/jas-d-15-0354.1.
Testo completoXie, Lian, Bin Liu, John Morrison, Huiwang Gao e Jianhong Wang. "Air-Sea Interactions and Marine Meteorology". Advances in Meteorology 2013 (2013): 1–3. http://dx.doi.org/10.1155/2013/162475.
Testo completoLong, Zhenxia, e Will Perrie. "Air-sea interactions during an Arctic storm". Journal of Geophysical Research: Atmospheres 117, n. D15 (4 agosto 2012): n/a. http://dx.doi.org/10.1029/2011jd016985.
Testo completoSui, C.-H., X. Li, K.-M. Lau e D. Adamec. "Multiscale Air–Sea Interactions during TOGA COARE". Monthly Weather Review 125, n. 4 (aprile 1997): 448–62. http://dx.doi.org/10.1175/1520-0493(1997)125<0448:masidt>2.0.co;2.
Testo completoSeo, Hyodae, Larry W. O’Neill, Mark A. Bourassa, Arnaud Czaja, Kyla Drushka, James B. Edson, Baylor Fox-Kemper et al. "Ocean Mesoscale and Frontal-Scale Ocean–Atmosphere Interactions and Influence on Large-Scale Climate: A Review". Journal of Climate 36, n. 7 (1 aprile 2023): 1981–2013. http://dx.doi.org/10.1175/jcli-d-21-0982.1.
Testo completoCastellari, Sergio, Nadia Pinardi e Kevin Leaman. "A model study of air–sea interactions in the Mediterranean Sea". Journal of Marine Systems 18, n. 1-3 (dicembre 1998): 89–114. http://dx.doi.org/10.1016/s0924-7963(98)90007-0.
Testo completoShukla, J. "Air-sea-land interactions: Global and regional habitability". Origins of Life and Evolution of the Biosphere 15, n. 4 (dicembre 1985): 353–63. http://dx.doi.org/10.1007/bf01808179.
Testo completoNelson, Jill, Ruoying He, John C. Warner e John Bane. "Air–sea interactions during strong winter extratropical storms". Ocean Dynamics 64, n. 9 (30 luglio 2014): 1233–46. http://dx.doi.org/10.1007/s10236-014-0745-2.
Testo completoDobrovolski, S. G. "South Atlantic sea surface temperature anomalies and air-sea interactions: stochastic models". Annales Geophysicae 12, n. 9 (31 agosto 1994): 903–9. http://dx.doi.org/10.1007/s00585-994-0903-9.
Testo completoTesi sul tema "Air-sea interactions"
Bramson, Laura S. "Air-sea interactions and deep convection in the Labrador Sea". Thesis, Monterey, Calif. : Springfield, Va. : Naval Postgraduate School ; Available from National Technical Information Service, 1997. http://handle.dtic.mil/100.2/ADA342378.
Testo completo"December 1997." Thesis advisor(s): Peter Guest, Roland Garwood. Includes bibliographical references (p. 73-74). Also available online.
Parfitt, Rhys. "Extreme air-sea interactions over the Gulf Stream". Thesis, Imperial College London, 2014. http://hdl.handle.net/10044/1/24570.
Testo completoFiedler, Emma. "Air-sea-ice interactions at the Ronne Polynya, southern Weddell Sea, Antartica". Thesis, University of East Anglia, 2009. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.518354.
Testo completoKuninaka, Akira. "Air-sea interactions and water mass structure of the East China Sea and Yellow Sea". Thesis, Monterey, Calif. : Springfield, Va. : Naval Postgraduate School ; Available from National Technical Information Service, 1998. http://handle.dtic.mil/100.2/ADA345980.
Testo completo"March 1998." Thesis advisor(s): Peter C. Chu, Robert H. Bourke. Includes bibliographical references (p. 61-62). Also available online.
Krebs-Kanzow, Uta [Verfasser]. "Air-sea interactions during glacial Heinrich events / Uta Krebs". Kiel : Universitätsbibliothek Kiel, 2008. http://d-nb.info/1019732083/34.
Testo completoMERONI, AGOSTINO NIYONKURU. "Interactions between the ocean and extreme meteorological events". Doctoral thesis, Università degli Studi di Milano-Bicocca, 2018. http://hdl.handle.net/10281/199143.
Testo completoOcean-atmosphere interactions are of paramount importance in both climatic and meteorological contexts. They are known to play important roles from hourly time scales, such as in the intensification of tropical cyclones, to interannual and even longer time scales, such as in El Niño Southern Oscillation mode of variability of the climate system. The focus of this thesis has been on the energy and momentum transfers at the air-sea interface in short time scales processes characterized by extreme conditions. Both the oceanic dynamical response to an extreme atmospheric forcing and the effects of the sea state on the development of a meteorological extreme event are considered. The systems under study are the ocean internal wave field in the wake of a tropical cyclone and the role of the upper ocean thermal state on the development of heavy rainfalls. In particular, the energy exchanges among oceanic internal waves in the wake of an idealized tropical cyclone are studied with a theoretical approach supported by relevant primitve equation numerical simulations. The goal of this analysis is to understand how tropical cyclones might contribute to the internal ocean mixing in locations far from their track. In fact, despite their intermittency in space and time, they are characterized by very intense winds, which are known to excite oceanic internal waves. These are thought to contribute to ocean mixing far from their generation site through their breaking. Since the energy propagation is linked to the spectral features of the waves, a detailed description of the energy partitioning in different vertical modes and frequencies helps to better constrain the extent and the velocity of such energy propagation. A new detailed analytical description of the exchanges leading to the formation of the first superinertial peak is introduced on the basis of the theory developed. Compared to previous works, a realistic oceanic stratification is included and a path for the energy cascade from the large scales of the atmospheric forcing to the small scales of the mixing is highlighted. The second category of extreme events considered are the heavy-rain-producing mesoscale convective systems (MCSs). They are common phenomena along the coasts of the Mediterranean sea and they release large amounts of rain in few hours and over relatively small areas, O(100 km2). It is known that an average warmer sea in the vicinity of their location produces a larger volume of rain, but before this thesis work no information was available on the influence that a spatial pattern of sea surface temperature (SST), with structures on the kilometric scale, might have on the precipitation event. Appropriate atmospheric numerical simulations, run with a non-hydrostatic primitive equation model, shed light on the mechanisms through which submesoscale SST oceanic features can influence the surface wind structure and, in turns, can affect the evolution of the heavy rainfall. It is found that through enhanced vertical momentum mixing in the atmosphere over warmer SST areas, the presence of temperature fronts in the sea can significantly affect the surface wind convergence, which is often the trigger for deep convection in MCSs, over hourly time scales. This might also lead to significant displacement of the rain bands. The possibility of an ocean dynamical feedback related to the vertical temperature profile is then introduced. By means of atmosphere-ocean coupled numerical simulations, it is found that in particular conditions the intense winds in which the MCS is embedded can mix the upper ocean strongly enough to enhance the stability of the atmospheric boundary layer and suppress deep convection. Such conditions, characterized by a shallow mixed layer and strong stratification, are typical of the late summer. This could be the reason why MCSs are generally observed later during the year, when the mixed layer is deeper and this oceanic mitigating effect is absent.
Desflots, Melicie. "Environmental and Internal Controls of Tropical Cyclones Intensity Change". Scholarly Repository, 2008. http://scholarlyrepository.miami.edu/oa_dissertations/120.
Testo completoHood, Eda Maria. "Characterization of air-sea gas exchange processes and dissolved gas/ice interactions using noble gasses". Thesis, Massachusetts Institute of Technology, 1997. http://hdl.handle.net/1721.1/9815.
Testo completoIncludes bibliographical references (p. 251-266).
by Eda Maria Hood.
Ph.D.
Klingaman, Nicholas Pappas. "The intraseasonal oscillation of the Indian summer monsoon : air-sea interactions and the potential for predictability". Thesis, University of Reading, 2008. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.501512.
Testo completoMafimbo, Ali J. "Characteristics of wind fields and air-sea interactions over the upwelling region of the Somali coast". Master's thesis, University of Cape Town, 2008. http://hdl.handle.net/11427/6489.
Testo completoThe mesoscale structure of the low-level wind field associated with a strong upwelling event was investigated. During July 2005 when a strong upwelling event occurred, the Somali jet was found to have oscillated at lower frequency of 3-7 weeks than the normal bi-weekly mode observed in several studies and the mesoscale winds exhibited high covariability with the prevailing SSTs. Strong values of alongshore winds were deduced from late June to mid-July. These winds weakened significantly in the third and fourth week of July. A large off-shore pressure gradient due to differential thermal properties of land and sea was also observed.
Libri sul tema "Air-sea interactions"
Bramson, Laura S. Air-sea interactions and deep convection in the Labrador Sea. Monterey, Calif: Naval Postgraduate School, 1997.
Cerca il testo completoKuninaka, Akira. Air-sea interactions and water mass structure of the East China Sea and Yellow Sea. Monterey, Calif: Naval Postgraduate School, 1998.
Cerca il testo completoU.S. Office of Space Science and Applications. NASA Oceanic Processes Program: Biennial report - fiscal years 1986 and 1987. Washington: NASA Office of Space Science and Applications, 1988.
Cerca il testo completoU.S. Office of Space Science and Applications. NASA Oceanic Processes Program: Annual report - fiscal year 1985. Washington: NASA Office of Space Science and Applications, 1986.
Cerca il testo completoM, Frank William, e United States. National Aeronautics and Space Administration., a cura di. Analysis of the inflow and air-sea interactions in hurricane Frederic (1979): Final report. [Washington, DC: National Aeronautics and Space Administration, 1986.
Cerca il testo completoSteele, Michael. Studies of air-sea-ice interaction: Final report, ONR grant no. N000014-90-J-1227. Seattle, WA: Polar Science Center, Applied Physics Laboratory, University of Washington, 1997.
Cerca il testo completoUnited States. National Aeronautics and Space Administration., a cura di. Studies of air-sea-ice interaction: Final report, ONR grant no. N000014-90-J-1227. Seattle, WA: Polar Science Center, Applied Physics Laboratory, University of Washington, 1997.
Cerca il testo completoUnited States. National Aeronautics and Space Administration., a cura di. Studies of air-sea-ice interaction: Final report, ONR grant no. N000014-90-J-1227. Seattle, WA: Polar Science Center, Applied Physics Laboratory, University of Washington, 1997.
Cerca il testo completoHood, Eda Maria. Characterization of air-sea gas exchange processes and dissolved gas/ice interactions using noble gases. Woods Hole, Mass: Massachusetts Institute of Technology, Woods Hole Oceanographic Institution, Joint Program in Oceanography/Applied Ocean Science and Engineering, 1998.
Cerca il testo completoHood, Eda Maria. Characterization of air-sea gas exchange processes and dissolved gas/ice interactions using noble gases. Woods Hole, Mass: Massachusetts Institute of Technology, Woods Hole Oceanographic Institution, Joint Program in Oceanography/Applied Ocean Science and Engineering, 1998.
Cerca il testo completoCapitoli di libri sul tema "Air-sea interactions"
Rohli, Robert V., e Chunyan Li. "Fundamentals of Air-Sea Interactions". In Meteorology for Coastal Scientists, 393–98. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-73093-2_39.
Testo completoIsemer, Hans-Jörg, e Lutz Hasse. "Revised Parameterisations of Air-Sea Interactions". In The Bunker Climate Atlas of the North Atlantic Ocean, 5–11. Berlin, Heidelberg: Springer Berlin Heidelberg, 1987. http://dx.doi.org/10.1007/978-3-642-72537-1_3.
Testo completoGarbe, Christoph S., Anna Rutgersson, Jacqueline Boutin, Gerrit de Leeuw, Bruno Delille, Christopher W. Fairall, Nicolas Gruber et al. "Transfer Across the Air-Sea Interface". In Ocean-Atmosphere Interactions of Gases and Particles, 55–112. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-25643-1_2.
Testo completoWalsh, John E. "Diagnostic Studies of Large-Scale Air-Sea-Ice Interactions". In The Geophysics of Sea Ice, 755–84. Boston, MA: Springer US, 1986. http://dx.doi.org/10.1007/978-1-4899-5352-0_13.
Testo completoFrankignoulle, M., e J. P. Gattuso. "Air-Sea CO2 Exchange in Coastal Ecosystems". In Interactions of C, N, P and S Biogeochemical Cycles and Global Change, 233–48. Berlin, Heidelberg: Springer Berlin Heidelberg, 1993. http://dx.doi.org/10.1007/978-3-642-76064-8_9.
Testo completoBrown, Robert A. "Surface Fluxes and Remote Sensing of Air-Sea Interactions". In Surface Waves and Fluxes, 7–27. Dordrecht: Springer Netherlands, 1990. http://dx.doi.org/10.1007/978-94-009-2069-9_2.
Testo completoYang, Song, Renguang Wu, Maoqiu Jian, Jian Huang, Xiaoming Hu, Ziqian Wang e Xingwen Jiang. "Air–Sea Interactions and Climate Variability Over the South China Sea and the Adjacent Regions". In Springer Climate, 81–138. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-8225-7_3.
Testo completoWatson, Andrew J., Jane E. Robertson e Roger D. Ling. "Air-Sea Exchange of CO2 and Its Relation to Primary Production". In Interactions of C, N, P and S Biogeochemical Cycles and Global Change, 249–57. Berlin, Heidelberg: Springer Berlin Heidelberg, 1993. http://dx.doi.org/10.1007/978-3-642-76064-8_10.
Testo completoBakker, Dorothee C. E., Hermann W. Bange, Nicolas Gruber, Truls Johannessen, Rob C. Upstill-Goddard, Alberto V. Borges, Bruno Delille et al. "Air-Sea Interactions of Natural Long-Lived Greenhouse Gases (CO2, N2O, CH4) in a Changing Climate". In Ocean-Atmosphere Interactions of Gases and Particles, 113–69. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-25643-1_3.
Testo completoLiss, Peter S., e James N. Galloway. "Air-Sea Exchange of Sulphur and Nitrogen and Their Interaction in the Marine Atmosphere". In Interactions of C, N, P and S Biogeochemical Cycles and Global Change, 259–81. Berlin, Heidelberg: Springer Berlin Heidelberg, 1993. http://dx.doi.org/10.1007/978-3-642-76064-8_11.
Testo completoAtti di convegni sul tema "Air-sea interactions"
Sankaran, Vaidyanathan, e Suresh Menon. "Turbulence-Chemistry Interactions in Spray Combustion". In ASME Turbo Expo 2002: Power for Land, Sea, and Air. ASMEDC, 2002. http://dx.doi.org/10.1115/gt2002-30091.
Testo completoLiu, J. J., e T. P. Hynes. "The Investigation of Turbine and Exhaust Interactions in Asymmetric Flows: Part 2 — Turbine-Diffuser-Collector Interactions". In ASME Turbo Expo 2002: Power for Land, Sea, and Air. ASMEDC, 2002. http://dx.doi.org/10.1115/gt2002-30343.
Testo completoShen, Lian, Song Liu e Dick K. P. Yue. "Mechanisms of Air-Sea Turbulent Interactions at Small Scales". In Sixth International Conference on Civil Engineering in the Oceans. Reston, VA: American Society of Civil Engineers, 2005. http://dx.doi.org/10.1061/40775(182)11.
Testo completoReynolds, Scott B., Steven E. Gorrell e Jordi Estevadeordal. "PIV Analysis on the Effect of Stator Loading on Transonic Blade-Row Interactions". In ASME Turbo Expo 2010: Power for Land, Sea, and Air. ASMEDC, 2010. http://dx.doi.org/10.1115/gt2010-22576.
Testo completoLigrani, P. M., C. Saumweber, A. Schulz e S. Wittig. "Shock Wave - Film Cooling Interactions in Transonic Flows". In ASME Turbo Expo 2001: Power for Land, Sea, and Air. American Society of Mechanical Engineers, 2001. http://dx.doi.org/10.1115/2001-gt-0133.
Testo completoWu, Xijia. "A Model of Nonlinear Fatigue-Creep (Dwell) Interactions". In ASME Turbo Expo 2008: Power for Land, Sea, and Air. ASMEDC, 2008. http://dx.doi.org/10.1115/gt2008-51527.
Testo completoWheeler, Andrew P. S., e Robert J. Miller. "Compressor Wake/Leading-Edge Interactions at Off Design Incidences". In ASME Turbo Expo 2008: Power for Land, Sea, and Air. ASMEDC, 2008. http://dx.doi.org/10.1115/gt2008-50177.
Testo completoMiller, R. J., R. W. Moss, R. W. Ainsworth e N. W. Harvey. "Wake, Shock and Potential Field Interactions in a 1.5 Stage Turbine: Part I — Vane-Rotor and Rotor-Vane Interaction". In ASME Turbo Expo 2002: Power for Land, Sea, and Air. ASMEDC, 2002. http://dx.doi.org/10.1115/gt2002-30435.
Testo completoVan Zante, Dale E., Wai-Ming To e Jen-Ping Chen. "Blade Row Interaction Effects on the Performance of a Moderately Loaded NASA Transonic Compressor Stage". In ASME Turbo Expo 2002: Power for Land, Sea, and Air. ASMEDC, 2002. http://dx.doi.org/10.1115/gt2002-30575.
Testo completoBabanin, Alexander V., Geoff G. Wake e Jason McConochie. "Field Observation Site for Air-Sea Interactions in Tropical Cyclones". In ASME 2016 35th International Conference on Ocean, Offshore and Arctic Engineering. American Society of Mechanical Engineers, 2016. http://dx.doi.org/10.1115/omae2016-54570.
Testo completoRapporti di organizzazioni sul tema "Air-sea interactions"
Khelif, Djamal, e Carl Friehe. Air-Sea-Aerosol-Cloud Interactions. Fort Belvoir, VA: Defense Technical Information Center, settembre 2009. http://dx.doi.org/10.21236/ada532025.
Testo completoKhelif, Djamal, e Carl Friehe. Air-Sea-Aerosol-Cloud Interactions. Fort Belvoir, VA: Defense Technical Information Center, settembre 2008. http://dx.doi.org/10.21236/ada532929.
Testo completoVeron, Fabrice. Dynamic Effects of Airborne Water Droplets on Air-Sea Interactions: Sea-Spray and Rain. Fort Belvoir, VA: Defense Technical Information Center, settembre 2006. http://dx.doi.org/10.21236/ada612095.
Testo completoVeron, Fabrice. Dynamic Effects of Airborne Water Droplets on Air-Sea Interactions: Sea-Spray and Rain. Fort Belvoir, VA: Defense Technical Information Center, settembre 2008. http://dx.doi.org/10.21236/ada532799.
Testo completoVeron, Fabrice. Dynamic Effects of Airborne Water Droplets on Air-Sea Interactions: Sea-Spray and Rain. Fort Belvoir, VA: Defense Technical Information Center, settembre 2007. http://dx.doi.org/10.21236/ada542432.
Testo completoSun, Jielun. Investigating Characteristics of Air-Sea Interactions in the Wave and Surface Layers. Fort Belvoir, VA: Defense Technical Information Center, luglio 2008. http://dx.doi.org/10.21236/ada482922.
Testo completoCronin, Meghan F., Clarissa Anderson, Jerome Aucan, Marcus L. Aydelett, Sebastien O. C. Boulay, Patricia Chardon-Maldonado, Maggie Chory et al. Workshop Report for the Air-Sea Observations for a Safe Ocean, a satellite event for the UN Decade of Ocean Science for Sustainable Development - Safe Ocean Laboratory. A cura di R. Venkatesan. SCOR Working Group #162 for developing an Observing Air-Sea Interactions Strategy (OASIS), ottobre 2022. http://dx.doi.org/10.3289/scor_wg_162_2022_2.
Testo completoClayson, Carol Anne, Charlotte Demott, S. de Szoeke, Ping Chang, Gregory Foltz, Raghavendra Krishnamurthy, Tong Lee et al. A New Paradigm for Observing and Modeling of Air-Sea Interactions to Advance Earth System Prediction. Office of Scientific and Technical Information (OSTI), agosto 2023. http://dx.doi.org/10.2172/2222927.
Testo completoFernando, H. J. ASIRI: Air-Sea Interactions in Northern Indian Ocean (and Its Relation to Monsoonal Dynamics of the Bay of Bengal). Fort Belvoir, VA: Defense Technical Information Center, settembre 2012. http://dx.doi.org/10.21236/ada590509.
Testo completoPaulson, Clayton A. Air-Sea Interaction (Ocean Storms). Fort Belvoir, VA: Defense Technical Information Center, giugno 1995. http://dx.doi.org/10.21236/ada327232.
Testo completo