Letteratura scientifica selezionata sul tema "Aero-Propulsive"
Cita una fonte nei formati APA, MLA, Chicago, Harvard e in molti altri stili
Consulta la lista di attuali articoli, libri, tesi, atti di convegni e altre fonti scientifiche attinenti al tema "Aero-Propulsive".
Accanto a ogni fonte nell'elenco di riferimenti c'è un pulsante "Aggiungi alla bibliografia". Premilo e genereremo automaticamente la citazione bibliografica dell'opera scelta nello stile citazionale di cui hai bisogno: APA, MLA, Harvard, Chicago, Vancouver ecc.
Puoi anche scaricare il testo completo della pubblicazione scientifica nel formato .pdf e leggere online l'abstract (il sommario) dell'opera se è presente nei metadati.
Articoli di riviste sul tema "Aero-Propulsive"
STEPAN, Anca, Georges GHAZI e Ruxandra Mihaela BOTEZ. "Development of an Adaptive Aero-Propulsive Performance Model in Cruise Flight – Application to the Cessna Citation X". INCAS BULLETIN 14, n. 4 (2 dicembre 2022): 167–81. http://dx.doi.org/10.13111/2066-8201.2022.14.4.14.
Testo completoZhao, Wenyuan, Yanlai Zhang, Peng Tang e Jianghao Wu. "The Impact of Distributed Propulsion on the Aerodynamic Characteristics of a Blended-Wing-Body Aircraft". Aerospace 9, n. 11 (10 novembre 2022): 704. http://dx.doi.org/10.3390/aerospace9110704.
Testo completoLuo, Shaojun, Tian Zi Eng, Zhili Tang, Qianrong Ma, Jinyou Su e Gabriel Bugeda. "Multidisciplinary Optimization of Aircraft Aerodynamics for Distributed Propulsion Configurations". Applied Sciences 14, n. 17 (3 settembre 2024): 7781. http://dx.doi.org/10.3390/app14177781.
Testo completoSeitz, Arne, Anaïs Luisa Habermann, Fabian Peter, Florian Troeltsch, Alejandro Castillo Pardo, Biagio Della Corte, Martijn van Sluis et al. "Proof of Concept Study for Fuselage Boundary Layer Ingesting Propulsion". Aerospace 8, n. 1 (13 gennaio 2021): 16. http://dx.doi.org/10.3390/aerospace8010016.
Testo completoBaklacioglu, T., e M. Cavcar. "Aero-propulsive modelling for climb and descent trajectory prediction of transport aircraft using genetic algorithms". Aeronautical Journal 118, n. 1199 (gennaio 2014): 65–79. http://dx.doi.org/10.1017/s0001924000008939.
Testo completoSwain, Prafulla Kumar, Ashok K. Barik, Siva Prasad Dora e Rajeswara Resapu. "The propulsion of tandem flapping foil following fishtailed flapping trajectory". Physics of Fluids 34, n. 12 (dicembre 2022): 123609. http://dx.doi.org/10.1063/5.0128223.
Testo completoYin, F., e A. Gangoli Rao. "Performance analysis of an aero engine with inter-stage turbine burner". Aeronautical Journal 121, n. 1245 (4 settembre 2017): 1605–26. http://dx.doi.org/10.1017/aer.2017.93.
Testo completoCorcione, Salvatore, Vincenzo Cusati, Danilo Ciliberti e Fabrizio Nicolosi. "Experimental Assessment of Aero-Propulsive Effects on a Large Turboprop Aircraft with Rear-Engine Installation". Aerospace 10, n. 1 (15 gennaio 2023): 85. http://dx.doi.org/10.3390/aerospace10010085.
Testo completoMinucci, Marco A. S., e Leik N. Myrabo. "Phase distortion in a propulsive laser beam due to aero-optical phenomena". Journal of Propulsion and Power 6, n. 4 (luglio 1990): 416–25. http://dx.doi.org/10.2514/3.25452.
Testo completoPerry, Aaron T., Phillip J. Ansell e Michael F. Kerho. "Aero-Propulsive and Propulsor Cross-Coupling Effects on a Distributed Propulsion System". Journal of Aircraft 55, n. 6 (novembre 2018): 2414–26. http://dx.doi.org/10.2514/1.c034861.
Testo completoTesi sul tema "Aero-Propulsive"
Altamirano, George V. "Investigation of Longitudinal Aero-Propulsive Interactions of a Small Quadrotor Unmanned Aircraft System". The Ohio State University, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=osu1607075603449697.
Testo completoDosne, Cyril. "Development and implementation of adjoint formulation of explicit body-force models for aero-propulsive optimizations". Electronic Thesis or Diss., Institut polytechnique de Paris, 2024. http://www.theses.fr/2024IPPAX026.
Testo completoIn civil aviation, the increasing exploration of innovative engine systems – such as ultra-high bypass ratio turbofan or open-rotor – and breakthrough engine-integration architectures – such as distributed propulsion or boundary-layer ingestion – require a coupled modeling of the aerodynamic and propulsion subsystems from the earliest design stages. Body-force models have proven capable of faithfully reproducing most of the coupling phenomena, such as the engine response to inlet flow distortions, at reduced computational cost. However, they lack an adjoint formulation to be efficiently used in gradient-based optimizations. The present PhD thesis focuses on the development of an adjoint approach for explicit body-force models. First, aero-propulsive optimizations of an academic distributed propulsion configuration are conducted using a lumped body-force model. Despite the simplicity of this model (of interest for conceptual design studies), 10.5% decrease in power consumption is achieved. Then the potential of this new methodology is investigated for the preliminary optimization of compressor stages, at first under clean inflow conditions. The Hall body-force model is considered for such purpose. The comparison of the blade shape gradients computed by the adjoint body-force with high-fidelity ones, obtained from blade-resolved computations, shows very good prediction for the rotor. This is observed over a large portion of the compressor characteristic, especially between near-design and surge operating conditions, while accuracy is reduced near the blockage. On the contrary, for stator shape gradients, only flow misalignment effects can be captured. At design conditions, the improvement of the compressor efficiency obtained by the adjoint body-force optimization has been confirmed through high-fidelity simulations. Optimization under radial inlet distortion are then investigated. Once again, the adjoint body-force approach is found capable of enhancing the compressor performances, by adapting its geometry to the off-design inflow conditions. According to high-fidelity analysis of the body-force optimized blade geometry, an increase in compressor isentropic efficiency between 1.16 and 1.47% is achieved, given the formulation of the optimization problem. Finally, an optimization of the compressor under full-annulus inlet distortion is conducted leading to very promising results, which are consistent with those found in the literature using advanced simulations
Arntz, Aurélien. "Civil aircraft aero-thermo-propulsive performance assessment by an exergy analysis of high-fidelity CFD-RANS flow solutions". Thesis, Lille 1, 2014. http://www.theses.fr/2014LIL10110/document.
Testo completoThe tools and methodologies currently used for the design of commercial aircraft have been initiated decades ago and are based on simplifying assumptions that become excessively ambiguous for highly-integrated propulsion devices for which traditional drag/thrust bookkeepings become inapplicable. Likewise, the growing complexity of civil aircraft requires a more global performance assessment which could take into account thermal management. As a consequence, a new exergy-based formulation is derived for the assessment of the aerothermopropulsive performance of civil aircraft. The output of the derivation process is an exergy balance between the exergy supplied by a propulsion system or by heat transfer, the mechanical equilibrium of the aircraft, and the exergy outflow and destruction within the control volume. The theoretical formulation is subsequently numerically implemented in a Fortran code named ffx for the post-processing of CFD-RANS flow solutions. Unpowered airframe configurations are examined with grid refinement studies and a turbulence model sensitivity analysis. The code is thereby validated against well-tried methods of drag prediction or wind-tunnel testings when available. Finally, the investigation of powered configurations demonstrates the ability of the approach for the performance assessment of configurations with aerothermopropulsive interactions
"Modeling, Analysis, and Control of a Hypersonic Vehicle With Significant Aero-Thermo-Elastic-Propulsion Interactions, and Propulsive Uncertainty". Master's thesis, 2010. http://hdl.handle.net/2286/R.I.8592.
Testo completoDissertation/Thesis
M.S. Electrical Engineering 2010
Capitoli di libri sul tema "Aero-Propulsive"
Wervaecke, Christelle, Ilias Petropoulos e Didier Bailly. "Assessment of Exergy Analysis of CFD Simulations for the Evaluation of Aero-Thermo-Propulsive Performance of Aerial Vehicles". In Computational Methods in Applied Sciences, 261–75. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-57422-2_17.
Testo completoAtti di convegni sul tema "Aero-Propulsive"
Geuther, Steven, Benjamin Simmons e Kasey Ackerman. "Overview of the Subscale RAVEN Flight Controls and Modeling Testbed". In Vertical Flight Society 80th Annual Forum & Technology Display, 1–12. The Vertical Flight Society, 2024. http://dx.doi.org/10.4050/f-0080-2024-1185.
Testo completoTOWNEND, L., E. BROADBENT, J. CLARKE, R. EAST, T. NONWEILER, G. PAGAN, E. PARKER e J. PIKE. "Aero-propulsive effects on configuration shaping". In 3rd International Aerospace Planes Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1991. http://dx.doi.org/10.2514/6.1991-5064.
Testo completoAhuja, Vivek, Imon Chakraborty e Roy J. Hartfield. "Aero-Propulsive Analysis for Contemporary Conceptual Design". In AIAA Aviation 2019 Forum. Reston, Virginia: American Institute of Aeronautics and Astronautics, 2019. http://dx.doi.org/10.2514/6.2019-3019.
Testo completode Vries, Reynard, Maurice Hoogreef e Roelof Vos. "Aero-Propulsive Efficiency Requirements for Turboelectric Transport Aircraft". In AIAA Scitech 2020 Forum. Reston, Virginia: American Institute of Aeronautics and Astronautics, 2020. http://dx.doi.org/10.2514/6.2020-0502.
Testo completoAfricawala, Jalendu, e Aleksandar Joksimovic. "Panel Method for Aero-Propulsive Design Space Exploration". In AIAA SCITECH 2024 Forum. Reston, Virginia: American Institute of Aeronautics and Astronautics, 2024. http://dx.doi.org/10.2514/6.2024-0240.
Testo completoKerho, Mike F. "Aero-Propulsive Coupling of an Embedded, Distributed Propulsion System". In 33rd AIAA Applied Aerodynamics Conference. Reston, Virginia: American Institute of Aeronautics and Astronautics, 2015. http://dx.doi.org/10.2514/6.2015-3162.
Testo completoHosangadi, A., P. Cavallo, S. Arunajatesan, R. Ungewitter e R. Lee. "Aero-propulsive jet interaction simulations using hybrid unstructured meshes". In 35th Joint Propulsion Conference and Exhibit. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1999. http://dx.doi.org/10.2514/6.1999-2119.
Testo completoGORADIA, SURESH, ABEL TORRES, SHARON STACK e JOEL EVERHART. "Engineering method for aero-propulsive characteristics at hypersonicMach numbers". In 3rd International Aerospace Planes Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1991. http://dx.doi.org/10.2514/6.1991-5061.
Testo completoSagliano, Marco, Ping Lu, Breanna Johnson, David Seelbinder e Stephan Theil. "Six-Degrees-of-Freedom Aero-Propulsive Entry Trajectory Optimization". In AIAA SCITECH 2024 Forum. Reston, Virginia: American Institute of Aeronautics and Astronautics, 2024. http://dx.doi.org/10.2514/6.2024-1171.
Testo completoSimmons, Benjamin M., James L. Gresham e Craig A. Woolsey. "Aero-Propulsive Modeling for Propeller Aircraft Using Flight Data". In AIAA SCITECH 2022 Forum. Reston, Virginia: American Institute of Aeronautics and Astronautics, 2022. http://dx.doi.org/10.2514/6.2022-2171.
Testo completo