Letteratura scientifica selezionata sul tema "Accelerometry"
Cita una fonte nei formati APA, MLA, Chicago, Harvard e in molti altri stili
Consulta la lista di attuali articoli, libri, tesi, atti di convegni e altre fonti scientifiche attinenti al tema "Accelerometry".
Accanto a ogni fonte nell'elenco di riferimenti c'è un pulsante "Aggiungi alla bibliografia". Premilo e genereremo automaticamente la citazione bibliografica dell'opera scelta nello stile citazionale di cui hai bisogno: APA, MLA, Harvard, Chicago, Vancouver ecc.
Puoi anche scaricare il testo completo della pubblicazione scientifica nel formato .pdf e leggere online l'abstract (il sommario) dell'opera se è presente nei metadati.
Articoli di riviste sul tema "Accelerometry"
Roth, Marilyn A., e Jennifer S. Mindell. "Who Provides Accelerometry Data? Correlates of Adherence to Wearing an Accelerometry Motion Sensor: The 2008 Health Survey for England". Journal of Physical Activity and Health 10, n. 1 (gennaio 2013): 70–78. http://dx.doi.org/10.1123/jpah.10.1.70.
Testo completoEvenson, Kelly R., Elissa Scherer, Kennedy M. Peter, Carmen C. Cuthbertson e Stephanie Eckman. "Historical development of accelerometry measures and methods for physical activity and sedentary behavior research worldwide: A scoping review of observational studies of adults". PLOS ONE 17, n. 11 (21 novembre 2022): e0276890. http://dx.doi.org/10.1371/journal.pone.0276890.
Testo completoBolton, Samantha, Nick Cave, Naomi Cogger e G. R. Colborne. "Use of a Collar-Mounted Triaxial Accelerometer to Predict Speed and Gait in Dogs". Animals 11, n. 5 (27 aprile 2021): 1262. http://dx.doi.org/10.3390/ani11051262.
Testo completoGewolb, Ira H., e Frank L. Vice. "Use of a non-invasive accelerometric method for diagnosing gastroesophageal reflux in premature infants". Journal of Perinatology 41, n. 8 (23 marzo 2021): 1879–85. http://dx.doi.org/10.1038/s41372-021-01034-5.
Testo completoSjöros, Tanja, Henri Vähä-Ypyä, Saara Laine, Taru Garthwaite, Eliisa Löyttyniemi, Harri Sievänen, Kari K. Kalliokoski, Juhani Knuuti, Tommi Vasankari e Ilkka H. A. Heinonen. "Influence of the Duration and Timing of Data Collection on Accelerometer-Measured Physical Activity, Sedentary Time and Associated Insulin Resistance". International Journal of Environmental Research and Public Health 18, n. 9 (6 maggio 2021): 4950. http://dx.doi.org/10.3390/ijerph18094950.
Testo completoWainberg, Michael, Samuel E. Jones, Lindsay Melhuish Beaupre, Sean L. Hill, Daniel Felsky, Manuel A. Rivas, Andrew S. P. Lim, Hanna M. Ollila e Shreejoy J. Tripathy. "Association of accelerometer-derived sleep measures with lifetime psychiatric diagnoses: A cross-sectional study of 89,205 participants from the UK Biobank". PLOS Medicine 18, n. 10 (12 ottobre 2021): e1003782. http://dx.doi.org/10.1371/journal.pmed.1003782.
Testo completoKwon, Soyang, Patricia Zavos, Katherine Nickele, Albert Sugianto e Mark V. Albert. "Hip and Wrist-Worn Accelerometer Data Analysis for Toddler Activities". International Journal of Environmental Research and Public Health 16, n. 14 (21 luglio 2019): 2598. http://dx.doi.org/10.3390/ijerph16142598.
Testo completoOliver, Melody, Hannah Badland, Suzanne Mavoa, Mitch J. Duncan e Scott Duncan. "Combining GPS, GIS, and Accelerometry: Methodological Issues in the Assessment of Location and Intensity of Travel Behaviors". Journal of Physical Activity and Health 7, n. 1 (gennaio 2010): 102–8. http://dx.doi.org/10.1123/jpah.7.1.102.
Testo completoNedergaard, Niels J., Mark A. Robinson, Elena Eusterwiemann, Barry Drust, Paulo J. Lisboa e Jos Vanrenterghem. "The Relationship Between Whole-Body External Loading and Body-Worn Accelerometry During Team-Sport Movements". International Journal of Sports Physiology and Performance 12, n. 1 (gennaio 2017): 18–26. http://dx.doi.org/10.1123/ijspp.2015-0712.
Testo completoSchrack, Jennifer, e Amal Wanigatunga. "MOVING, THINKING, AND SLEEPING: NOVEL INSIGHTS INTO PHYSICAL AND COGNITIVE HEALTH FROM ACCELEROMETRY DATA". Innovation in Aging 6, Supplement_1 (1 novembre 2022): 330. http://dx.doi.org/10.1093/geroni/igac059.1303.
Testo completoTesi sul tema "Accelerometry"
Nilsson, Andreas. "Physical activity assessed by accelerometry in children". Doctoral thesis, Örebro : Örebro University, 2008. http://urn.kb.se/resolve?urn=urn:nbn:se:oru:diva-1739.
Testo completoMachado, Inês Prata. "Human activity data discovery based on accelerometry". Master's thesis, Faculdade de Ciências e Tecnologia, 2013. http://hdl.handle.net/10362/10992.
Testo completoStoltz, Victor, e Manne Godhe. "Validity of accelerometry in high-intensity complex movements". Thesis, Gymnastik- och idrottshögskolan, GIH, Institutionen för idrotts- och hälsovetenskap, 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:gih:diva-3268.
Testo completoGerrard-Longworth, S. P. "Measuring physical activity in obese populations using accelerometry". Thesis, University of Salford, 2015. http://usir.salford.ac.uk/34502/.
Testo completoWilhelm, Spencer Christian. "Prediction of Non-Resting Energy Expenditure using Accelerometry". Thesis, Virginia Tech, 2019. http://hdl.handle.net/10919/91463.
Testo completoMaster of Science
Accurate measurement of the total amount of energy (i.e. calories) utilized by the body throughout the day, also known as total energy expenditure, is a vital component of metabolic research. However, there is a lack of measurement methods that are valid, objective, inexpensive, and easy to use. Accelerometers combined with equations designed to predict total energy expenditure may be able to fill this gap. Accelerometers are devices worn on the body that measure accelerative forces from physical activity. Twenty weight stable adults (12 female, 8 male), who recently participated in a study in which all dietary intake and exercise were closely monitored (controlled feeding study), comprised the study sample. The amount of energy needed to maintain weight (total energy requirements) was assessed from the controlled feeding period in which weight stability was achieved. Resting energy expenditure, the energy burned while the body is at rest, was assessed using an equation often used to estimate energy expenditure, the Mifflin-St. Jeor equation. Participants wore accelerometers to objectively assess habitual physical activity. The accelerometer data obtained along with subjects’ demographic (age, sex) and biometric (height, weight, BMI, etc.) data were used to predict non-resting energy expenditure (resting energy expenditure subtracted from total energy expenditure). Multiple statistical tests were used to determine the validity of the total energy requirements obtained from the sum of the predicted non-resting energy expenditure (NREE) and resting energy expenditure. Estimated resting energy expenditure was compared with the total energy requirements assessed using the intake-balance method from the controlled feeding period. The resulting prediction equation is as follows: 480.93 – 180.69(sex) + 0.21(Accelerometer kcals) + 617.98(BF%) = NREE. The sex was coded as 1 for females and 0 for males. This prediction model has a coefficient of determination of 0.74 (0.70 adjusted), which means 70% of the variation in non-resting energy expenditure was explained by changes in the variables in the equation. On average, the model overestimates NREE by 76 Calories per day. This new model could be the key to accurately, inexpensively and objectively measuring total energy requirements.
São, Marcos Ana Jorge Romão. "Physical activity measurements in adolescents: accelerometry vs PAI". Master's thesis, Universidade de Aveiro, 2014. http://hdl.handle.net/10773/13732.
Testo completoBackground: Practicing physical activity (PA) has shown to present health benefits at all ages, namely in paediatrics. There are several methods to evaluate PA, however the most frequently used are the self-report questionnaires and accelerometry. The latter is an objective measuring tool, however it requires the use of relatively expensive devices. Questionnaires are easy and quick to apply, and therefore a useful tool to evaluate PA. Despite the existence of some questionnaires to evaluate PA in adolescents, there is still none validated against accelerometry for the Portuguese population. This validation is important, since questionnaires present an error associated to inaccuracies in recall activity. Aims: To validate the Physical Activity Index (PAI), by comparing it with accelerometry in adolescents according to gender and to explore if adolescents follow the physical activity recommendations established for their age. Methods: In this cross-sectional study, adolescents were recruited from 3 basketball teams, 2 classrooms from a school in Aveiro, and an orchestra band classroom. Socio-demographic, anthropometric data and spirometry were collected from the adolescents who participated in this study. Physical Activity (PA) was assessed with accelerometers (Actigraph model - GT3XPlus, Actigraph MTI, Manufacturing Technology Inc., Pensacola, FL, USA) worn during 7 days and the PAI. Pearson correlation coefficients (rs) were calculated to explore the correlations of moderate-to-vigorous PA (MVPA) (min.day-1) and steps per day vs. the PAI. To analyse participants’ ability to follow the recommendations of PA levels, 60 minutes of MVPA and 10,000 to 11,700 steps per day were considered. Chi-square (χ2) tests were used to explore differences between male and female’s ability to reach international recommendations of physical activity levels. Results: Forty nine adolescents (57.14% female; mean age 14.43 ±0.96 years old) participated in this study. Female and male presented similar PA levels measured with a subjective or an objective measure. Correlations between objective and subjective measures were significant and positive only for male (MVPA: r=.514, p=.017; Steps per day: r=.460, p=.041). Most participants were sedentary when analysing the objective data and considering the PA recommendations. Only 1 female (3.57%) and 3 males (14.29%) surpassed the 60 min.day-1 mark and, in terms of steps per day, only 13 females (46.43%) and 13 males (61.90%) registered over 10000 steps per day. Conclusion: When compared with accelerometry the PAI presented as a valid measuring tool only for male adolescents. Adolescents of both genders presented similar levels of PA with both measuring tools, and accelerometry results showed that the majority of adolescents were sedentary. Thus, it is necessary to investigate further in the future about the correlation between accelerometry and the PAI, as well as about the sedentary habits of adolescents.
Enquadramento: A prática de atividade física (AF) tem vindo a apresentar benefícios para a saúde em todas as idades, nomeadamente na pediatria. Existem vários métodos para avaliar a AF, no entanto os mais utilizados são os questionários e a acelerometria. Esta última é uma medida objetiva que, no entanto, requer o uso de instrumentos relativamente dispendiosos. Já os questionários são instrumentos rápidos e fáceis de aplicar, sendo, assim úteis na avaliação da AF. Apesar de existirem alguns instrumentos para avaliar AF em adolescentes, ainda, não existe nenhum validado contra a acelerometria para a população portuguesa. Esta validação é necessária, uma vez que os questionários, por serem medidas subjetivas apresentam um erro associado a imprecisões na capacidade de relato de atividades passadas. Objetivos: Validar o Índice de Atividade Física (IAF) comparando-o com a acelerometria de acordo com o género e explorar se os adolescentes seguem as recomendações de AF estabelecidas para as suas idades. Métodos: Neste estudo transversal, os adolescentes foram recrutados de 3 equipas de basquetebol, 2 turmas de uma escola de Aveiro e 1 turma de uma banda de música de orquestra. Dados sociodemográficos, antropométricos e de espirometria foram recolhidos aos participantes. AF foi medida com acelerómetros (Actigraph modelo - GT3XPlus, Actigraph MTI, Manufacturing Technology Inc., Pensacola, FL, USA), usados durante 7 dias e com o IAF. O coeficiente de correlação de Pearson (rs) foi calculado para explorar as correlações entre os minutos de AF moderada a vigorosa (AFMV) (min.dia-1) e os passos por dia vs. o IAF. Para analisar a capacidade dos participantes seguirem as recomendações dos níveis de AF, foram considerados 60 minutos.dia-1 de AFMV e os 10,000 a 11,700 passos por dia. Testes Quiquadrado (χ2) foram usados para explorar diferenças na capacidade de atingir os níveis de AF estabelecidos em orientações internacionais entre rapazes e raparigas. Resultados: Quarenta e nove adolescentes (57.14% raparigas; idade média 14.43 ±0.96 anos) participaram no estudo. Raparigas e rapazes apresentaram níveis de AF semelhantes, medidos com medidas subjetivas ou objetivas. As correlações entre as medidas subjetiva e objetiva foram significativas e positivas apenas para os rapazes (AFMV: r=.514, p=.017; Passos por dia: r=.460, p=.041). A maioria dos adolescentes mostraram-se sedentários na análise dos dados objetivos e das recomendações de AF. Apenas 1 rapariga (3.57%) e 3 rapazes (14.29%) ultrapassaram a marca dos 60 minutos.dia-1 de AFMV e em relação aos passos por dia, apenas 13 raparigas (46.43%) e 13 rapazes (61.90%) registaram valores acima dos 10,000 passos por dia. Conclusão: O IAF mostrou-se uma ferramenta válida na medição de AF em comparação com a acelerometria, apenas para os rapazes. Adolescentes de ambos os sexos apresentaram níveis de AF semelhantes, em ambos os instrumentos de medida, tendo-se a maioria revelado como sedentários através da análise dos resultados obtidos pela acelerometria Desta forma, é necessário investigar-se mais, no futuro, sobre a correlação entre a acelerometria e o IAF, bem como sobre os hábitos sedentários dos adolescentes.
van, Hees Vincent Theodoor. "Implementation of raw accelerometry in physical activity epidemiology". Thesis, University of Cambridge, 2012. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.610767.
Testo completoSato, Kimitake, William A. Sands e Michael H. Stone. "The Reliability of Accelerometry to Measure Weightlifting Performance". Digital Commons @ East Tennessee State University, 2012. https://dc.etsu.edu/etsu-works/4616.
Testo completoSiebert, Christopher Michael. "Heart Rate and Accelerometry during Footbag Net Singles Play". Portland State University, 2013.
Cerca il testo completoKotru, Krish. "Timekeeping and accelerometry with robust light pulse atom interferometers". Thesis, Massachusetts Institute of Technology, 2015. http://hdl.handle.net/1721.1/98681.
Testo completoCataloged from PDF version of thesis.
Includes bibliographical references (pages 165-173).
Light pulse atom interferometry (LPAI) is a powerful technique for precision measurements of inertial forces and time. Laboratory LPAI systems currently achieve state-ofthe- art acceleration sensitivity and establish the international atomic time standard. However, the realization of practical LPAI in dynamic environments (e.g., rapidly accelerating or rotating platforms) has been limited in part by atom optics-the analogues to optical beamsplitters and mirrors. Atom optics in traditional LPAIs are composed of resonant laser pulses that are susceptible to variations in optical detuning and intensity expected in sensors designed for dynamic environments. This thesis investigates atom optics that use frequency- and intensity-modulated laser pulses to suppress sensitivity to these inhomogeneities. For atomic timekeeping applications, a Ramsey LPAI sequence based on stimulated Raman transitions and frequency-swept adiabatic rapid passage (ARP) was developed. Raman ARP drives coherent transfer in an effective two-level atomic system by sweeping the Raman detuning through the two-photon resonance. In experiments with ¹³³Cs atoms, Raman ARP reduced the sensitivity of Ramsey sequences to differential AC Stark shifts by about two orders of magnitude, relative to standard Raman transitions. Raman ARP also preserved fringe contrast despite substantial intensity inhomogeneity. The fractional frequency uncertainty of the ARP Ramsey sequence was limited by second-order Zeeman shifts to ~3.5 x 10-¹² after about 2500 s of averaging. For accelerometry applications, Raman ARP provided efficient, large momentum transfer (LMT) atom optics in an acceleration-sensitive LPAI. These atom optics produced momentum splittings of up to 30 photon recoil momenta between interfering wavepackets-the largest to date for Raman atom optics. This splitting, in principle, enables up to a factor-of-15 improvement in sensitivity over the nominal interferometer. By forgoing cooling methods that reduce atom number, this LMT method reduces the measurement uncertainty due to atom shot-noise and enables large area atom interferometry at higher data-rates. These features could prove useful for fielded inertial sensors based on atom interferometry.
by Krish Kotru.
Ph. D.
Libri sul tema "Accelerometry"
Shephard, Roy J., e Catrine Tudor-Locke, a cura di. The Objective Monitoring of Physical Activity: Contributions of Accelerometry to Epidemiology, Exercise Science and Rehabilitation. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-29577-0.
Testo completoDauderstädt, Ulrike Anna. A thermal accelerometer. Delft: Delft University Press, 1999.
Cerca il testo completoOlcott, Joanne E. Fiber-optic flexural disk accelerometer. Monterey, Calif: Naval Postgraduate School, 1991.
Cerca il testo completoLevinzon, Felix. Piezoelectric Accelerometers with Integral Electronics. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-08078-9.
Testo completoVarum, Humberto, e Sérgio de Brito André. Accelerometers: Principles, structure and applications. Hauppauge, New York: Nova Science Publishers, Inc., 2011.
Cerca il testo completoB, Rogers Melissa J., e United States. National Aeronautics and Space Administration., a cura di. Accelerometer data analysis and presentation techniques. [Washington, D.C: National Aeronautics and Space Administration, 1997.
Cerca il testo completoA, Rogers John, e Geological Survey (U.S.), a cura di. Relative performance of several inexpensive accelerometers. [Reston, Va.]: U.S. Dept. of the Interior, U.S. Geological Survey, 1995.
Cerca il testo completoC, Blanchard Robert, Larman K. T e Langley Research Center, a cura di. Improved HIRAP flight calibration technique. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1992.
Cerca il testo completoXu, Yong Ping. MEMS Silicon Oscillating Accelerometers and Readout Circuits. New York: River Publishers, 2022. http://dx.doi.org/10.1201/9781003338826.
Testo completoJohn, Lekki, e NASA Glenn Research Center, a cura di. A self-diagnostic system for the M6 accelerometer. [Cleveland, Ohio]: National Aeronautics and Space Administration, Glenn Research Center, 2001.
Cerca il testo completoCapitoli di libri sul tema "Accelerometry"
Abrams, David B., J. Rick Turner, Linda C. Baumann, Alyssa Karel, Susan E. Collins, Katie Witkiewitz, Terry Fulmer et al. "Accelerometry". In Encyclopedia of Behavioral Medicine, 12. New York, NY: Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4419-1005-9_100008.
Testo completoSchwintzer, Peter, Z. Kang e F. Perosanz. "Accelerometry Aboard CHAMP". In International Association of Geodesy Symposia, 197–200. Berlin, Heidelberg: Springer Berlin Heidelberg, 2000. http://dx.doi.org/10.1007/978-3-642-59745-9_39.
Testo completoConnes, Pierre. "Absolute Astronomical Accelerometry". In Seismology of the Sun and the Distant Stars, 403–4. Dordrecht: Springer Netherlands, 1986. http://dx.doi.org/10.1007/978-94-009-4608-8_43.
Testo completoConnes, Pierre. "Development of Absolute Accelerometry". In Planetary Systems: Formation, Evolution, and Detection, 357–67. Dordrecht: Springer Netherlands, 1994. http://dx.doi.org/10.1007/978-94-011-1154-6_37.
Testo completoInnerd, Paul. "The technology of accelerometry". In Physical Activity Assessment, 141–57. New York : Routledge, 2020.: Routledge, 2019. http://dx.doi.org/10.4324/9781315163260-8.
Testo completoSanso, Fernando, A. Albertella, G. Bianco, A. Della Torre, M. Fermi, V. Iafolla, A. Lenti, F. Migliaccio, A. Milani e A. Rossi. "SAGE: An Italian Project of Satellite Accelerometry". In International Association of Geodesy Symposia, 193–96. Berlin, Heidelberg: Springer Berlin Heidelberg, 2000. http://dx.doi.org/10.1007/978-3-642-59745-9_38.
Testo completoVeltink, P. H., e H. B. K. Boom. "3D Movement Analysis Using Accelerometry — Theoretical Concepts". In Neuroprosthetics: from Basic Research to Clinical Applications, 317–25. Berlin, Heidelberg: Springer Berlin Heidelberg, 1996. http://dx.doi.org/10.1007/978-3-642-80211-9_39.
Testo completoAmor, J. D., e C. J. James. "Personalized Ambient Monitoring: Accelerometry for Activity Level Classification". In IFMBE Proceedings, 866–70. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-540-89208-3_207.
Testo completoAminian, Kamiar, Eduardo De Andres, Karen Rezakhanlou, Carlo Fritsch, Y. Schutz, Michèle Depairon, Pierre-François Leyvraz e Philippe Robert. "Motion Analysis in Clinical Practice Using Ambulatory Accelerometry". In Modelling and Motion Capture Techniques for Virtual Environments, 1–11. Berlin, Heidelberg: Springer Berlin Heidelberg, 1998. http://dx.doi.org/10.1007/3-540-49384-0_1.
Testo completoMartinikorena, Ion, Alicia Martínez-Ramírez, Pablo Lecumberri, Nora Millor, Marisol Gómez e Mikel Izquierdo. "Frailty Assessment Based on Trunk Accelerometry during Walking". In Biosystems & Biorobotics, 537–42. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-08072-7_79.
Testo completoAtti di convegni sul tema "Accelerometry"
Agrawal, Aman R., Mitul Dey Chowdhury, Christian M. Pluchar e Dalziel Wilson. "Membrane-based optomechanical accelerometry". In CLEO: Applications and Technology. Washington, D.C.: OSA, 2021. http://dx.doi.org/10.1364/cleo_at.2021.jtu2i.3.
Testo completoZhu, Ruoxi, Zifan Zhou, Jason Bonacum e Selim Shahriar. "Slow Light Enhanced Accelerometry". In Frontiers in Optics. Washington, D.C.: Optica Publishing Group, 2022. http://dx.doi.org/10.1364/fio.2022.jtu4b.8.
Testo completoZahnd, Etienne, Faezeh Movahedi, James L. Coyle, Ervin Sejdić e Prahlad G. Menon. "Correlating Tri-Accelerometer Swallowing Vibrations and Hyoid Bone Movement in Patients With Dysphagia". In ASME 2016 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2016. http://dx.doi.org/10.1115/imece2016-66133.
Testo completoGarnotel, M., C. Simon e S. Bonnet. "Physical activity estimation from accelerometry". In 2019 41st Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC). IEEE, 2019. http://dx.doi.org/10.1109/embc.2019.8856957.
Testo completoXu, Min, Albert Goldfain, Atanu Roy Chowdhury e Jim DelloStritto. "Towards accelerometry based static posture identification". In 2011 IEEE Consumer Communications and Networking Conference (CCNC). IEEE, 2011. http://dx.doi.org/10.1109/ccnc.2011.5766477.
Testo completo"MECHANOMYOGRAPHIC SENSOR - A Triaxial Accelerometry Approach". In International Conference on Biomedical Electronics and Devices. SciTePress - Science and and Technology Publications, 2008. http://dx.doi.org/10.5220/0001054601760179.
Testo completoVasilyev, Vladimir, Vasilii Borisov e Alexey Syskov. "Accelerometry for Human Activity Recognition: an Overview". In 2021 IEEE Ural-Siberian Conference on Computational Technologies in Cognitive Science, Genomics and Biomedicine (CSGB). IEEE, 2021. http://dx.doi.org/10.1109/csgb53040.2021.9496042.
Testo completoKusmakar, Shitanshu, Chandan K. Karmakar, Bernard Yan, Terence J. O'Brien, Ramanathan Muthuganapathy e Marimuthu Palaniswami. "Onset Detection of Epileptic Seizures From Accelerometry Signal". In 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). IEEE, 2018. http://dx.doi.org/10.1109/embc.2018.8513669.
Testo completoPandia, Keya, Sourabh Ravindran, Gregory T. A. Kovacs, Laurent Giovangrandi e Randy Cole. "Chest-accelerometry for hemodynamic trending during valsalva-recovery". In 2010 3rd International Symposium on Applied Sciences in Biomedical and Communication Technologies (ISABEL 2010). IEEE, 2010. http://dx.doi.org/10.1109/isabel.2010.5702877.
Testo completoRussell, James, Dana Zive e Mohamud Daya. "Effect of Chest Compression Leaning on Accelerometry Waveforms". In 2016 Computing in Cardiology Conference. Computing in Cardiology, 2016. http://dx.doi.org/10.22489/cinc.2016.295-322.
Testo completoRapporti di organizzazioni sul tema "Accelerometry"
Siebert, Christopher. Heart Rate and Accelerometry during Singles Footbag Net Play. Portland State University Library, gennaio 2000. http://dx.doi.org/10.15760/etd.650.
Testo completoButler, Michelle A., Brandon K. Doan, Michael Hanna, Gina A. Adam, Al Wile, Brian Self, Kristin J. Heaton, Teresa Brininger e Elizabeth Kryskow. An Investigation of Head Accelerometry, Cognitive Function, and Brain Blood Flow During Intercollegiate Boxing and its Impact Regarding Head Injury Assessment In Combat. Fort Belvoir, VA: Defense Technical Information Center, settembre 2010. http://dx.doi.org/10.21236/ada564443.
Testo completoHamlin, Alexandra, Erik Kobylarz, James Lever, Susan Taylor e Laura Ray. Assessing the feasibility of detecting epileptic seizures using non-cerebral sensor. Engineer Research and Development Center (U.S.), dicembre 2021. http://dx.doi.org/10.21079/11681/42562.
Testo completoWarne, Larry Kevin, Carrie Frances Schmidt, Kenneth Allen Peterson, Stanley H. Kravitz, Rosemarie A. Renn, Frank J. Peter, Ragon D. Kinney e Jeffrey C. Gilkey. Levitated micro-accelerometer. Office of Scientific and Technical Information (OSTI), giugno 2004. http://dx.doi.org/10.2172/919151.
Testo completoKoehler, D. R., S. H. Kravitz e P. T. Vianco. Ultraminiature resonator accelerometer. Office of Scientific and Technical Information (OSTI), aprile 1996. http://dx.doi.org/10.2172/231652.
Testo completoPorterfield, Malcolm Kenneth. Accelerometer Drift Study. Office of Scientific and Technical Information (OSTI), febbraio 2020. http://dx.doi.org/10.2172/1601376.
Testo completoBalls, J. D. Neurological Diagnostic Accelerometer. Office of Scientific and Technical Information (OSTI), maggio 2000. http://dx.doi.org/10.2172/755833.
Testo completoAmmerman, D. J., M. M. Madsen, W. L. Uncapher, D. R. Stenberg e D. R. Bronowski. Accelerometer and strain gage evaluation. Office of Scientific and Technical Information (OSTI), giugno 1991. http://dx.doi.org/10.2172/5213009.
Testo completoMATERIALS SYSTEMS INC LITTLETON MA. 1-3 Composite Accelerometer Array. Fort Belvoir, VA: Defense Technical Information Center, settembre 1994. http://dx.doi.org/10.21236/ada299622.
Testo completoSoh, Daniel, Jongmin Lee e Peter Schwindt. Modeling of Atom Interferometer Accelerometer. Office of Scientific and Technical Information (OSTI), settembre 2020. http://dx.doi.org/10.2172/1670252.
Testo completo