Littérature scientifique sur le sujet « Zn-air battery »

Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres

Choisissez une source :

Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « Zn-air battery ».

À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.

Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.

Articles de revues sur le sujet "Zn-air battery"

1

Chen, Jianping, Bangqing Ni, Jiugang Hu, Zexing Wu et Wei Jin. « Defective graphene aerogel-supported Bi–CoP nanoparticles as a high-potential air cathode for rechargeable Zn–air batteries ». Journal of Materials Chemistry A 7, no 39 (2019) : 22507–13. http://dx.doi.org/10.1039/c9ta07669g.

Texte intégral
Résumé :
Bi–CoP nanoparticles supported on N, P doped defective graphene aerogel (Bi–CoP–P-DG) electrocatalyst presents excellent catalytic performances for OER, ORR and Zn–air battery. Moreover, the home-made Zn–air battery can drive overall water-splitting.
Styles APA, Harvard, Vancouver, ISO, etc.
2

Katsaiti, Maria, Evangelos Papadogiannis, Vassilios Dracopoulos, Anastasios Keramidas et Panagiotis Lianos. « Solar charging of a Zn-air battery ». Journal of Power Sources 555 (janvier 2023) : 232384. http://dx.doi.org/10.1016/j.jpowsour.2022.232384.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Song, Dongmei, Changgang Hu, Zijian Gao, Bo Yang, Qingxia Li, Xinxing Zhan, Xin Tong et Juan Tian. « Metal–Organic Frameworks (MOFs) Derived Materials Used in Zn–Air Battery ». Materials 15, no 17 (24 août 2022) : 5837. http://dx.doi.org/10.3390/ma15175837.

Texte intégral
Résumé :
It is necessary to develop new energy technologies because of serious environmental problems. As one of the most promising electrochemical energy conversion and storage devices, the Zn–air battery has attracted extensive research in recent years due to the advantages of abundant resources, low price, high energy density, and high reduction potential. However, the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) of Zn–air battery during discharge and charge have complicated multi-electron transfer processes with slow reaction kinetics. It is important to develop efficient and stable oxygen electrocatalysts. At present, single-function catalysts such as Pt/C, RuO2, and IrO2 are regarded as the benchmark catalysts for ORR and OER, respectively. However, the large-scale application of Zn–air battery is limited by the few sources of the precious metal catalysts, as well as their high costs, and poor long-term stability. Therefore, designing bifunctional electrocatalysts with excellent activity and stability using resource-rich non-noble metals is the key to improving ORR/OER reaction kinetics and promoting the commercial application of the Zn–air battery. Metal–organic framework (MOF) is a kind of porous crystal material composed of metal ions/clusters connected by organic ligands, which has the characteristics of adjustable porosity, highly ordered pore structure, low crystal density, and large specific surface area. MOFs and their derivatives show remarkable performance in promoting oxygen reaction, and are a promising candidate material for oxygen electrocatalysts. Herein, this review summarizes the latest progress in advanced MOF-derived materials such as oxygen electrocatalysts in a Zn–air battery. Firstly, the composition and working principle of the Zn–air battery are introduced. Then, the related reaction mechanism of ORR/OER is briefly described. After that, the latest developments in ORR/OER electrocatalysts for Zn–air batteries are introduced in detail from two aspects: (i) non-precious metal catalysts (NPMC) derived from MOF materials, including single transition metals and bimetallic catalysts with Co, Fe, Mn, Cu, etc.; (ii) metal-free catalysts derived from MOF materials, including heteroatom-doped MOF materials and MOF/graphene oxide (GO) composite materials. At the end of the paper, we also put forward the challenges and prospects of designing bifunctional oxygen electrocatalysts with high activity and stability derived from MOF materials for Zn–air battery.
Styles APA, Harvard, Vancouver, ISO, etc.
4

Okobira, Tatsuya, Dang-Trang Nguyen et Kozo Taguchi. « Effectiveness of doping zinc to the aluminum anode on aluminum-air battery performance ». International Journal of Applied Electromagnetics and Mechanics 64, no 1-4 (10 décembre 2020) : 57–64. http://dx.doi.org/10.3233/jae-209307.

Texte intégral
Résumé :
Many efforts have been devoted to the improvement of metal-air batteries. Aluminum (Al) is the most abundant metal in the Earth’s crust and has high electrochemical potential. Therefore, the aluminum-air battery is one of the most attractive metal-air batteries. To overcome some disadvantages of the aluminum-air battery, some alloys of aluminum and several metals have been proposed. In this study, the performance improvement of the aluminum-air battery by doping zinc (Zn) to the aluminum anode was investigated. Zinc was doped to aluminum by a simple process. The difference in the characteristics of Zn-doped Al due to different heating temperature during the doping process was also investigated. The maximum power density of the battery was 2.5 mW/cm2.
Styles APA, Harvard, Vancouver, ISO, etc.
5

Mohamad, A. A. « Zn/gelled 6M KOH/O2 zinc–air battery ». Journal of Power Sources 159, no 1 (septembre 2006) : 752–57. http://dx.doi.org/10.1016/j.jpowsour.2005.10.110.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Wang, Yueyang, Jie Liu, Yuping Feng, Ningyuan Nie, Mengmeng Hu, Jiaqi Wang, Guangxing Pan, Jiaheng Zhang et Yan Huang. « An intrinsically stretchable and compressible Zn–air battery ». Chemical Communications 56, no 35 (2020) : 4793–96. http://dx.doi.org/10.1039/d0cc00823k.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Deyab, M. A., et G. Mele. « Polyaniline/Zn-phthalocyanines nanocomposite for protecting zinc electrode in Zn-air battery ». Journal of Power Sources 443 (décembre 2019) : 227264. http://dx.doi.org/10.1016/j.jpowsour.2019.227264.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Feng, Yunxiao, Changdong Chen, Yanling Li, Ming La et Yongjun Han. « Zn/CoP polyhedron as electrocatalyst for water splitting and Zn-air battery ». International Journal of Electrochemical Science 18, no 6 (juin 2023) : 100153. http://dx.doi.org/10.1016/j.ijoes.2023.100153.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Marsudi, Maradhana Agung, Yuanyuan Ma, Bagas Prakoso, Jayadi Jaya Hutani, Arie Wibowo, Yun Zong, Zhaolin Liu et Afriyanti Sumboja. « Manganese Oxide Nanorods Decorated Table Sugar Derived Carbon as Efficient Bifunctional Catalyst in Rechargeable Zn-Air Batteries ». Catalysts 10, no 1 (1 janvier 2020) : 64. http://dx.doi.org/10.3390/catal10010064.

Texte intégral
Résumé :
Despite its commercial success as a primary battery, Zn-air battery is struggling to sustain a reasonable cycling performance mainly because of the lack of robust bifunctional electrocatalysts which smoothen the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) taking place on its air-cathode. Composites of carbon/manganese oxide have emerged as a potential solution with high catalytic performance; however, the use of non-renewable carbon sources with tedious and non-scalable synthetic methods notably compromised the merit of being low cost. In this work, high quantity of carbon is produced from renewable source of readily available table sugar by a facile room temperature dehydration process, on which manganese oxide nanorods are grown to yield an electrocatalyst of MnOx@AC-S with high oxygen bifunctional catalytic activities. A Zn-air battery with the MnOx@AC-S composite catalyst in its air-cathode delivers a peak power density of 116 mW cm−2 and relatively stable cycling performance over 215 discharge and charge cycles. With decent performance and high synthetic yield achieved for the MnOx@AC-S catalyst form a renewable source, this research sheds light on the advancement of low-cost yet efficient electrocatalyst for the industrialization of rechargeable Zn-air battery.
Styles APA, Harvard, Vancouver, ISO, etc.
10

Deiss, E., F. Holzer et O. Haas. « Modeling of an electrically rechargeable alkaline Zn–air battery ». Electrochimica Acta 47, no 25 (septembre 2002) : 3995–4010. http://dx.doi.org/10.1016/s0013-4686(02)00316-x.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.

Thèses sur le sujet "Zn-air battery"

1

Hsu, Shih-Hua, et 許世華. « A study of zinc corrosion and electrodeposition- properties of Zn-Ni battery and Zn-Air battery ». Thesis, 2001. http://ndltd.ncl.edu.tw/handle/80962084659440947996.

Texte intégral
Résumé :
碩士
國立清華大學
材料科學工程學系
89
Because zinc has high energy capacity and very cheap, we focus on its application for secondary battery in recent years. But there are some disadvantages for zinc electrode on actual application such as: zinc corrosion in concentrated alkaline solutions and zinc oxide produced after discharging dissolved in electrolyte, it will lower energy capacity. The purpose of this study is to discuss zinc corrosion while using electrolyte which was made by 5M,6M and 7M concentrated potassium hydroxide solution and some additives :EDTA, poly ethylene glycol(PEG)200, poly ethylene glycol(PEG)300 and poly ethylene glycol(PEG)600 etc. The negative electrodes using in testing cycle life of battery were made by electrodeposition and the electrolytes were the same as using in zinc corrosion. We expect our electrolyte has two function of preventing zinc corrosion and maintaining discharge capacity. Our result shows that higher average molecule weight of poly ethylene glycol has better preventing zinc corrosion. After a series of cycle life testing, it shows that 0.8%wt EDTA and 0 .2%wt poly ethylene glycol (600) added in 6M concentrated potassium hydroxide solution saturated by zinc oxide has good performance for maintaining high discharge capacity. We put zinc electrode which is made by electrodeposition in 6M concentrated potassium hydroxide solution saturated by zinc oxide and added by 0.8%wt EDTA and 0 .2%wt poly ethylene glycol (600) in some different conditions, charged by several current 100mA, 200mA and 300mA and discharged by the same current, 0.15A, in order to find out the suitable condition for cycling. It shows that higher charging current has better performance for keeping discharge capacity. Finally, we use zinc electrode which is made by electrodeposition in zinc-air battery application, it has discharge capacity, 573mAh/g. For testing polarization on zinc-air battery, we change some different constant discharge current, 1mA, 5mA, 10mA and 20mA to measuring the effects of battery voltage.
Styles APA, Harvard, Vancouver, ISO, etc.

Chapitres de livres sur le sujet "Zn-air battery"

1

Peng, Shengjie. « Electrolyte of Zn-Air Battery ». Dans Zinc-Air Batteries, 175–89. Singapore : Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-19-8214-9_5.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Peng, Shengjie. « Anode of Zn-Air Battery ». Dans Zinc-Air Batteries, 157–73. Singapore : Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-19-8214-9_4.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Peng, Shengjie, et P. Robert Ilango. « Electrospinning of Nanofibers for Zn-Air Battery ». Dans Electrospinning of Nanofibers for Battery Applications, 121–39. Singapore : Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-1428-9_6.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Liu, Yiyang, Tasnim Munshi, Jennifer Hack, Ian Scowen, Paul R. Shearing, Guanjie He et Dan J. L. Brett. « Biowaste-Derived Components for Zn–Air Battery ». Dans Energy from Waste, 313–28. Boca Raton : CRC Press, 2022. http://dx.doi.org/10.1201/9781003178354-25.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Wu, Mingjie, Gaixia Zhang, Hariprasad Ranganathan et Shuhui Sun. « Zn-Air Battery Application of Atomically Dispersed Metallic Materials ». Dans Atomically Dispersed Metallic Materials for Electrochemical Energy Technologies, 209–37. Boca Raton : CRC Press, 2022. http://dx.doi.org/10.1201/9781003153436-6.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Zhang, Lei, Yuan-Xin Zhu et Guang-Zhi Hu. « MOFs-derived hollow structure as a versatile platform for highly-efficient multifunctional electrocatalyst toward overall water-splitting and Zn-air battery ». Dans Nanomaterials for Electrocatalysis, 251–70. Elsevier, 2022. http://dx.doi.org/10.1016/b978-0-323-85710-9.00004-6.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.

Actes de conférences sur le sujet "Zn-air battery"

1

Makyeyeva, I. S., et A. S. Katashinskii. « MnO2 nanoparticles as a catalyst for the air electrode of a Zn/air battery ». Dans 2017 IEEE 7th International Conference "Nanomaterials : Application & Properties" (NAP). IEEE, 2017. http://dx.doi.org/10.1109/nap.2017.8190235.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Alcázar, Héctor B. Sierra, et Phu D. Nguyen. « Additives to Increase the Discharge Capacity of the Moving Bed Zn/Air Battery ». Dans 22nd Intersociety Energy Conversion Engineering Conference. Reston, Virginia : American Institute of Aeronautics and Astronautics, 1987. http://dx.doi.org/10.2514/6.1987-9397.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Mahbub, Muhammad Adib Abdillah, Anggraeni Mulyadewi, Celfi Gustine Adios et Afriyanti Sumboja. « Sustainable chicken manure-derived carbon as a metal-free bifunctional electrocatalyst in Zn-air battery ». Dans THE INTERNATIONAL CONFERENCE ON ADVANCED MATERIAL AND TECHNOLOGY (ICAMT) 2021. AIP Publishing, 2022. http://dx.doi.org/10.1063/5.0106289.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Zamri, S. N. A. M., M. N. Masri, M. H. Hussin, W. M. I. W. Ismail et M. A. Sulaiman. « Electrochemical properties of Bacto-agar and commercial agar applying in porous zinc anode for Zn-air battery ». Dans MATERIALS CHARACTERIZATION USING X-RAYS AND RELATED TECHNIQUES. Author(s), 2019. http://dx.doi.org/10.1063/1.5089352.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Thakur, Pallavi, et Tharangattu N. Narayanan. « Towards Advanced Rechargeable Metal (Zn, Li)-air (O2) Battery Systems Using Electrode and Electrolyte Engineering ». Dans 2022 IEEE International Conference on Emerging Electronics (ICEE). IEEE, 2022. http://dx.doi.org/10.1109/icee56203.2022.10118265.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Nous offrons des réductions sur tous les plans premium pour les auteurs dont les œuvres sont incluses dans des sélections littéraires thématiques. Contactez-nous pour obtenir un code promo unique!

Vers la bibliographie