Articles de revues sur le sujet « Zirconium-91 »

Pour voir les autres types de publications sur ce sujet consultez le lien suivant : Zirconium-91.

Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres

Choisissez une source :

Consultez les 50 meilleurs articles de revues pour votre recherche sur le sujet « Zirconium-91 ».

À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.

Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.

Parcourez les articles de revues sur diverses disciplines et organisez correctement votre bibliographie.

1

Carlisle, B. B., R. J. C. Brown et T. J. Bastow. « Zirconium-91 NQR in zircon ». Journal of Physics : Condensed Matter 3, no 20 (20 mai 1991) : 3675–76. http://dx.doi.org/10.1088/0953-8984/3/20/029.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

NAKAMURA, Shoji, Hideo HARADA, Subramanian RAMAN et Paul E. KOEHLER. « Thermal Neutron Capture Cross Sections of Zirconium-91 and Zirconium-93 by Prompt γ-ray Spectroscopy ». Journal of Nuclear Science and Technology 44, no 1 (janvier 2007) : 21–28. http://dx.doi.org/10.1080/18811248.2007.9711252.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Kilpatrick, Alexander F. R., Nicholas H. Rees, Zoë R. Turner, Jean-Charles Buffet et Dermot O’Hare. « Physicochemical surface-structure studies of highly active zirconocene polymerisation catalysts on solid polymethylaluminoxane activating supports ». Materials Chemistry Frontiers 4, no 11 (2020) : 3226–33. http://dx.doi.org/10.1039/d0qm00482k.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Résumé :
Static 91Zr ssNMR, SEM-EDX, and DRIFT spectroscopy indicate that a common zirconium species, [CpR2ZrMe]+, is present in all sMAO supported catalyst systems.
4

Hackett, P. A., H. D. Morrison, O. L. Bourne, B. Simard et D. M. Rayner. « Pulsed single-mode laser ionization of hyperfine levels of zirconium-91 ». Journal of the Optical Society of America B 5, no 12 (1 décembre 1988) : 2409. http://dx.doi.org/10.1364/josab.5.002409.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Lanre, Mahmud S., Ahmed E. Abasaeed, Anis H. Fakeeha, Ahmed A. Ibrahim, Abdulrahman S. Al-Awadi, Abdulrahman bin Jumah, Fahad S. Al-Mubaddel et Ahmed S. Al-Fatesh. « Lanthanum–Cerium-Modified Nickel Catalysts for Dry Reforming of Methane ». Catalysts 12, no 7 (29 juin 2022) : 715. http://dx.doi.org/10.3390/catal12070715.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Résumé :
The catalyst MNi0.9Zr0.1O3 (M = La, Ce, and Cs) was prepared using the sol–gel preparation technique investigated for the dry reforming of methane reaction to examine activity, stability, and H2/CO ratio. The lanthanum in the catalyst LaNi0.9Zr0.1O3 was partially substituted for cerium and zirconium for yttrium to give La0.6Ce0.4Ni0.9Zr0.1-xYxO3 (x = 0.05, 0.07, and 0.09). The La0.6Ce0.4Ni0.9Zr0.1-xYxO3 catalyst’s activity increases with an increase in yttrium loading. The activities of the yttrium-modified catalysts La0.6Ce0.4Ni0.9Zr0.03Y0.07O3 and La0.6Ce0.4Ni0.9Zr0.01Y0.09O3 are higher than the unmodified La0.6Ce0.4Ni0.9Zr0.1O3 catalyst, the latter having methane and carbon dioxide conversion values of 84% and 87%, respectively, and the former with methane and carbon dioxide conversion values of 86% and 90% for La0.6Ce0.4Ni0.9Zr0.03Y0.07O3 and 89% and 91% for La0.6Ce0.4Ni0.9Zr0.01Y0.09O3, respectively. The BET analysis depicted a low surface area of samples ranging from 2 to 9m2/g. The XRD peaks confirmed the formation of a monoclinic phase of zirconium. The TPR showed that apparent reduction peaks occurred in moderate temperature regions. The TGA curve showed weight loss steps in the range 773 K–973 K, with CsNi0.9Zr0.1O3 carbon deposition being the most severe. The coke deposit on La0.6Ce0.4Ni0.9Zr0.1O3 after 7h time on stream (TOS) was the lowest, with 20% weight loss. The amount of weight loss increases with a decrease in zirconium loading.
6

Zhao, Z. W., B. K. Tay, G. Q. Yu et S. P. Lau. « Nanocrystalline Zirconium Oxide Thin Films Prepared by Filtered Cathodic Vacuum Arc ». Journal of Metastable and Nanocrystalline Materials 23 (janvier 2005) : 63–66. http://dx.doi.org/10.4028/www.scientific.net/jmnm.23.63.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Résumé :
Zirconium oxide thin films were deposited at room temperature by using off-plane filtered cathodic vacuum arc (FCVA). Deposition rate, film structure, compositional analysis and optical properties are studied as a function of working pressure. Deposition rate as high as 53 nm/min could be achieved. As increasing working pressure, the film structure changes from Zr-O solid solution, to monoclinic structure with preferred orientation and finally to randomly oriented nanocrystalline structure. The averaged crystal size increases with working pressure and is less than 15 nm. The ratio of O/Zr increases with working pressure as well as transmittance and good stoichiometric film could be achieved with high transmittance of 91% at high working pressure.
7

Bühl, Michael, Gudrun Hopp, Wolfgang von Philipsborn, Stefan Beck, Marc-Heinrich Prosenc, Ursula Rief et Hans-Herbert Brintzinger. « Zirconium-91 Chemical Shifts and Line Widths as Indicators of Coordination Geometry Distortions in Zirconocene Complexes† ». Organometallics 15, no 2 (janvier 1996) : 778–85. http://dx.doi.org/10.1021/om950757c.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Reader, Joseph, et Mark D. Lindsay. « Corrigendum : Spectrum and energy levels of five-times ionized zirconium (Zr VI) (2016 Phys. Scr. 91 025401) ». Physica Scripta 92, no 3 (13 février 2017) : 039501. http://dx.doi.org/10.1088/1402-4896/aa5943.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Carulli, Christian, Matteo Innocenti, Rinaldo Tambasco, Alessandro Perrone et Roberto Civinini. « Total Knee Arthroplasty in Haemophilia : Long-Term Results and Survival Rate of a Modern Knee Implant with an Oxidized Zirconium Femoral Component ». Journal of Clinical Medicine 12, no 13 (28 juin 2023) : 4356. http://dx.doi.org/10.3390/jcm12134356.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Résumé :
(1) Background: Total Knee Arthroplasty (TKA) in patient with haemophilia (PWH) has usually been performed with the use of cobalt-chrome femoral and titanium tibial components, coupled with standard polyethylene (PE) inserts. The aim of this retrospective study was to evaluate the long-term outcomes and survival rates of TKA in a series of consecutive PWH affected by severe knee arthropathy at a single institution. (2) Methods: We followed 65 patients undergoing 91 TKA, implanted using the same implant, characterized by an oxidized zirconium femoral component, coupled with a titanium tibial component, and a highly crosslinked PE. At 1, 6, and 12 months; then every year for 5 years; and finally, every other 3 years, all patients were scored for pain (VAS), function (HJHS; KSS), ROM, and radiographic changes. Kaplan–Meier survivorship curves were used to calculate the implant survival rates. (3) Results: The mean follow-up was 12.3 years (4.2–20.6). All clinical and functional scores improved significantly from preoperatively to the latest follow-up (VAS: from 6.9 to 1.3; HJHS: from 13.4 to 1.9; KSS: from 19.4 to 79; ROM: from 42.4° to 83.6°). The overall survivorship of the implants was 97.5% at the latest follow-up. (4) Conclusions: The present series showed a high survival rate of specific implants potentially linked to the choice of an oxidized zirconium coupled with a highly crosslinked PE. We promote the use of modern implants in these patients in order to ensure long-lasting positive outcomes.
10

Voronina, A. V., et N. V. Belokonova. « Determination of <sup>90</sup>sr in natural waters and water from observing wells at radioactive waste long-term storage and final disposal facilities ». Радиохимия 65, no 4 (15 août 2023) : 380–92. http://dx.doi.org/10.31857/s0033831123040093.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Résumé :
The optimal conditions for pre-concentration of 90Sr from natural water samples by a T-3K carbonate-containing zirconium dioxide were determined. A method for determination of 90Sr in natural water samples was developed using the T-3K sorbent; the method provides as low detection limits as 0.03 Bq/L for 1L water samples and 0.02 Bq/L for 2L water samples. The method was tested on monitoring of 90Sr in natural water bodies at Sverdlovsk and Chelyabinsk regions as well as in waters of control and observation wells on the territory of a radioactive waste long-term storage facility. It was shown that the developed method can be used without control of strontium chemical yield in case of natural water samples containing up to 76 mg/L of Ca and 5.2 mmol/L of hardness salts taking into account the average strontium chemical yields of 91 ± 1% for 1L water samples and 81 ± 2%, for 2L water samples. In case of water samples with a higher hardness, the dependences of strontium yield on Ca concentration or hardness presented in this paper may be used for evaluation of strontium yield.
11

Siedle, A. R., R. A. Newmark, W. B. Gleason et W. M. Lamanna. « Reactions of bis(cyclopentadienyl)dimethylzirconium with fluorocarbon acids. Structure, dynamic properties, and zirconium-91 NMR spectra of (C5H5)2Zr[HC(SO2CF3)2-O,O'][HC(SO2CF3)2-O] ». Organometallics 9, no 4 (avril 1990) : 1290–95. http://dx.doi.org/10.1021/om00118a061.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
12

Zaitsev, A. N., C. T. Williams, S. N. Britvin, I. V. Kuznetsova, J. Spratt, S. V. Petrov et J. Keller. « Kerimasite, Ca3Zr2(Fe23+Si)O12, a new garnet from carbonatites of Kerimasi volcano and surrounding explosion craters, northern Tanzania ». Mineralogical Magazine 74, no 5 (octobre 2010) : 803–20. http://dx.doi.org/10.1180/minmag.2010.074.5.803.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Résumé :
AbstractKerimasite, ideally is a new calcium zirconium silicate-ferrite member of the garnet group from the extinct nephelinitic volcano Kerimasi and surrounding explosion craters in northern Tanzania. The mineral occurs as subhedral crystals up to 100 μm in size in calcite carbonatites, and as euhedral to subhedral crystals up to 180 μm in size in carbonatite eluvium. Kerimasite is light to dark-brown in colour and transparent with a vitreous lustre. No cleavage or parting was observed and the mineral is brittle. The calculated density is 4.105(1) g/cm3. The micro-indentation, VHN25, ranges from 1168 to 1288 kg/mm2. Kerimasite is isotropic with n = 1.945(5). The average chemical formula of the mineral derived from electron microprobe analyses (sample K 94-25) and calculated for O = 12 and all Fe as Fe2O3 is (Ca3.00Mn0.01Ce0.01Nd0.01)Σ3.03(Zr1.72Nb0.14Ti0.08Mg0.02Y0.02)Σ1.98(Ti0.09)Σ3.00O12. The largest Fe content determined in kerimasite is 21.6 wt.% Fe2O3 and this value corresponds to 1.66 a.p.f.u. in the tetrahedral site. Kerimasite is cubic, space group with a = 12.549(1) Å, V = 1976.2(4) Å3 and Z = 8. The five strongest powder-diffraction lines [d in Å, (I/Io), hkl] are: 4.441 (49) (220), 3.140 (91) (400), 2.808 (70) (420), 2.564 (93) (422) and 1.677 (100) (642). Single-crystal structure refinement revealed the typical structure of the garnet-group minerals. The name is given after the locality, Kerimasi volcano, Tanzania.
13

Pérez, Nerea, Xiao-Lin Qi, Shibin Nie, Pablo Acuña, Ming-Jun Chen et De-Yi Wang. « Flame Retardant Polypropylene Composites with Low Densities ». Materials 12, no 1 (5 janvier 2019) : 152. http://dx.doi.org/10.3390/ma12010152.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Résumé :
Polypropylene (PP) is currently widely used in areas requiring lightweight materials because of its low density. Due to the intrinsic flammability, the application of PP is restricted in many conditions. Aluminum trihydroxide (ATH) is reported as a practical flame retardant for PP, but the addition of ATH often diminishes the lightweight advantage of PP. Therefore, in this work, glass bubbles (GB) and octacedylamine-modified zirconium phosphate (mZrP) are introduced into the PP/ATH composite in order to lower the material density and simultaneously maintain/enhance the flame retardancy. A series of PP composites have been prepared to explore the formulation which can endow the composite with balanced flame retardancy, good mechanical properties, and low density. The morphology, thermal stability, flame retardancy, and mechanical properties of the composites were characterized. The results indicated the addition of GB could reduce the density, but decreased the flame retardancy of PP composites at the same time. To overcome this defect, ATH and mZrP with synergetic effect of flame retardancy were added into the composite. The dosage of each additive was optimized for achieving a balance of flame retardancy, good mechanical properties, and density. With 47 wt % ATH, 10 wt % GB, and 3 wt % mZrP, the peak heat release rate (pHRR) and total smoke production (TSP) of the composite PP-4 were reduced by 91% and 78%, respectively. At the same time, increased impact strength was achieved compared with neat PP and the composite with ATH only. Maintaining the flame retardancy and mechanical properties, the density of composite PP-4 (1.27 g·cm−3) is lower than that with ATH only (PP-1, 1.46 g·cm−3). Through this research, we hope to provide an efficient approach to designing flame retardant polypropylene (PP) composites with low density.
14

SZIRTES, L., et A. RAIEH. « Preparation of some intercalation compounds of layered γ-zirconium phosphate and zirconium phosphate-phosphite ». Solid State Ionics 46, no 1-2 (mai 1991) : 69–72. http://dx.doi.org/10.1016/0167-2738(91)90130-4.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
15

King, B. V., S. G. Puranik et R. J. MacDonald. « Low-energy ion mixing in zirconium ». Nuclear Instruments and Methods in Physics Research Section B : Beam Interactions with Materials and Atoms 59-60 (juillet 1991) : 550–53. http://dx.doi.org/10.1016/0168-583x(91)95277-k.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
16

Bhanumurthy, K., G. B. Kale et S. K. Khera. « Reaction diffusion in the zirconium-iron system ». Journal of Nuclear Materials 185, no 2 (novembre 1991) : 208–13. http://dx.doi.org/10.1016/0022-3115(91)90337-7.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
17

Kuroda, R., K. Oguma, K. Kitada et S. Kozuka. « Flow analysis of silicate rocks for zirconium ». Talanta 38, no 10 (octobre 1991) : 1119–23. http://dx.doi.org/10.1016/0039-9140(91)80229-s.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
18

Kapinos, V. G., Yu N. Osetskii et P. A. Platonov. « Simulation of defect cascade collapse in hcp zirconium ». Journal of Nuclear Materials 184, no 2 (septembre 1991) : 127–43. http://dx.doi.org/10.1016/0022-3115(91)90503-y.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
19

Stauder, B., et C. Frantz. « Mise en evidence d'une phase omega dans des films minces de zirconium et zirconium-oxygene realises par pulverisation cathodique magnetron ». Scripta Metallurgica et Materialia 25, no 9 (septembre 1991) : 2127–32. http://dx.doi.org/10.1016/0956-716x(91)90286-a.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
20

Alexandre, N., et M. Desmaison-Brut. « Reactivity in oxygen of a HIPed zirconium nitride material ». Journal of the European Ceramic Society 8, no 5 (janvier 1991) : 285–90. http://dx.doi.org/10.1016/0955-2219(91)90122-g.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
21

Rosenthal, G. L., et J. Caruso. « Photochemical behavior of metal complexes intercalated in zirconium phosphate ». Journal of Solid State Chemistry 93, no 1 (juillet 1991) : 128–33. http://dx.doi.org/10.1016/0022-4596(91)90281-l.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
22

Donnet, C., G. Marest, N. Moncoffre, J. Tousset, A. Rahioui, C. Esnouf et M. Brunel. « Copper, iron and zirconium implantation into polycrystalline α-Al2O3 ». Nuclear Instruments and Methods in Physics Research Section B : Beam Interactions with Materials and Atoms 59-60 (juillet 1991) : 1205–10. http://dx.doi.org/10.1016/0168-583x(91)95794-e.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
23

Niiyama, Hiroyasu, Yoshimasa Tajima, Fumitaka Tsukihashi et Nobuo Sano. « Deoxidation equilibrium of solid titanium, zirconium and niobium with calcium ». Journal of the Less Common Metals 169, no 2 (mai 1991) : 209–16. http://dx.doi.org/10.1016/0022-5088(91)90069-g.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
24

SLADE, R., et J. KNOWLES. « Conductivity variations in composites of α-zirconium phosphate and alumina ». Solid State Ionics 46, no 1-2 (mai 1991) : 45–51. http://dx.doi.org/10.1016/0167-2738(91)90127-w.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
25

Sue, J. A., et H. H. Troue. « High temperature erosion behavior of titanium nitride and zirconium nitride coatings ». Surface and Coatings Technology 49, no 1-3 (décembre 1991) : 31–39. http://dx.doi.org/10.1016/0257-8972(91)90027-t.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
26

Rahioui, A., et C. Esnouf. « Microscopic aspects of copper, zirconium and iron ion implantation in alumina ». Surface and Coatings Technology 45, no 1-3 (mai 1991) : 23–31. http://dx.doi.org/10.1016/0257-8972(91)90202-8.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
27

Randon, J., A. Larbot, C. Guizard, L. Cot, M. Lindheimer et S. Partyka. « Interfacial properties of zirconium dioxide prepared by the sol-gel process ». Colloids and Surfaces 52 (janvier 1991) : 241–55. http://dx.doi.org/10.1016/0166-6622(91)80018-j.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
28

Wright, M. S., J. M. Titman et R. L. Havill. « Neutron quasi-elastic scattering from hydrogen in zirconium—nickel metallic glasses ». Journal of the Less Common Metals 172-174 (août 1991) : 915–21. http://dx.doi.org/10.1016/0022-5088(91)90220-x.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
29

Reader, Joseph, et Mark D. Lindsay. « Spectrum and energy levels of five-times ionized zirconium (Zr VI) ». Physica Scripta 91, no 2 (5 janvier 2016) : 025401. http://dx.doi.org/10.1088/0031-8949/91/2/025401.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
30

Ghosh, S., G. Talukder et A. Sharma. « Cytogenetic effects of exposure to zirconium oxychloride in human leucocyte cultures ». Toxicology in Vitro 5, no 4 (janvier 1991) : 295–99. http://dx.doi.org/10.1016/0887-2333(91)90005-x.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
31

Sánchez-Ocampo, A., et S. Bulbulian. « Comparative study of 99Mo-labeled and neutron irradiated zirconium molybdate gels ». International Journal of Radiation Applications and Instrumentation. Part A. Applied Radiation and Isotopes 42, no 11 (janvier 1991) : 1073–76. http://dx.doi.org/10.1016/0883-2889(91)90013-q.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
32

Zweit, J., S. Downey et H. L. Sharma. « Production of no-carrier-added zirconium-89 for positron emission tomography ». International Journal of Radiation Applications and Instrumentation. Part A. Applied Radiation and Isotopes 42, no 2 (janvier 1991) : 199–201. http://dx.doi.org/10.1016/0883-2889(91)90074-b.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
33

Kawamoto, Y., R. Kanno et Y. Umetani. « Alkali fluoride dependence of fluorine coordination environment of zirconium in fluorozirconate glasses ». Materials Research Bulletin 26, no 10 (octobre 1991) : 1077–83. http://dx.doi.org/10.1016/0025-5408(91)90091-y.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
34

Bardwell, Jennifer A., et Michael C. H. McKubre. « ac Impedance spectroscopy of the anodic film on zirconium in neutral solution ». Electrochimica Acta 36, no 3-4 (janvier 1991) : 647–53. http://dx.doi.org/10.1016/0013-4686(91)85153-x.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
35

Saeki, Masanobu, Yoshiyuki Yajima et Mitsuko Onoda. « Preparation and crystal structures of new barium zirconium sulfides, Ba2ZrS4 and Ba3Zr2S7 ». Journal of Solid State Chemistry 92, no 2 (juin 1991) : 286–94. http://dx.doi.org/10.1016/0022-4596(91)90336-g.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
36

Virk, I. S., et R. A. Varin. « Temperature dependence of the compressive strength of as-cast cubic zirconium trialuminides ». Scripta Metallurgica et Materialia 25, no 6 (juin 1991) : 1381–86. http://dx.doi.org/10.1016/0956-716x(91)90418-z.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
37

CASCIOLA, M., et R. PALOMBARI. « Proton-metal ion conduction in monoalkali salt forms of α-zirconium phospate ». Solid State Ionics 47, no 1-2 (août 1991) : 155–59. http://dx.doi.org/10.1016/0167-2738(91)90194-g.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
38

Ramasubramanian, N., et V. C. Ling. « Localized impedance-anodization measurements to characterize corrosion films on irradiated zirconium alloys ». Journal of Nuclear Materials 183, no 3 (août 1991) : 226–28. http://dx.doi.org/10.1016/0022-3115(91)90493-q.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
39

Yamanaka, Shinsuke, Hidenori Ogawa et Masanobu Miyake. « Effect of interstitial oxygen on hydrogen solubility in titanium, zirconium and hafnium ». Journal of the Less Common Metals 172-174 (août 1991) : 85–94. http://dx.doi.org/10.1016/0022-5088(91)90436-8.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
40

Alberti, G., M. Casciola, U. Costantino, R. Vivani et P. Zappelli. « Study of the Intercalation of Tetramethylbenzidine in Layered Zirconium Phosphates to Obtain Pillared Materials ». Materials Science Forum 91-93 (janvier 1992) : 147–52. http://dx.doi.org/10.4028/www.scientific.net/msf.91-93.147.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
41

Ozawa, Masakuni, et Mareo Kimura. « Preparation and characterization of zirconium dioxide catalyst supports modified with rare earth elements ». Journal of the Less Common Metals 171, no 2 (août 1991) : 195–212. http://dx.doi.org/10.1016/0022-5088(91)90143-r.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
42

Tomé, C. N., R. A. Lebensohn et U. F. Kocks. « A model for texture development dominated by deformation twinning : Application to zirconium alloys ». Acta Metallurgica et Materialia 39, no 11 (novembre 1991) : 2667–80. http://dx.doi.org/10.1016/0956-7151(91)90083-d.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
43

EBITANI, K. « Skeletal isomerization of hydrocarbons over zirconium oxide promoted by Platinum and Sulfate Ion ». Journal of Catalysis 130, no 1 (juillet 1991) : 257–67. http://dx.doi.org/10.1016/0021-9517(91)90108-g.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
44

ALBERTI, G., U. COSTANTINO, M. CASCIOLA, R. VIVANI et A. PERAIO. « Proton conductivity of zirconium carboxy n-alkyl phosphonates with an α-layered structure ». Solid State Ionics 46, no 1-2 (mai 1991) : 61–68. http://dx.doi.org/10.1016/0167-2738(91)90129-y.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
45

Rieger, Bernhard. « Preparation and some properties of chiral ansa-mono(η5-fluorenyl)zirconium(IV) complexes ». Journal of Organometallic Chemistry 420, no 3 (février 1991) : C17—C20. http://dx.doi.org/10.1016/0022-328x(91)86470-b.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
46

Leboda, R., A. Gierak, Z. Hubicki et A. Łodyga. « Effect of zirconium on preparation and sorption properties of complex carbon-mineral adsorbents ». Materials Chemistry and Physics 30, no 2 (décembre 1991) : 83–91. http://dx.doi.org/10.1016/0254-0584(91)90092-9.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
47

Castellani, Pablo, Clement Nicollet, Eric Quarez, Olivier Joubert et Annie Le Gal La Salle. « Synthesis of Yttrium Doped Barium Zirconate/Cerate Electrolyte Materials and Densification Using Conventional and Cold-Sintering Processes ». ECS Meeting Abstracts MA2022-02, no 49 (9 octobre 2022) : 1945. http://dx.doi.org/10.1149/ma2022-02491945mtgabs.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Résumé :
Compared to high temperature SOEC usually based on Yttrium stabilized Zirconia electrolytes, intermediate temperature PCEC allows the production of water free hydrogen and a better chemical stability. Proton conducting perovskite specific materials, such as Barium Indates1, Zirconate or Cerates2 are nearly commercial electrolytes for such devices. This study focuses on the synthesis the characterization and the densification of the BaZr1-xCexY0.1O3- δ 3 powder. At intermediate temperature and under humid atmosphere, hydration process allows diffusion of protonic charges. Such electrolyte material combines a low thermal expansion coefficient and a high protonic conductivity. Two specific stoichiometry’s have been studied, Cerium rich BaZr 0.3 Ce 0.6 Y0.1O3- δ (BZCY361) and Zirconium rich BaZr 0.7 Ce 0.2 Y0.1O3- δ (BZCY721). BZCY361 shows at 550°C, a conductivity level of 2.10- 2 S.cm- 1. However, despite its high protonic conductivity, the cerium rich phase is not stable at high temperature and is torn apart in presence of carbon dioxide. BaZr1-xCexY0.1O3- δ powder has been synthetized by combustion reaction based on nitrate precursors and glycine as organic complexing/fuel agent. The fuel/oxidizer (nitrates) ratio, which is a key parameter4, has been optimized in order to obtain the best purity and crystallinity. The powder is then milled and calcined. The single-phase electrolyte powder is conventionally shaped into pellets and densified A minimal temperature of 1600°C is necessary to obtained a density of 90-95%. In order to reduce the sintering temperature, an intermediate sintering step called "Cold Sintering Process"5 (CSP) has been investigated. In this technic, derived from the hydrothermal method, BCZY powder mixed with a small volume of liquid phase (3-30 wt%) is simultaneously pressed (at 50 to 500 MPa) and heated during a short time period (1-60 min) at low temperatures (100-200°C), leading to dense pellets. In regards to design a complete cell based on this electrolyte, EIS has been performed under hydrogen and air atmosphere. The electrochemical measurements of the samples provided by the different protocols and stoichiometry’s have been compared in order to determine the impact of the CSP and stoichiometry parameters on the ionic conductivity of the material. Acknowledgment: This study, included in the PhD of P. Castellani, was made possible with support from the Franco German ANR-BMBF project (Grant No. ANR-19-ENER-0003-12 [1] Quarez, Eric, Samuel Noirault, Annie Le Gal La Salle, Philippe Stevens, et Olivier Joubert. « Evaluation of Ba2(In0.8Ti0.2)2O5.2−n(OH)2n as a Potential Electrolyte Material for Proton-Conducting Solid Oxide Fuel Cell ». Journal of Power Sources 195 (15), 4923-27 (2010) [2] Thabet, K., Le Gal La Salle, A., Quarez, E., and Joubert, O. “Protonic-Based Ceramics for Fuel Cells and Electrolyzers,” Solid Oxide-Based Electrochemical Devices, Elsevier, pp. 91–122 (2020) [3] Thabet, K., Devisse, M., Quarez, E., Joubert, O., and Le Gal La Salle, A. “Influence of the Autocombustion Synthesis Conditions and the Calcination Temperature on the Microstructure and Electrochemical Properties of BaCe0.8Zr0.1Y0.1O3− δ Electrolyte Material,” Solid State Ionics, 325, pp. 48–56, (2018) [4] Varma, A., Mukasyan, A. S., Rogachev, A. S., and Manukyan, K. V., “Solution Combustion Synthesis of Nanoscale Materials,” Chem. Rev., 116(23), pp. 14493–14586 (2016) [5] Guo, H., Baker, A., Guo, J., and Randall, C. A., “Cold Sintering Process: A Novel Technique for Low‐Temperature Ceramic Processing of Ferroelectrics,” J. Am. Ceram. Soc., 99(11), pp. 3489–3507 (2016) Figure 1
48

Ivanov, B. V., A. S. Anikin, A. N. Bukin, Ya V. Sergeecheva, I. G. Lesina, N. S. Saburov, Yu N. Devyatko et O. V. Khomyakov. « Measurement of hydrogen diffusivity in zirconium with the use of radioluminography method ». Physics and Chemistry of Materials Treatment, no 2 (2018) : 81–91. http://dx.doi.org/10.30791/0015-3214-2018-2-81-91.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
49

CASCIOLA, M., S. CHIELI, U. COSTANTINO et A. PERAIO. « Intercalation compounds of α-zirconium hydrogen phosphate with heterocyclic bases and their ac conductivity ». Solid State Ionics 46, no 1-2 (mai 1991) : 53–59. http://dx.doi.org/10.1016/0167-2738(91)90128-x.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
50

Taylor, D. F. « An oxide-semiconductance model of nodular corrosion and its application to Zirconium alloy development ». Journal of Nuclear Materials 184, no 1 (août 1991) : 65–77. http://dx.doi.org/10.1016/0022-3115(91)90534-e.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.

Vers la bibliographie