Thèses sur le sujet « Yeast cell factory »
Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres
Consultez les 33 meilleures thèses pour votre recherche sur le sujet « Yeast cell factory ».
À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.
Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.
Parcourez les thèses sur diverses disciplines et organisez correctement votre bibliographie.
MAESTRONI, LETIZIA. « TACKLING THE CHALLENGE OF BIO-BASED PRODUCTIONS BY LEVERAGING THE POTENTIAL OF YEAST BIODIVERSITY AND SYNTHETIC BIOLOGY ». Doctoral thesis, Università degli Studi di Milano-Bicocca, 2023. https://hdl.handle.net/10281/402374.
Texte intégralThe role of industrial biotechnology is to provide game-changing solutions for some of the world’s greatest challenges. From climate change to alternative energy sources and to sustainable productions, industrial biotechnology is fighting to find new sustainable solutions. Despite the promising potential and the innovative techniques applied, bio-based biological processes still need further studies for becoming pervasive and therefore substituting the traditional processes of production. To make microbial processes economically feasible and environmentally friendly, one of the key factors resides in the choice of the starting biomass. In a logic of circular bioeconomy, by-products and residual biomasses have to be considered as starting feedstocks of the process. The use of these biomasses does not raise ethical issues and at the same time is economically advantageous and environment oriented. Indeed, they do not compete with the food industry, as they are usually production waste. Most of these residual biomasses are agricultural and forest residues, a family of biomasses characterised by a lignocellulosic structure. The problem related to their use in microbial-based biorefineries is to find an efficient pretreatment to convert them into fermentable sugars and other nutrients, while reducing to a minimum the release of inhibitors of microbial growth. Talking about microbial-based biorefinery as a substitute to petrol-based refinery, there are two main topics to keep in mind during the process design: the starting biomass and the microbial host. The chassis which will be involved in the final production process can be chosen following two complementary approaches: i) exploiting microbial biodiversity already present in nature by picking the final host depending on its innate characteristics, particularly advantageous in a specific production process; ii) working on a well-known cell factory by customising it as needed. In this thesis both principles were followed. In Chapter 2 a specific class of non-conventional yeasts, named oleaginous yeasts, was evaluated to obtain single cell oils (SCOs) for biodiesel production starting from wastes of the sugar beet industry. Lipomyces starkeyi was selected as cell factory for the conversion of sugar beet pulp and sugar beet molasses to maximise SCOs accumulation. With this applicative example we showed the possibility to take advantage of non-conventional microorganisms to achieve a more sustainable way to produce fuels. On the other hand, choosing Saccharomyces cerevisiae as final host has the major advantage of exploiting the wide knowledge around it, starting from its genome and physiology, and arriving at the tremendous number of synthetic biology approaches to engineer it and manipulate it in the desired final form. In Chapter 3 I introduce a novel toolkit: a new combination of synthetic biology approaches to accelerate the engineering procedures allowing the overexpression and the study of more and more complex biosynthetic heterologous pathways. Moreover, I show the application of this novel toolkit to the production of a selected plant secondary metabolite. In Chapter 4 I describe the design of a new vector to improve genome editing procedures in S. cerevisiae. Even in this second project the final goal was to speed up the design and build stages and laboratory procedures, standardising them as much as possible to simplify one part of scientists' work, to leave more space to the subsequent phases of testing and learning. In Chapter 5 I propose the concept of enzyme spatial co-localisation as a forefront field in synthetic biology to maximise the carbon flux toward the product of interest, exploiting the use of protein synthetic scaffolds and synthetic interaction domains. The presented thesis wants to pose itself as a practical example on how industrial biotechnology can be used as a powerful tool in the difficult transition to a more sustainable society.
Nomura, Teruyuki. « Factors affecting yeast cell viability ». Thesis, Heriot-Watt University, 1986. http://hdl.handle.net/10399/1061.
Texte intégralBrown, Steven Richard. « A design of experiments approach for engineering carbon metabolism in the yeast Saccharomyces cerevisiae ». Thesis, University of Exeter, 2016. http://hdl.handle.net/10871/26158.
Texte intégralOkolo, Bartholomew Ndubuisi. « Alcohol tolerance in yeast : on factors influencing the inhibitory and toxic effects of alcohols on distilling yeast ». Thesis, University of Strathclyde, 1986. http://oleg.lib.strath.ac.uk:80/R/?func=dbin-jump-full&object_id=24267.
Texte intégralPia, Chen-Chun. « Analysis of GINS and other replication factors in the fission yeast cell cycle ». Thesis, University of Oxford, 2009. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.504447.
Texte intégralHughes, Marcus Daniel. « The M-factor pheromone from the fission yeast Schizosaccharomyces pombe : investigation into its proteolysis ». Thesis, University of Warwick, 1999. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.342552.
Texte intégralMeeker, Timothy J. « Live Yeast Cell Derivative leads to rapid phosphorylation of Epidermal Growth Factor Receptor ». University of Cincinnati / OhioLINK, 2012. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1337888734.
Texte intégralGroß, Annett. « Genetically Tailored Yeast Strains for Cell-based Biosensors in White Biotechnology ». Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2017. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-83341.
Texte intégralTippins, T. A. « Various factors which affect the response of yeast cells to environmental mutagens ». Thesis, Swansea University, 1988. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.639246.
Texte intégralAwrey, Donald E. « Structural and functional analysis of the yeast general transcript elongation factor, TFIIS ». Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1997. http://www.collectionscanada.ca/obj/s4/f2/dsk2/tape16/PQDD_0009/NQ30069.pdf.
Texte intégralDunlop, Allan John. « Structural and functional studies of the DSC1 cell cycle transcription factor complex in fission yeast ». Thesis, University of Glasgow, 2004. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.404284.
Texte intégralTronnersjö, Susanna. « Functional studies of RNA polymerase II-dependent transcription in yeast Saccharomyces cerevisiae / ». Uppsala : Department of Plant Biology and Forest Genetics, Swedish University of Agricultural Sciences, 2006. http://epsilon.slu.se/2006109.pdf.
Texte intégralGómez, Escoda Blanca. « Max1 links MBF dependent transcription upon completion of DNA synthesis in fission yeast ». Doctoral thesis, Universitat Pompeu Fabra, 2010. http://hdl.handle.net/10803/7223.
Texte intégralCuando la replicación del DNA se ve alterada, las células activan un mecanismo de control bloqueando la progresión del ciclo celular hasta que son capaces de superar el daño. En la levadura de fisión, Cds1 es la proteína kinasa efectora de dicha respuesta, mediante inhibición de la entrada en fase M, estabilización las horquillas de replicación bloqueadas, e inducción de la activación de la transcripción de los genes de fase S; siendo la base molecular de este último proceso poco conocida. El factor de transcripción MBF controla la transcripción de los genes de fase S. Hemos purificado proteínas que interaccionan con MBF, y entre ellas, hemos identificado al represor Max1. Cuando el checkpoint de síntesis de DNA es activado, Max1 es fosforilado por la kinasa Cds1, y esto se traduce en la disociación de Max1 del complejo MBF. Como consecuencia, la transcripción MBF-dependiente se mantiene activa hasta que las células son capaces de superar el daño.
Parsons, Michelle L. « The Role of SIR4 in the Establishment of Heterochromatin in the Budding Yeast Saccharomyces cerevisiae ». Thesis, Université d'Ottawa / University of Ottawa, 2014. http://hdl.handle.net/10393/31028.
Texte intégralSmith, Corey Lewis. « Functional and Structural Analysis of the Yeast SWI/SNF Complex : a Dissertation ». eScholarship@UMMS, 2004. https://escholarship.umassmed.edu/gsbs_diss/13.
Texte intégralNishida, Nao. « Studies on the mechanism of organic solvent tolerance of yeast Saccharomyces cerevisiae triggered by a transcription factor Pdr1p ». Master's thesis, Kyoto University, 2014. http://hdl.handle.net/2433/188764.
Texte intégral0048
新制・課程博士
博士(農学)
甲第18326号
農博第2051号
新制||農||1022(附属図書館)
学位論文||H26||N4833(農学部図書室)
31184
京都大学大学院農学研究科応用生命科学専攻
(主査)教授 植田 充美, 教授 喜多 恵子, 教授 栗原 達夫
学位規則第4条第1項該当
Belk, Jonathan Philip. « A Characterization of Substrates and Factors Involved in Yeast Nonsense-Mediated mRNA Decay : A Dissertation ». eScholarship@UMMS, 2002. https://escholarship.umassmed.edu/gsbs_diss/65.
Texte intégralEriksson, Ulrika. « Impact of autocrine factors on physiology and productivity in Trichoplusia ni serum-free cultures ». Licentiate thesis, Stockholm, 2005. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-191.
Texte intégralCharlton, Jane Laura. « Understanding the biomolecular interactions involved in dimerisation of the Saccharomyces cerevisiae eukaryotic translation initiation factor 5A ». Thesis, Rhodes University, 2012. http://hdl.handle.net/10962/d1004118.
Texte intégralChang, Chien-I. « Functional Analysis of Yeast Pheromone Receptors in ER Exit, Ligand-Induced Endocytosis and Oligomerization : A Dissertation ». eScholarship@UMMS, 2009. https://escholarship.umassmed.edu/gsbs_diss/418.
Texte intégralMaderazo, Alan Baer. « A Study on the Cellular Localization of Factors Involved in Yeast Nonsense-Mediated mRNA Decay and their Mechanisms of Control on Nonsense mRNA Translation : a Dissertation ». eScholarship@UMMS, 2000. https://escholarship.umassmed.edu/gsbs_diss/105.
Texte intégralIvanova, Tsvetomira Georgieva 1978. « The DNA damage and the DNA synthesis checkpoints converge at the MBF transcription factor ». Doctoral thesis, Universitat Pompeu Fabra, 2012. http://hdl.handle.net/10803/116932.
Texte intégralQuynh, Tran Hoang Thi. « Identification and functional characterization of trans-acting factors required for eukaryotic ribosome synthesis ». Doctoral thesis, Universite Libre de Bruxelles, 2008. http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/210540.
Texte intégralIn the budding yeast Saccharomyces cerevisiae, it has been reported recently that the processing of the 35S nascent transcript and the assembly of pre-ribosomes occur concomitantly with Pol I transcription in the nucleolus. In this process, the growing Pol I transcript gradually assembles with pre-40S structural ribosomal proteins and ribosomal synthesis factors to form the so-called ‘SSU-processome’ or ‘90S pre-ribosome’, the earliest precursor of the 40S subunit. The SSU-processome/90S pre-ribosome localizes to the nucleolus and consists of the 35S pre-rRNA, the U3 small nucleolar (sno) RNA, about a dozen of 40S ribosomal proteins and more than forty ribosome synthesis factors. The U3 snoRNA and pre-40S ribosome synthesis factors are all implicated in the processing of the 35S precursor (at sites A0, A1 and A2) and therefore in the synthesis of the 18S rRNA component of the 40S subunit. Significantly, the association of the U3 snoRNA with the growing 35S transcript is important for pre-40S assembly, whereas its dissociation from the processed transcript (following cleavage at sites A0-A2) is crucial for the overall structural remodeling of the 18S rRNA and for the formation of pre-40S ribosomes from the earliest precursor 90S particles.
This thesis mostly addresses the identification and functional characterization of Esf2 and Bfr2, two novel 40S synthesis factors, components of the SSU-processome/90S pre-ribosome in yeast. Both proteins localize to the nucleolus and their genetic depletions lead to failure in the production of 40S subunits. In the absence of either factor, the 35S pre-rRNA is not processed at sites A0-A2 and the 18S rRNA is not synthesized. Also, pre-ribosome assembly is affected and pre-40S ribosomes fail to mature properly. Strikingly, in the absence of either factor, the U3 snoRNA remains associated with unprocessed 35S transcript within pre-ribosomes indicating that Esf2 and Bfr2 are required to dissociate U3 from pre-ribosomes. This process also involves RNP (ribonucleoprotein particle) unwinding activities of the putative RNA helicase Dbp8.
La biogenèse du ribosome eucaryote est un processus complexe qui consomme beaucoup d’énergie et implique plusieurs centaines de facteurs trans qui s’associent de manière transitoire avec les pré-ribosomes en cours de formation. La biogenèse des sous-unités ribosomiques (la petite sous-unité 40S et la grande sous-unité 60S) débute dans le nucléole par la synthèse d’un long précurseur d’ARN ribosomique (le pré-ARNr, dit 35S chez la levure Saccharomyces cerevisiae) par l’ARN Polymérase I (Pol I). Ceci constitue une étape clé dans le contrôle global de la synthèse du ribosome chez la levure. Le pré-ARNr 35S renferme les séquences des ARNr matures 18S (ARNr de la sous-unité 40S) et 5.8S et 25S (deux des trois ARNr de la sous-unité 60S). Le pré-ARNr 35S subit un long processus de maturation et d’assemblage au cours duquel il est modifié, clivé (on parle du « processing » du pré-ARNr) et s’assemble avec des protéines ribosomiques (« RP », composants structuraux des sous-unités ribosomiques matures) et de nombreux facteurs de synthèse (facteurs trans) pour former différentes particules pré-ribosomiques (précurseurs des sous-unités 40S et 60S).
Chez la levure S. cerevisiae, il a récemment été montré que le processing du pré-ARNr 35S et l’assemblage des pré-ribosomes se produisent de manière concomminante avec la transcription Pol I dans le nucléole. Ainsi, le transcrit Pol I en cours de synthèse s’assemble progressivement avec des facteurs de synthèse ainsi que des RP pour former le « SSU processome » ou « pré-ribosome 90S », tout premier précurseur de la petite sous-unité 40S. Le SSU processome/pré-ribosome 90S est localisé dans le nucléole et est consisté du pré-ARNr 35S naissant, du petit ARN nucléolaire (snoRNA) U3, d’une douzaine de RP de la petite sous-unité 40S et de plus de 40 facteurs de synthèse. Le snoRNA U3 et ces facteurs de synthèse sont tous impliqués dans les clivages du pré-ARNr 35S aux sites A0, A1 et A2, et donc dans la biogenèse de l’ARNr 18S. L’association du snoRNA U3 avec le pré-ARNr 35S naissant est importante pour l’assemblage du SSU processome/pré-ribosome 90S. Par ailleurs, sa dissociation après les clivages aux sites A0-A2 permet un remodelage structural général de l’ARNr 18S et la formation du « pré-ribosome 40S » à partir de la particule précoce 90S.
Au cours de cette thèse, nous avons identifié et caractérisé fonctionnelement chez la levure deux nouveaux facteurs de synthèse de la petite sous-unité 40S et composants du SSU processome/pré-ribosome 90S: Esf2 et Bfr2. Ces deux protéines sont localisées dans le nucléole. Leur déplétion entraîne une incapacité à produire la sous-unité ribosomique 40S. En l’absence d’Esf2 ou Bfr2, le pré-ARNr 35S n’est plus clivé aux sites A0-A2 et l’ARNr 18S mature n’est plus produit. L’assemblage des pré-ribosomes est aussi affecté, notamment la formation du pré-ribosome 40S. De manière importante, en l’absence de l’un ou l’autre de ces facteurs, le snoRNA U3 reste associé au pré-ARNr 35S non clivé au sein des pré-ribosomes, indiquant qu’Esf2 et Bfr2 sont requises pour la dissociation d’U3 des pré-ribosomes. Ce processus implique aussi Dbp8, une hélicase à ARN présumée.
Doctorat en sciences, Spécialisation biologie moléculaire
info:eu-repo/semantics/nonPublished
Ginis, Olivia. « Identification de facteurs de transcription régulateurs de la voie de biosynthèse des alcaloïdes indoliques monoterpéniques chez Catharanthus roseus ». Thesis, Tours, 2012. http://www.theses.fr/2012TOUR4014/document.
Texte intégralCatharanthus roseus is a tropical plant producing specifically monoterpene indole alkaloids (MIA) of high interest due to their therapeutical values. In C. roseus cells, the terpenoid branch including the methyl erythritol phosphate pathway (MEP) provides the MIA terpenoid moiety and is regarded as limited for MIA biosynthesis. This branch presents a coordinated transcriptional regulation in response to hormonal signals leading to MIA production. In this context, bioinformatic analysises and functional characterization of MEP pathway gene promoters allowed the identification of new transcription factor families involved in the MIA pathway regulation. Members of ZCT proteins, WRKY and type B RR families specifically interact with the hds promoter from the MEP pathway and regulate its activity. This work permits to gain into insight the transcriptional network controlling the MIA biosynthesis. It is possible now to consider using transcription factor that act as activators and target genes from the terpenoid branch to increase the accumulation of alkaloids of pharmaceutical interest in C. roseus by metabolic engineering approaches
Wang, Yu-Han, et 王郁涵. « Yeast cell cycle transcription factors identification by the relative R squared method ». Thesis, 2010. http://ndltd.ncl.edu.tw/handle/91799414558567778919.
Texte intégral國立交通大學
統計學研究所
98
Transcription factors (TFs) play critical roles in controlling gene expressions. To understand how the cell cycle-regulated genes can be transcribed just before they are needed, it is essential to identify their transcriptional regulators. We developed a novel relative R squared method to identify cell cycle TFs in yeast by integrating the ChIP-chip and cell cycle gene expression data. Our method identified 15 cell cycle TFs, 12 of which are known cell cycle TFs, while the remaining three (Hap4, Reb1 and Tye7) are putative novel cell cycle TFs. Four lines of evidence are provided to show the biological significance of our prediction. Besides, for seven of the 15 identified cell cycle TFs, we can further assign a specific cell cycle phase in which the TFs function. Most of our predictions are supported by previous experimental or computational studies. Furthermore, we show that our method performs better than five existing methods for identifying yeast cell cycle TFs. Finally, an application of our method to different cell cycle gene expression datasets suggests that our method is robust.
Chung, Min-Yu, et 鍾閔伃. « Methods for breaking yeast cells and the stability of the glucose tolerance factor extract from yeast ». Thesis, 2007. http://ndltd.ncl.edu.tw/handle/23935660577742902361.
Texte intégral國立臺灣海洋大學
食品科學系
95
A protein from Saccharomyces cerevisiae No.1 has been demonstrated to have the activity of glucose tolerance factor (GTF) that can enhance the glucose uptake rate of adipose cells. The aims of this research are to investigate the pH and temperature stability of the GTF extract using the differentiated 3T3-L1 cell assay model, and to investigate the efficacy of breaking methods for this yeast cells. The GTF extract is quite stable between pH 2-pH 9. The residual activities of this GTF extract after being heated at 45 ℃, 55 ℃ and 65 ℃ for 2 h are 96 %, 79 % and 35 %, respectively. Its thermal inactivation constants at 65 ℃, 75 ℃ and 85 ℃ are 8.8 x 103, 1.13 x 104, and 1.27 x 104 min-1, respectively. To reserve the GTF activity, the optimal temperature and pH value for autolysis of S. cerevisiae No.1 cells are 45℃ and pH 6.0, respectively. During cell autolysis, the addition of ethyl acetate, ammonia, citric acid or lytic enzyme could increase the amino nitrogen content and the relative GTF activity in the supernatant, among which ethyl acetate at the concentration of 5 % being the most effective. The released amino nitrogen content and the relative GTF activity were increased from 107 mmole/mL and 41 %, respectively, for the control, to 325 mmol/mL and 121 %, respectively, for 5 % ethyl acetate addition. When both 5 % ethyl acetate and protease 1 were added during cell autolysis the released amino nitrogen content could be increased 513 mmol/mL. However, the relative GTF in the supernatant were 101 %. which was less then that for 5 % ethyl acetate added along. By scanning electron microscopic observation the phenomenon of cell plasmolysis was found for cells treated with various chemical tested, while collapsed cells were monitored for cells treated with various enzymes tested.
Beyzavi, Ali. « Investigation of the heat shock response in yeast : quantitative modeling and single-cell microfluidic studies ». Thesis, 2016. https://hdl.handle.net/2144/17084.
Texte intégralNagampalli, Vijay Krishna. « Design and Application of Temperature Sensitive Mutants in Essential Factors of RNA Splicing and RNA Interference Pathway in Schizosaccharomyces Pombe ». Thesis, 2014. http://etd.iisc.ernet.in/2005/3515.
Texte intégralGroß, Annett. « Genetically Tailored Yeast Strains for Cell-based Biosensors in White Biotechnology ». Doctoral thesis, 2011. https://tud.qucosa.de/id/qucosa%3A25889.
Texte intégralShao-MeiChang, Julie, et 張徐少梅. « Using Partial Correlation Analysis to Identify Regulatory Targets of Cell Cycle Transcription Factors in Yeast ». Thesis, 2010. http://ndltd.ncl.edu.tw/handle/82102367003519526399.
Texte intégral國立成功大學
電腦與通信工程研究所
98
Reconstructing transcriptional regulatory networks (TRNs) is crucial for understanding how a cell reorganizes its gene expression patterns to respond to environmental and physiological changes. ChIP-chip data, which indicate binding of transcription factors (TFs) to DNA regions in vivo, are widely used to reconstruct TRNs. However, the binding of a TF to a gene does not necessarily imply regulation. Thus, it is important to develop computational methods which can extract a TF’s regulatory targets from its binding targets. The REgulatory Targets Extraction Algorithm (RETEA) is developed in this study, which uses partial correlation analysis on gene expression data to extract a TF’s regulatory targets from its binding targets inferred from the ChIP-chip data. We applied RETEA to yeast cell cycle microarray data and identified the plausible regulatory targets of eleven cell cycle TFs. Our predictions are validated by checking the enrichments for cell cycle genes and shared molecular functions. Moreover, we showed that RETEA performs better than three published methods (Garten et al.’s Method, MA-Network and TRIA). In summary, RETEA is capable of extracting the TF-gene regulatory relationships from the TF-promoter binding relationships (inferred by the ChIP-chip data). Thus, using RETEA to preprocess the ChIP-chip data is crucial to make the ChIP-chip data useful in systems biology studies.
Schroeder, Andrew J. « CSE1, an essential yeast gene required for cell cycle progression, encodes a nuclear transport factor ». 1998. https://scholarworks.umass.edu/dissertations/AAI9823773.
Texte intégralCAMPONESCHI, ILARIA. « The role of the hypoxic transcription factor gene MGA2 in Kluyveromyces lactis fatty acids metabolism and cell fitness ». Doctoral thesis, 2021. http://hdl.handle.net/11573/1554155.
Texte intégralThe yeast Kluyveromyces lactis has been widely used in both industrial applications and basic research. We previously demonstrated that deletion of the KlMGA2, coding for a hypoxic mediator in K. lactis, generated a viable strain, although suffering of several deficiencies. We also showed that glucose signaling and glucose catabolism were involved in KlMga2 regulation. In this work, we showed that, in addition to these defects, the deletion of KlMGA2 also caused increased resistance to oxidative stress and extremely extended lifespan. These phenotypes are associated with increased expression levels of catalase and superoxide dismutase genes. We propose that KlMga2 might act as a direct mediator not only of hypoxic response, but also of oxidative stress response/adaptation, thus revealing connections between hypoxia, glucose signaling, fatty acid biosynthesis and ROS metabolism. Secondly, in this work we wanted to investigate the possible light response in this yeast. In unicellular organisms like yeasts, that cannot utilize specialized tissue for protection against environmental challenges, the presence of cellular mechanisms to respond and adapt to stress conditions is fundamental. Saccharomyces cerevisiae has been reported to respond to light by increasing hydrogen peroxide (H2O2) levels. Therefore, it could be interesting to study the possible role of oxidative stress mediator KlMga2, already studied in our laboratory, in the light response of yeast.
Ear, Po Hien. « Dissecting cell cycle protein complexes using the pptimized yeast cytosine deaminase protein-fragment complementation assay “You too can play with an edge” ». Thèse, 2011. http://hdl.handle.net/1866/6314.
Texte intégralProteins are the end-products of gene interpretative machinery. Proteins serve essential roles in defining the structure, integrity and dynamics of the cell and mediate most chemical transformations needed for everything from metabolic catalysis to signal transduction. We know that the central dogma of molecular biology, one gene = one mRNA = one protein is a gross simplification and that a protein may do different things depending on the form in which its mRNA was spliced, how and where it is post-translationally modified, what conformational state it may be in or finally, which other proteins it may interact with. Formation of protein complexes may, themselves, be governed by the states in which proteins are expressed in specific cells, cellular compartments or under specific conditions or dynamic phases such has growth or division. Protein complexes involved in mitotic cell cycle regulation are particularly challenging to dissect since they could only form during specific phases of the cell cycle, are highly regulated by post-translational modifications and can be found in any subcellular compartments. To date, no general methods have been developed to allow fine dissection of these protein complexes. The goal of this thesis was to establish and demonstrate a novel strategy for dissecting protein complexes regulating the budding yeast Saccharomyces cerevisiae (S. cerevisiae) mitotic cell cycle. In this thesis, I describe my development and optimization of a simple survival-selection Protein-fragment Complementation Assay using the prodrug-converting enzyme, yeast cytosine deaminase as reporter (OyCD PCA). I further describe, in a series of proof of principle studies, applications of the OyCD PCA to dissect the mechanism of transcriptional activation by key mitotic transcription factors and to dissect protein-protein interactions (PPIs) among regulators of the mitotic cell cycle. A key feature of the OyCD PCA is that it can be used to detect both formation and disruption of PPIs by virtue of having positive readouts for both assays. I applied the OyCD PCA in a strategy to dissect interactions between the key transcription factors of the G1/S phase: SBF and MBF. These two heterodimeric transcription factors are composed of, respectively, two distinct DNA-binding subunits named Swi4 and Mbp1 and a common transcription activation subunit called Swi6. I took advantage of the dual selection by OyCD PCA to engineer a specific mutant of Swi6 in order to demonstrate the rewiring of a transcriptional network. We isolated Swi6 with mutations found in its C-terminal domain previously identified for binding Swi4 and Mbp1 and important for SBF and MBF activities. Our results support a model where Swi6 undergoes a conformational change upon binding to Swi4 or Mbp1. In addition, this Swi6 mutant was used to dissect the regulatory mechanism that governs the entry of S. cerevisiae to a new round of cell division also known as START. We found that the SBF and MBF repressor Whi5 directly binds to the C-terminal domain of Swi6. Finally, I applied the OyCD PCA to dissect the yeast cyclin dependent kinase Cdk1-protein complexes. Cdk1 is the essential kinase that regulates cell cycle progression and can phosphorylate a large number of different substrates by teaming up with one of nine cyclin regulatory proteins (Cln1-3, Clb1-6). I describe a strategy to identify interaction partners of Cdk1 that can easily be scaled up for a genome-wide screen and associate the complexes with the appropriate cyclin(s) required for mediating the interaction using the OyCD PCA and deletion of the cyclin genes. My results allow us to postulate which phase(s) of the mitotic cell cycle Cdk1 may phosphorylate proteins and what function potential or known substrates of Cdk1 may take on during that phase(s). For example, we identified the interaction between Cdk1 and the γ-tubulin (Tub4) to be dependent upon Clb3, consistent with its role in mediating nucleation and growth of mitotic microtubule bundles on the spindle pole body. This strategy can also be applied to study other PPIs that are contingent upon accessory subunits.