Littérature scientifique sur le sujet « Yeast cell factory »
Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres
Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « Yeast cell factory ».
À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.
Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.
Articles de revues sur le sujet "Yeast cell factory"
Spier, R. E. « Yeast as a Cell Factory ». Enzyme and Microbial Technology 26, no 9-10 (juin 2000) : 639. http://dx.doi.org/10.1016/s0141-0229(00)00223-4.
Texte intégralNielsen, Jens. « Yeast Systems Biology : Model Organism and Cell Factory ». Biotechnology Journal 14, no 9 (20 mai 2019) : 1800421. http://dx.doi.org/10.1002/biot.201800421.
Texte intégraldos Santos, Sandra C., et Isabel Sá-Correia. « Yeast toxicogenomics : lessons from a eukaryotic cell model and cell factory ». Current Opinion in Biotechnology 33 (juin 2015) : 183–91. http://dx.doi.org/10.1016/j.copbio.2015.03.001.
Texte intégralvan Dijk, Ralf, Klaas Nico Faber, Jan A. K. W. Kiel, Marten Veenhuis et Ida van der Klei. « The methylotrophic yeast Hansenula polymorpha : a versatile cell factory ». Enzyme and Microbial Technology 26, no 9-10 (juin 2000) : 793–800. http://dx.doi.org/10.1016/s0141-0229(00)00173-3.
Texte intégralEliasson Lantz, Anna, Songsak Wattanachaisaereekul, Michael Lynge Nielsen et Jens Nielsen. « Towards a yeast cell factory platform for polyketide production ». Journal of Biotechnology 131, no 2 (septembre 2007) : S199. http://dx.doi.org/10.1016/j.jbiotec.2007.07.355.
Texte intégralKampranis, Sotirios C., et Antonios M. Makris. « DEVELOPING A YEAST CELL FACTORY FOR THE PRODUCTION OF TERPENOIDS ». Computational and Structural Biotechnology Journal 3, no 4 (octobre 2012) : e201210006. http://dx.doi.org/10.5936/csbj.201210006.
Texte intégralRustiaty, Banon. « OPTIMALISASI SEL Saccharomyces cerevisiae UNTUK MENINGKATKAN PRODUKTIVITAS DAN EFISIENSI INDUSTRI ETANOL [Optimization of Saccharomyces cerevisiae Cell to Increase Productivity and Efficiency of Ethanol Industry] ». Jurnal Teknologi & ; Industri Hasil Pertanian 23, no 2 (18 septembre 2018) : 97. http://dx.doi.org/10.23960/jtihp.v23i2.97-102.
Texte intégralPark, Jongbeom, In Jung Kim et Soo Rin Kim. « Nonconventional Yeasts Engineered Using the CRISPR-Cas System as Emerging Microbial Cell Factories ». Fermentation 8, no 11 (19 novembre 2022) : 656. http://dx.doi.org/10.3390/fermentation8110656.
Texte intégralPorro, Danilo, et Paola Branduardi. « Yeast cell factory : fishing for the best one or engineering it ? » Microbial Cell Factories 8, no 1 (2009) : 51. http://dx.doi.org/10.1186/1475-2859-8-51.
Texte intégralPrado, Angelica Rodriguez, Kanchana Kildegaard, Mingji Li, Irina Borodina et Jens Nielsen. « Development of a yeast cell factory for production of aromatic products ». New Biotechnology 31 (juillet 2014) : S130. http://dx.doi.org/10.1016/j.nbt.2014.05.1934.
Texte intégralThèses sur le sujet "Yeast cell factory"
MAESTRONI, LETIZIA. « TACKLING THE CHALLENGE OF BIO-BASED PRODUCTIONS BY LEVERAGING THE POTENTIAL OF YEAST BIODIVERSITY AND SYNTHETIC BIOLOGY ». Doctoral thesis, Università degli Studi di Milano-Bicocca, 2023. https://hdl.handle.net/10281/402374.
Texte intégralThe role of industrial biotechnology is to provide game-changing solutions for some of the world’s greatest challenges. From climate change to alternative energy sources and to sustainable productions, industrial biotechnology is fighting to find new sustainable solutions. Despite the promising potential and the innovative techniques applied, bio-based biological processes still need further studies for becoming pervasive and therefore substituting the traditional processes of production. To make microbial processes economically feasible and environmentally friendly, one of the key factors resides in the choice of the starting biomass. In a logic of circular bioeconomy, by-products and residual biomasses have to be considered as starting feedstocks of the process. The use of these biomasses does not raise ethical issues and at the same time is economically advantageous and environment oriented. Indeed, they do not compete with the food industry, as they are usually production waste. Most of these residual biomasses are agricultural and forest residues, a family of biomasses characterised by a lignocellulosic structure. The problem related to their use in microbial-based biorefineries is to find an efficient pretreatment to convert them into fermentable sugars and other nutrients, while reducing to a minimum the release of inhibitors of microbial growth. Talking about microbial-based biorefinery as a substitute to petrol-based refinery, there are two main topics to keep in mind during the process design: the starting biomass and the microbial host. The chassis which will be involved in the final production process can be chosen following two complementary approaches: i) exploiting microbial biodiversity already present in nature by picking the final host depending on its innate characteristics, particularly advantageous in a specific production process; ii) working on a well-known cell factory by customising it as needed. In this thesis both principles were followed. In Chapter 2 a specific class of non-conventional yeasts, named oleaginous yeasts, was evaluated to obtain single cell oils (SCOs) for biodiesel production starting from wastes of the sugar beet industry. Lipomyces starkeyi was selected as cell factory for the conversion of sugar beet pulp and sugar beet molasses to maximise SCOs accumulation. With this applicative example we showed the possibility to take advantage of non-conventional microorganisms to achieve a more sustainable way to produce fuels. On the other hand, choosing Saccharomyces cerevisiae as final host has the major advantage of exploiting the wide knowledge around it, starting from its genome and physiology, and arriving at the tremendous number of synthetic biology approaches to engineer it and manipulate it in the desired final form. In Chapter 3 I introduce a novel toolkit: a new combination of synthetic biology approaches to accelerate the engineering procedures allowing the overexpression and the study of more and more complex biosynthetic heterologous pathways. Moreover, I show the application of this novel toolkit to the production of a selected plant secondary metabolite. In Chapter 4 I describe the design of a new vector to improve genome editing procedures in S. cerevisiae. Even in this second project the final goal was to speed up the design and build stages and laboratory procedures, standardising them as much as possible to simplify one part of scientists' work, to leave more space to the subsequent phases of testing and learning. In Chapter 5 I propose the concept of enzyme spatial co-localisation as a forefront field in synthetic biology to maximise the carbon flux toward the product of interest, exploiting the use of protein synthetic scaffolds and synthetic interaction domains. The presented thesis wants to pose itself as a practical example on how industrial biotechnology can be used as a powerful tool in the difficult transition to a more sustainable society.
Nomura, Teruyuki. « Factors affecting yeast cell viability ». Thesis, Heriot-Watt University, 1986. http://hdl.handle.net/10399/1061.
Texte intégralBrown, Steven Richard. « A design of experiments approach for engineering carbon metabolism in the yeast Saccharomyces cerevisiae ». Thesis, University of Exeter, 2016. http://hdl.handle.net/10871/26158.
Texte intégralOkolo, Bartholomew Ndubuisi. « Alcohol tolerance in yeast : on factors influencing the inhibitory and toxic effects of alcohols on distilling yeast ». Thesis, University of Strathclyde, 1986. http://oleg.lib.strath.ac.uk:80/R/?func=dbin-jump-full&object_id=24267.
Texte intégralPia, Chen-Chun. « Analysis of GINS and other replication factors in the fission yeast cell cycle ». Thesis, University of Oxford, 2009. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.504447.
Texte intégralHughes, Marcus Daniel. « The M-factor pheromone from the fission yeast Schizosaccharomyces pombe : investigation into its proteolysis ». Thesis, University of Warwick, 1999. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.342552.
Texte intégralMeeker, Timothy J. « Live Yeast Cell Derivative leads to rapid phosphorylation of Epidermal Growth Factor Receptor ». University of Cincinnati / OhioLINK, 2012. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1337888734.
Texte intégralGroß, Annett. « Genetically Tailored Yeast Strains for Cell-based Biosensors in White Biotechnology ». Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2017. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-83341.
Texte intégralTippins, T. A. « Various factors which affect the response of yeast cells to environmental mutagens ». Thesis, Swansea University, 1988. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.639246.
Texte intégralAwrey, Donald E. « Structural and functional analysis of the yeast general transcript elongation factor, TFIIS ». Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1997. http://www.collectionscanada.ca/obj/s4/f2/dsk2/tape16/PQDD_0009/NQ30069.pdf.
Texte intégralChapitres de livres sur le sujet "Yeast cell factory"
Mittal, Milky, Adya Varshney, Nimisha Singh, Ashok Saini et Indra Mani. « Yeast Cell Factory for Production of Biomolecules ». Dans Biomanufacturing for Sustainable Production of Biomolecules, 211–51. Singapore : Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-19-7911-8_11.
Texte intégralGodinho, Cláudia P., et Isabel Sá-Correia. « Physiological Genomics of Multistress Resistance in the Yeast Cell Model and Factory : Focus on MDR/MXR Transporters ». Dans Yeasts in Biotechnology and Human Health, 1–35. Cham : Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-13035-0_1.
Texte intégralBranduardi, Paola, Liliane Barroso, Laura Dato, Edward J. Louis et Danilo Porro. « Molecular Tools for Leveraging the Potential of the Acid-Tolerant Yeast Zygosaccharomyces bailii as Cell Factory ». Dans Methods in Molecular Biology, 179–204. New York, NY : Springer US, 2022. http://dx.doi.org/10.1007/978-1-0716-2399-2_11.
Texte intégralBranduardi, Paola, Laura Dato et Danilo Porro. « Molecular Tools and Protocols for Engineering the Acid-Tolerant Yeast Zygosaccharomyces bailii as a Potential Cell Factory ». Dans Methods in Molecular Biology, 63–85. New York, NY : Springer New York, 2014. http://dx.doi.org/10.1007/978-1-4939-0563-8_4.
Texte intégralKang, Hyun Ah, Hubert G. Schwelberger et John W. B. Hershey. « Effect of Initiation Factor eIF-5A Depletion on Cell Proliferation and Protein Synthesis ». Dans Protein Synthesis and Targeting in Yeast, 123–29. Berlin, Heidelberg : Springer Berlin Heidelberg, 1993. http://dx.doi.org/10.1007/978-3-642-84921-3_12.
Texte intégralWu, Wei-Sheng. « A Computational Method for Identifying Yeast Cell Cycle Transcription Factors ». Dans Methods in Molecular Biology, 209–19. New York, NY : Springer New York, 2016. http://dx.doi.org/10.1007/978-1-4939-2957-3_12.
Texte intégralTanaka, Takaaki, et Kazuhiro Nakanishi. « Factors Affecting the Performance of Crossflow Filtration of Yeast Cell Suspension ». Dans Developments in Food Engineering, 653–55. Boston, MA : Springer US, 1994. http://dx.doi.org/10.1007/978-1-4615-2674-2_211.
Texte intégralOborská-Oplová, Michaela, Ute Fischer, Martin Altvater et Vikram Govind Panse. « Eukaryotic Ribosome assembly and Nucleocytoplasmic Transport ». Dans Ribosome Biogenesis, 99–126. New York, NY : Springer US, 2022. http://dx.doi.org/10.1007/978-1-0716-2501-9_7.
Texte intégralBrahma, Sandipan, et Steven Henikoff. « CUT&RUN Profiling of the Budding Yeast Epigenome ». Dans Methods in Molecular Biology, 129–47. New York, NY : Springer US, 2022. http://dx.doi.org/10.1007/978-1-0716-2257-5_9.
Texte intégralChernoff, Yury O., Susan M. Uptain et Susan L. Lindquist. « Analysis of prion factors in yeast ». Dans Guide to Yeast Genetics and Molecular and Cell Biology Part C, 499–538. Elsevier, 2002. http://dx.doi.org/10.1016/s0076-6879(02)51867-x.
Texte intégralActes de conférences sur le sujet "Yeast cell factory"
Nielsen, Jens. « Yeast as a Platform Cell Factory in Future Biorefineries ». Dans 14th Asia Pacific Confederation of Chemical Engineering Congress. Singapore : Research Publishing Services, 2012. http://dx.doi.org/10.3850/978-981-07-1445-1_803.
Texte intégralRiyanti, Eny Ida, et Edy Listanto. « Understanding yeast tolerance as cell factory for bioethanol production from lignocellulosic biomass ». Dans THE SECOND INTERNATIONAL CONFERENCE ON GENETIC RESOURCES AND BIOTECHNOLOGY : Harnessing Technology for Conservation and Sustainable Use of Genetic Resources for Food and Agriculture. AIP Publishing, 2022. http://dx.doi.org/10.1063/5.0075157.
Texte intégralWu, Wei-Sheng. « Identification of yeast cell cycle transcription factors using dynamic system model ». Dans 2010 IEEE Workshop On Signal Processing Systems (SiPS). IEEE, 2010. http://dx.doi.org/10.1109/sips.2010.5624789.
Texte intégralLee, S., Q. Chen et R. S. Amano. « Non-Heating Sterilization Method by High Pressure Carbon Dioxide ». Dans ASME 2003 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2003. http://dx.doi.org/10.1115/detc2003/cie-48249.
Texte intégralLee, S., et R. S. Amano. « Design of Brewery Pasteurization Method by High Pressure Carbon Dioxide ». Dans ASME 2005 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2005. http://dx.doi.org/10.1115/detc2005-84925.
Texte intégralHe, Dong, Dao Zhou et Yanhong Zhou. « Identifying synergistic transcriptional factors involved in the yeast cell cycle using Microarray and ChIP-chip data ». Dans 2006 Fifth International Conference on Grid and Cooperative Computing Workshops. IEEE, 2006. http://dx.doi.org/10.1109/gccw.2006.54.
Texte intégralNudurupati, Sai Chaitanya, Pushpendra Singh et Nadine Aubry. « Effect of Frequency and Electrode Configuration on Yeast Cells Subjected to Traveling Electric Fields ». Dans ASME 2006 2nd Joint U.S.-European Fluids Engineering Summer Meeting Collocated With the 14th International Conference on Nuclear Engineering. ASMEDC, 2006. http://dx.doi.org/10.1115/fedsm2006-98448.
Texte intégralFreund, M., J.-P. Cazenave, M.-L. Wiesel, C. Roitsch, N. Riehl-Bellon, G. Loison, Y. E. Lemoine, S. Brown et M. Courtney. « RECOMBINANT HIRUDIN INHIBITS EXPERIMENTAL VENOUS THROMBOSIS INDUCED BY INJECTION OF TISSUE FACTOR AND STASIS ». Dans XIth International Congress on Thrombosis and Haemostasis. Schattauer GmbH, 1987. http://dx.doi.org/10.1055/s-0038-1643917.
Texte intégralLiu, Hanli, Yutao Zhang, Mika Kimura et Britton Chance. « Theoretical and Experimental Investigations on Solute-Induced Changes in Optical Properties in Living Tissues ». Dans Biomedical Optical Spectroscopy and Diagnostics. Washington, D.C. : Optica Publishing Group, 2006. http://dx.doi.org/10.1364/bosd.1996.cm3.
Texte intégralRapports d'organisations sur le sujet "Yeast cell factory"
Hodges, Thomas K., et David Gidoni. Regulated Expression of Yeast FLP Recombinase in Plant Cells. United States Department of Agriculture, septembre 2000. http://dx.doi.org/10.32747/2000.7574341.bard.
Texte intégralDroby, Samir, Michael Wisniewski, Martin Goldway, Wojciech Janisiewicz et Charles Wilson. Enhancement of Postharvest Biocontrol Activity of the Yeast Candida oleophila by Overexpression of Lytic Enzymes. United States Department of Agriculture, novembre 2003. http://dx.doi.org/10.32747/2003.7586481.bard.
Texte intégralNelson, Nathan, et Randy Schekman. Functional Biogenesis of V-ATPase in the Vacuolar System of Plants and Fungi. United States Department of Agriculture, septembre 1996. http://dx.doi.org/10.32747/1996.7574342.bard.
Texte intégralElroy-Stein, Orna, et Dmitry Belostotsky. Mechanism of Internal Initiation of Translation in Plants. United States Department of Agriculture, décembre 2010. http://dx.doi.org/10.32747/2010.7696518.bard.
Texte intégralSessa, Guido, et Gregory Martin. Role of GRAS Transcription Factors in Tomato Disease Resistance and Basal Defense. United States Department of Agriculture, 2005. http://dx.doi.org/10.32747/2005.7696520.bard.
Texte intégralOhad, Nir, et Robert Fischer. Regulation of Fertilization-Independent Endosperm Development by Polycomb Proteins. United States Department of Agriculture, janvier 2004. http://dx.doi.org/10.32747/2004.7695869.bard.
Texte intégralChamovitz, Daniel, et Albrecht Von Arnim. Translational regulation and light signal transduction in plants : the link between eIF3 and the COP9 signalosome. United States Department of Agriculture, novembre 2006. http://dx.doi.org/10.32747/2006.7696515.bard.
Texte intégral