Articles de revues sur le sujet « Yang-Mills instantons »

Pour voir les autres types de publications sur ce sujet consultez le lien suivant : Yang-Mills instantons.

Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres

Choisissez une source :

Consultez les 50 meilleurs articles de revues pour votre recherche sur le sujet « Yang-Mills instantons ».

À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.

Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.

Parcourez les articles de revues sur diverses disciplines et organisez correctement votre bibliographie.

1

Lai, Sheng-Hong, Jen-Chi Lee et I.-Hsun Tsai. « Extended complex Yang–Mills instanton sheaves ». International Journal of Geometric Methods in Modern Physics 17, no 04 (mars 2020) : 2050061. http://dx.doi.org/10.1142/s0219887820500619.

Texte intégral
Résumé :
In the search of Yang–Mills (YM) instanton sheaves with topological charge two, the rank of [Formula: see text] matrix in the monad construction can be dropped from the bundle case with rank [Formula: see text] to either rank [Formula: see text] [S. H. Lai, J. C. Lee and I. H. Tsai, Yang–Mills instanton sheaves, Ann. Phys. 377 (2017) 446] or 0 on some points of [Formula: see text] of the sheaf cases. In this paper, we first show that the sheaf case with rank [Formula: see text] does not exist for the previous construction of [Formula: see text] complex YM instantons [S. H. Lai, J. C. Lee and I. H. Tsai, Biquaternions and ADHM construction of concompact [Formula: see text] Yang–Mills instantons, Ann. Phys. 361 (2015) 14]. We then show that in the new “extended complex YM instantons” discovered in this paper, rank [Formula: see text] can be either 2 on the whole [Formula: see text] (bundle) with some given ADHM data or 1, 0 on some points of [Formula: see text] with other ADHM data (sheaves). These extended [Formula: see text] complex YM instantons have no real instanton counterparts. Finally, the potential applications to real physics systems are noted in the end of the paper.
Styles APA, Harvard, Vancouver, ISO, etc.
2

Kim, Hongsu, et Yongsung Yoon. « Yang–Mills instantons in the gravitational instanton backgrounds ». Physics Letters B 495, no 1-2 (décembre 2000) : 169–75. http://dx.doi.org/10.1016/s0370-2693(00)01224-7.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

MIYAGI, SAYURI. « YANG–MILLS INSTANTONS ON SEVEN-DIMENSIONAL MANIFOLD OF G2 HOLONOMY ». Modern Physics Letters A 14, no 37 (7 décembre 1999) : 2595–604. http://dx.doi.org/10.1142/s0217732399002728.

Texte intégral
Résumé :
We investigate Yang–Mills instantons on a seven-dimensional manifold of G2 holonomy. By proposing a spherically symmetric ansatz for the Yang–Mills connection, we have ordinary differential equations as the reduced instanton equation, and give some explicit and numerical solutions.
Styles APA, Harvard, Vancouver, ISO, etc.
4

Kronheimer, Peter B., et Hiraku Nakajima. « Yang-Mills instantons on ALE gravitational instantons ». Mathematische Annalen 288, no 1 (décembre 1990) : 263–307. http://dx.doi.org/10.1007/bf01444534.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

OH, JOHN J., et HYUN SEOK YANG. « EINSTEIN MANIFOLDS AS YANG–MILLS INSTANTONS ». Modern Physics Letters A 28, no 21 (7 juillet 2013) : 1350097. http://dx.doi.org/10.1142/s0217732313500971.

Texte intégral
Résumé :
It is well known that Einstein gravity can be formulated as a gauge theory of Lorentz group where spin connections play a role of gauge fields and Riemann curvature tensors correspond to their field strengths. One can then pose an interesting question: What is the Einstein equation from the gauge theory point of view? Or equivalently, what is the gauge theory object corresponding to Einstein manifolds? We show that the Einstein equations in four dimensions are precisely self-duality equations in Yang–Mills gauge theory and so Einstein manifolds correspond to Yang–Mills instantons in SO (4) = SU (2)L × SU (2)R gauge theory. Specifically, we prove that any Einstein manifold with or without a cosmological constant always arises as the sum of SU (2)L instantons and SU (2)R anti-instantons. This result explains why an Einstein manifold must be stable because two kinds of instantons belong to different gauge groups, instantons in SU (2)L and anti-instantons in SU (2)R, and so they cannot decay into a vacuum. We further illuminate the stability of Einstein manifolds by showing that they carry nontrivial topological invariants.
Styles APA, Harvard, Vancouver, ISO, etc.
6

Belitsky, A. V., S. Vandoren et P. van Nieuwenhuizen. « Yang-Mills and D -instantons ». Classical and Quantum Gravity 17, no 17 (23 août 2000) : 3521–70. http://dx.doi.org/10.1088/0264-9381/17/17/305.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Etesi, G�bor, et Tam�s Hausel. « On Yang-Mills Instantons over Multi-Centered Gravitational Instantons ». Communications in Mathematical Physics 235, no 2 (1 avril 2003) : 275–88. http://dx.doi.org/10.1007/s00220-003-0806-8.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Colladay, Don, et Patrick McDonald. « Yang–Mills instantons with Lorentz violation ». Journal of Mathematical Physics 45, no 8 (août 2004) : 3228–38. http://dx.doi.org/10.1063/1.1767624.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Segert, Jan. « Frobenius manifolds from Yang-Mills instantons ». Mathematical Research Letters 5, no 3 (1998) : 327–44. http://dx.doi.org/10.4310/mrl.1998.v5.n3.a6.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Groisser, David, et Thomas H. Parker. « Semiclassical Yang-Mills theory I : Instantons ». Communications in Mathematical Physics 135, no 1 (décembre 1990) : 101–40. http://dx.doi.org/10.1007/bf02097659.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
11

Lled�, M., I. Mart�n, A. Restuccia et A. Mendoza. « Yang?Mills instantons over Riemann surfaces ». Letters in Mathematical Physics 24, no 4 (avril 1992) : 275–81. http://dx.doi.org/10.1007/bf00420487.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
12

Ivanova, Tatiana A. « Scattering of instantons, monopoles and vortices in higher dimensions ». International Journal of Geometric Methods in Modern Physics 13, no 03 (mars 2016) : 1650032. http://dx.doi.org/10.1142/s0219887816500328.

Texte intégral
Résumé :
In this paper, we consider Yang–Mills theory on manifolds [Formula: see text] with a [Formula: see text]-dimensional Riemannian manifold [Formula: see text] of special holonomy admitting gauge instanton equations. Instantons are considered as particle-like solutions in [Formula: see text] dimensions whose static configurations are concentrated on [Formula: see text]. We study how they evolve in time when considered as solutions of the Yang–Mills equations on [Formula: see text] with moduli depending on time [Formula: see text]. It is shown that in the adiabatic limit, when the metric in the [Formula: see text] direction is scaled down, the classical dynamics of slowly moving instantons corresponds to a geodesic motion in the moduli space [Formula: see text] of gauge instantons on [Formula: see text]. Similar results about geodesic motion in the moduli space of monopoles and vortices in higher dimensions are briefly discussed.
Styles APA, Harvard, Vancouver, ISO, etc.
13

JIA, DUOJE, et YISHI DUAN. « TOPOLOGICAL EFFECTS OF INSTANTON DUE TO DEFECTS ». Modern Physics Letters A 16, no 29 (21 septembre 2001) : 1863–69. http://dx.doi.org/10.1142/s0217732301005163.

Texte intégral
Résumé :
A new doublet variable is proposed to decompose non-Abelian gauge field for describing the topological effects of instantons due to the defects in appropriate phase of SU(2) Yang–Mills theory. It is shown that the instanton number can be directly related to the isospin defects of the doublet order parameter and contributed from topological charges of these defects. The θ-term in instanton action is found to be the delta-function form of the doublet and the Lagrangian of instantons in terms of new variables is also presented.
Styles APA, Harvard, Vancouver, ISO, etc.
14

Papoulias, Vasileios Ektor. « Spin(7) Instantons and Hermitian Yang–Mills Connections for the Stenzel Metric ». Communications in Mathematical Physics 384, no 3 (17 mai 2021) : 2009–66. http://dx.doi.org/10.1007/s00220-021-04055-5.

Texte intégral
Résumé :
AbstractWe use the highly symmetric Stenzel Calabi–Yau structure on $$T^{\star }S^{4}$$ T ⋆ S 4 as a testing ground for the relationship between the Spin(7) instanton and Hermitian–Yang–Mills (HYM) equations. We reduce both problems to tractable ODEs and look for invariant solutions. In the abelian case, we establish local equivalence and prove a global nonexistence result. We analyze the nonabelian equations with structure group SO(3) and construct the moduli space of invariant Spin(7) instantons in this setting. This is comprised of two 1-parameter families—one of them explicit—of irreducible Spin(7) instantons. Each carries a unique HYM connection. We thus negatively resolve the question regarding the equivalence of the two gauge theoretic PDEs. The HYM connections play a role in the compactification of this moduli space, exhibiting a removable singularity phenomenon that we aim to further examine in future work.
Styles APA, Harvard, Vancouver, ISO, etc.
15

Verbin, Y. « Yang-Mills instantons in closed Friedmann universes ». Physics Letters B 223, no 3-4 (juin 1989) : 296–99. http://dx.doi.org/10.1016/0370-2693(89)91605-5.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
16

Taniguchi, Tadashi. « ADHM construction of super Yang–Mills instantons ». Journal of Geometry and Physics 59, no 9 (septembre 2009) : 1199–209. http://dx.doi.org/10.1016/j.geomphys.2009.06.003.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
17

IVANOVA, TATIANA A., OLAF LECHTENFELD et HELGE MÜLLER-EBHARDT. « NONCOMMUTATIVE MODULI FOR MULTI-INSTANTONS ». Modern Physics Letters A 19, no 32 (20 octobre 2004) : 2419–30. http://dx.doi.org/10.1142/s0217732304015464.

Texte intégral
Résumé :
There exists a recursive algorithm for constructing BPST-type multi-instantons on commutative ℝ4. When deformed noncommutatively, however, it becomes difficult to write down non-singular instanton configurations with topological charge greater than one in explicit form. We circumvent this difficulty by allowing for the translational instanton moduli to become noncommutative as well. Such a scenario is natural in the self-dual Yang–Mills hierarchy of integrable equations where the moduli of solutions are seen as extended spacetime coordinates associated with higher flows. By judicious adjustment of the moduli-noncommutativity we achieve the ADHM construction of generalized 't Hooft multi-instanton solutions with everywhere self-dual field strengths on noncommutative ℝ4.
Styles APA, Harvard, Vancouver, ISO, etc.
18

OCHIAI, TETSUYUKI. « MULTI-INSTANTON EFFECT IN TWO-DIMENSIONAL QCD ». Modern Physics Letters A 10, no 21 (10 juillet 1995) : 1549–63. http://dx.doi.org/10.1142/s0217732395001678.

Texte intégral
Résumé :
We analyze multi-instanton sector in two-dimensional U(N) Yang-Mills theory on a sphere. We obtain a contour integral representation of the multi-instanton amplitude and find “neutral” configurations of the even number instantons dominate in the large-N limit. Using this representation, we calculate the 1-, 2-, 3-, 4-body interactions and the free energies for N=3, 4, 5 numerically and find that the multi-instanton interaction effect essentially contributes to the large-N phase transition discovered by Douglas and Kazakov.
Styles APA, Harvard, Vancouver, ISO, etc.
19

Correia, Filipe Paccetti. « Hermitian Yang-Mills instantons on Calabi-Yau cones ». Journal of High Energy Physics 2009, no 12 (1 décembre 2009) : 004. http://dx.doi.org/10.1088/1126-6708/2009/12/004.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
20

Figueroa-O'Farrill, J. M., C. Kohl et B. Spence. « Supersymmetric Yang-Mills, octonionic instantons and triholomorphic curves ». Nuclear Physics B 521, no 3 (juin 1998) : 419–43. http://dx.doi.org/10.1016/s0550-3213(98)00285-5.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
21

Ivanova, Tatiana A., et Olaf Lechtenfeld. « Yang–Mills instantons and dyons on group manifolds ». Physics Letters B 670, no 1 (décembre 2008) : 91–94. http://dx.doi.org/10.1016/j.physletb.2008.10.027.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
22

Minasian, Ruben, Samson L. Shatashvili et Pierre Vanhove. « Closed strings from SO(8) Yang–Mills instantons ». Nuclear Physics B 613, no 1-2 (octobre 2001) : 87–104. http://dx.doi.org/10.1016/s0550-3213(01)00369-8.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
23

Etesi, Gábor. « Spin(7)-manifolds and symmetric Yang–Mills instantons ». Physics Letters B 521, no 3-4 (novembre 2001) : 391–99. http://dx.doi.org/10.1016/s0370-2693(01)01239-4.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
24

Ivanova, Tatiana A., Olaf Lechtenfeld, Alexander D. Popov et Thorsten Rahn. « Instantons and Yang–Mills Flows on Coset Spaces ». Letters in Mathematical Physics 89, no 3 (septembre 2009) : 231–47. http://dx.doi.org/10.1007/s11005-009-0336-1.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
25

Reinhardt, H., K. Langfeld et L. v. Smekal. « Instantons in field strength formulated Yang-Mills theories ». Physics Letters B 300, no 1-2 (février 1993) : 111–17. http://dx.doi.org/10.1016/0370-2693(93)90756-8.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
26

Bianchi, Massimo, Stefano Kovacs, Giancarlo Rossi et Michael B. Green. « Instantons in supersymmetric Yang-Mills and D-instantons in IIB superstring theory ». Journal of High Energy Physics 1998, no 08 (30 août 1998) : 013. http://dx.doi.org/10.1088/1126-6708/1998/08/013.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
27

Poppitz, Erich. « Notes on Confinement on R3 × S1 : From Yang–Mills, Super-Yang–Mills, and QCD (adj) to QCD(F) ». Symmetry 14, no 1 (17 janvier 2022) : 180. http://dx.doi.org/10.3390/sym14010180.

Texte intégral
Résumé :
This is a pedagogical introduction to the physics of confinement on R3×S1, using SU(2) Yang–Mills with massive or massless adjoint fermions as the prime example; we also add fundamental flavours to conclude. The small-S1 limit is remarkable, allowing for controlled semiclassical determination of the nonperturbative physics in these, mostly non-supersymmetric, theories. We begin by reviewing the Polyakov confinement mechanism on R3. Moving on to R3×S1, we show how introducing adjoint fermions stabilizes center symmetry, leading to abelianization and semiclassical calculability. We explain how monopole–instantons and twisted monopole–instantons arise. We describe the role of various novel topological excitations in extending Polyakov’s confinement to the locally four-dimensional case, discuss the nature of the confining string, and the θ-angle dependence. We study the global symmetry realization and, when available, present evidence for the absence of phase transitions as a function of the S1 size. As our aim is not to cover all work on the subject, but to prepare the interested reader for its study, we also include brief descriptions of topics not covered in detail: the necessity for analytic continuation of path integrals, the study of more general theories, and the ’t Hooft anomalies involving higher-form symmetries.
Styles APA, Harvard, Vancouver, ISO, etc.
28

Shulyakovsky, Roman G., Alexander S. Gribowsky, Alexander S. Garkun, Maxim N. Nevmerzhitsky, Alexei O. Shaplov et Denis A. Shohonov. « Classical instanton solutions in quantum field theory ». Journal of the Belarusian State University. Physics, no 2 (7 juin 2020) : 78–85. http://dx.doi.org/10.33581/2520-2243-2020-2-78-85.

Texte intégral
Résumé :
Instantons are non-trivial solutions of classical Euclidean equations of motion with a finite action. They provide stationary phase points in the path integral for tunnel amplitude between two topologically distinct vacua. It make them useful in many applications of quantum theory, especially for describing the wave function of systems with a degenerate vacua in the framework of the path integrals formalism. Our goal is to introduce the current situation about research on instantons and prepare for experiments. In this paper we give a review of instanton effects in quantum theory. We find in stanton solutions in some quantum mechanical problems, namely, in the problems of the one-dimensional motion of a particle in two-well and periodic potentials. We describe known instantons in quantum field theory that arise, in particular, in the two-dimensional Abelian Higgs model and in SU(2) Yang – Mills gauge fields. We find instanton solutions of two-dimensional scalar field models with sine-Gordon and double-well potentials in a limited spatial volume. We show that accounting of instantons significantly changes the form of the Yukawa potential for the sine-Gordon model in two dimensions.
Styles APA, Harvard, Vancouver, ISO, etc.
29

Volkov, Boris O. « Lévy Laplacians and instantons on manifolds ». Infinite Dimensional Analysis, Quantum Probability and Related Topics 23, no 02 (juin 2020) : 2050008. http://dx.doi.org/10.1142/s0219025720500083.

Texte intégral
Résumé :
The equivalence of the anti-selfduality Yang–Mills equations on the four-dimensional orientable Riemannian manifold and the Laplace equations for some infinite-dimensional Laplacians is proved. A class of modified Lévy Laplacians parameterized by the choice of a curve in the group [Formula: see text] is introduced. It is shown that a connection is an instanton (a solution of the anti-selfduality Yang–Mills equations) if and only if the parallel transport generalized by this connection is a solution of the Laplace equations for some three modified Lévy Laplacians from this class.
Styles APA, Harvard, Vancouver, ISO, etc.
30

Lee, Jen-Chi. « Biquaternion Construction of SL(2,C) Yang-Mills Instantons ». Journal of Physics : Conference Series 670 (25 janvier 2016) : 012032. http://dx.doi.org/10.1088/1742-6596/670/1/012032.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
31

HELMKE, U. « Linear Dynamical Systems and Instantons in Yang-Mills Theory ». IMA Journal of Mathematical Control and Information 3, no 2-3 (1986) : 151–66. http://dx.doi.org/10.1093/imamci/3.2-3.151.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
32

Loginov, E. K., et E. D. Loginova. « Yang-Mills like instantons in eight and seven dimensions ». Journal of Mathematical Physics 55, no 10 (octobre 2014) : 101701. http://dx.doi.org/10.1063/1.4897444.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
33

Bianchi, Massimo, Francesco Fucito, Giancarlo Rossi et Maurizio Martellini. « Explicit construction of Yang-Mills instantons on ALE spaces ». Nuclear Physics B 473, no 1-2 (août 1996) : 367–404. http://dx.doi.org/10.1016/0550-3213(96)00240-4.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
34

Bonini, G. F., S. Habib, E. Mottola, C. Rebbi, R. Singleton et P. G. Tinyakov. « Periodic instantons in SU(2) Yang–Mills–Higgs theory ». Physics Letters B 474, no 1-2 (février 2000) : 113–21. http://dx.doi.org/10.1016/s0370-2693(00)00022-8.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
35

Paban, Sonia, Savdeep Sethi et Mark Stern. « Summing up instantons in three-dimensional Yang–Mills theories ». Advances in Theoretical and Mathematical Physics 3, no 2 (1999) : 343–61. http://dx.doi.org/10.4310/atmp.1999.v3.n2.a6.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
36

Yatsun, V. A. « Integrable model of Yang-Mills theory and quasi-instantons ». Letters in Mathematical Physics 11, no 2 (février 1986) : 153–59. http://dx.doi.org/10.1007/bf00398427.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
37

MAEDA, TAKASHI, et TOSHIO NAKATSU. « AMOEBAS AND INSTANTONS ». International Journal of Modern Physics A 22, no 05 (20 février 2007) : 937–83. http://dx.doi.org/10.1142/s0217751x07034970.

Texte intégral
Résumé :
We study a statistical model of random plane partitions. The statistical model has interpretations as five-dimensional [Formula: see text] supersymmetric SU (N) Yang–Mills on ℝ4 × S1 and as Kähler gravity on local SU (N) geometry. At the thermodynamic limit a typical plane partition called the limit shape dominates in the statistical model. The limit shape is linked with a hyperelliptic curve, which is a five-dimensional version of the SU (N) Seiberg–Witten curve. Amoebas and the Ronkin functions play intermediary roles between the limit shape and the hyperelliptic curve. In particular, the Ronkin function realizes an integration of thermodynamical density of the main diagonal partitions, along one-dimensional slice of it and thereby is interpreted as the counting function of gauge instantons. The radius of S1 can be identified with the inverse temperature of the statistical model. The large radius limit of the five-dimensional Yang–Mills is the low temperature limit of the statistical model, where the statistical model is frozen to a ground state that is associated with the local SU (N) geometry. We also show that the low temperature limit corresponds to a certain degeneration of amoebas and the Ronkin functions known as tropical geometry.
Styles APA, Harvard, Vancouver, ISO, etc.
38

Kim, Seok, Ki-Myeong Lee et Sungjay Lee. « Dyonic instantons in 5-dim Yang-Mills Chern-Simons theories ». Journal of High Energy Physics 2008, no 08 (19 août 2008) : 064. http://dx.doi.org/10.1088/1126-6708/2008/08/064.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
39

Deser, Andreas, Olaf Lechtenfeld et Alexander D. Popov. « Sigma-model limit of Yang–Mills instantons in higher dimensions ». Nuclear Physics B 894 (mai 2015) : 361–73. http://dx.doi.org/10.1016/j.nuclphysb.2015.03.009.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
40

Lechtenfeld, Olaf, et Warren Siegel. « N = 2 worldsheet instantons yield cubic self-dual Yang-Mills ». Physics Letters B 405, no 1-2 (juillet 1997) : 49–54. http://dx.doi.org/10.1016/s0370-2693(97)00595-9.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
41

Wo-Jun, Zhong, et Duan Yi-Shi. « Topological Quantization of Instantons in SU (2) Yang–Mills Theory ». Chinese Physics Letters 25, no 5 (mai 2008) : 1534–37. http://dx.doi.org/10.1088/0256-307x/25/5/004.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
42

Kovalev, A. G. « On the reduction of Yang-Mills instantons to Nahm's equations ». Russian Mathematical Surveys 52, no 6 (31 décembre 1997) : 1305–6. http://dx.doi.org/10.1070/rm1997v052n06abeh002170.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
43

Castro, Carlos. « Wgravity,N=2 strings, and 2+2SU*(∞) Yang–Mills instantons ». Journal of Mathematical Physics 35, no 6 (juin 1994) : 3013–24. http://dx.doi.org/10.1063/1.530500.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
44

Yang, Hyun Seok, et Sangheon Yun. « Calabi-Yau Manifolds, Hermitian Yang-Mills Instantons, and Mirror Symmetry ». Advances in High Energy Physics 2017 (2017) : 1–27. http://dx.doi.org/10.1155/2017/7962426.

Texte intégral
Résumé :
We address the issue of why Calabi-Yau manifolds exist with a mirror pair. We observe that the irreducible spinor representation of the Lorentz group Spin(6) requires us to consider the vector spaces of two forms and four forms on an equal footing. The doubling of the two-form vector space due to the Hodge duality doubles the variety of six-dimensional spin manifolds. We explore how the doubling is related to the mirror symmetry of Calabi-Yau manifolds. Via the gauge theory formulation of six-dimensional Riemannian manifolds, we show that the curvature tensor of a Calabi-Yau manifold satisfies the Hermitian Yang-Mills equations on the Calabi-Yau manifold. Therefore, the mirror symmetry of Calabi-Yau manifolds can be recast as the mirror pair of Hermitian Yang-Mills instantons. We discuss the mirror symmetry from the gauge theory perspective.
Styles APA, Harvard, Vancouver, ISO, etc.
45

Morris, T. R., D. A. Ross et C. T. Sachrajda. « Instantons and the renormalisation group in supersymmetric Yang-Mills theories ». Nuclear Physics B 264 (janvier 1986) : 111–53. http://dx.doi.org/10.1016/0550-3213(86)90476-1.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
46

Chimento, Samuele, Tomás Ortín et Alejandro Ruipérez. « Yang–Mills instantons in Kähler spaces with one holomorphic isometry ». Physics Letters B 778 (mars 2018) : 371–76. http://dx.doi.org/10.1016/j.physletb.2018.01.046.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
47

Bergvelt, M. J., et E. A. De Kerf. « The Hamiltonian structure of Yang-Mills theories and instantons I ». Physica A : Statistical Mechanics and its Applications 139, no 1 (novembre 1986) : 101–24. http://dx.doi.org/10.1016/0378-4371(86)90007-5.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
48

Bergvelt, M. J., et E. A. De Kerf. « The Hamiltonian structure of Yang-Mills theories and instantons II ». Physica A : Statistical Mechanics and its Applications 139, no 1 (novembre 1986) : 125–48. http://dx.doi.org/10.1016/0378-4371(86)90008-7.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
49

Billó, Marco, Pietro Fré, Riccardo D'auria, Sergio Ferrara, Paolo Soriani et Antoine Van Proeyen. « R Symmetry and the Topological Twist of N = 2 Effective Supergravities of Heterotic Strings ». International Journal of Modern Physics A 12, no 02 (20 janvier 1997) : 379–418. http://dx.doi.org/10.1142/s0217751x97000475.

Texte intégral
Résumé :
We discuss R symmetries in locally supersymmetric N = 2 gauge theories coupled to hypermultiplets which can be thought of as effective theories of heterotic superstring models. In this type of supergravities a suitable R symmetry exists and can be used to topologically twist the theory: the vector multiplet containing the dilaton–axion field has different R charge assignments with respect to the other vector multiplets. Correspondingly a system of coupled instanton equations emerges, mixing gravitational and Yang–Mills instantons with triholomorphic hyperinstantons and axion instantons. For the tree level classical special manifolds ST(n) = SU(1,1)/U(1) × SO(2,n)/[SO(2) × SO(n)], R symmetry with the specified properties is a continuous symmetry, but for the quantum-corrected manifolds [Formula: see text] a discrete R group of electric–magnetic duality rotations is sufficient and we argue that it exists.
Styles APA, Harvard, Vancouver, ISO, etc.
50

DALLAGNOL, LLOHANN, et MARCOS JARDIM. « NONSINGULAR COMPLEX INSTANTONS ON EUCLIDEAN SPACETIME ». International Journal of Geometric Methods in Modern Physics 05, no 06 (septembre 2008) : 963–71. http://dx.doi.org/10.1142/s0219887808003132.

Texte intégral
Résumé :
Building on a variation of 't Hooft's harmonic function ansatz for SU(2) instantons on ℝ4, we provide new explicit nonsingular solutions of the Yang–Mills anti-self-duality equations on Euclidean spacetime with gauge group SL(2, ℂ) and SL(3, ℝ).
Styles APA, Harvard, Vancouver, ISO, etc.
Nous offrons des réductions sur tous les plans premium pour les auteurs dont les œuvres sont incluses dans des sélections littéraires thématiques. Contactez-nous pour obtenir un code promo unique!

Vers la bibliographie