Pour voir les autres types de publications sur ce sujet consultez le lien suivant : X-Pinch.

Articles de revues sur le sujet « X-Pinch »

Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres

Choisissez une source :

Consultez les 50 meilleurs articles de revues pour votre recherche sur le sujet « X-Pinch ».

À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.

Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.

Parcourez les articles de revues sur diverses disciplines et organisez correctement votre bibliographie.

1

Pikuz, S. A., T. A. Shelkovenko et D. A. Hammer. « X-pinch. Part I ». Plasma Physics Reports 41, no 4 (avril 2015) : 291–342. http://dx.doi.org/10.1134/s1063780x15040054.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Pikuz, S. A., T. A. Shelkovenko et D. A. Hammer. « X-pinch. Part II ». Plasma Physics Reports 41, no 6 (juin 2015) : 445–91. http://dx.doi.org/10.1134/s1063780x15060045.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Riordan, James R. « X-pinch flash photography ». Physics Today 54, no 12 (décembre 2001) : 9. http://dx.doi.org/10.1063/1.4796251.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Tong, Zhao, Zou Xiao-Bing, Zhang Ran et Wang Xin-Xin. « X-ray backlighting of two-wire Z-pinch plasma using X-pinch ». Chinese Physics B 19, no 7 (juillet 2010) : 075205. http://dx.doi.org/10.1088/1674-1056/19/7/075205.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Lebedev, S. V., F. N. Beg, S. N. Bland, J. P. Chittenden, A. E. Dangor, M. G. Haines, M. Zakaullah, S. A. Pikuz, T. A. Shelkovenko et D. A. Hammer. « X-ray backlighting of wire array Z-pinch implosions using X pinch ». Review of Scientific Instruments 72, no 1 (janvier 2001) : 671–73. http://dx.doi.org/10.1063/1.1315647.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Wu, J., L. Wang, A. Qiu, J. Han, M. Li, T. Lei, P. Cong, M. Qiu, H. Yang et M. Lv. « Experimental investigations of X-pinch backlighters on QiangGuang-1 generator ». Laser and Particle Beams 29, no 2 (22 mars 2011) : 155–60. http://dx.doi.org/10.1017/s0263034611000024.

Texte intégral
Résumé :
AbstractExperiments of the return current post installed X-pinches were carried out on the 1-MA “QiangGuang-1” facility with the purpose of understanding X-pinch characteristics under this setup and establishing X-pinch backlighting diagnostics for the wire-array Z-pinches. Different wire-array loads along with the two-wire 30 µm Mo X-pinch backlighter were tested. The X-pinches emit the X-ray radiation with the burst time variation of ± 4 ns and the bright spot size of ~30 µm. X-ray backlighting shadowgraphy images of the over-mass and radiation-suppressed Z-pinch wire array were obtained.
Styles APA, Harvard, Vancouver, ISO, etc.
7

Zhao, Shen, Xinlei Zhu, Ran Zhang, Haiyun Luo, Xiaobing Zou et Xinxin Wang. « Current division between two paralleled X-pinches ». Laser and Particle Beams 32, no 3 (15 juillet 2014) : 437–42. http://dx.doi.org/10.1017/s0263034614000354.

Texte intégral
Résumé :
AbstractIn order to use two paralleled X-pinches as X-ray sources for the time-resolved backlighting of wire-array Z-pinch plasma, it is necessary to make these two X-pinches emit X-rays at different but roughly preset time instants. The timing of the X-ray burst from an X-pinch independence of the current, and the wire mass of the X-pinch was investigated. The currents flowing through two paralleled X-pinches were measured and it was found that the total current is almost equally divided between these two X-pinches no matter how different the wires for these two X-pinches are. The reason for the equal current division between two paralleled X-pinches was given based on the inductance calculation of the X-pinch circuit.
Styles APA, Harvard, Vancouver, ISO, etc.
8

Skoulakis, A., G. Koundourakis, A. Ciardi, E. Kaselouris, I. Fitilis, J. Chatzakis, M. Bakarezos et al. « High performance simulations of a single X-pinch ». Plasma Physics and Controlled Fusion 64, no 2 (30 décembre 2021) : 025003. http://dx.doi.org/10.1088/1361-6587/ac3deb.

Texte intégral
Résumé :
Abstract The dynamics of plasmas produced by low current X-pinch devices are explored. This comprehensive computational study is the first step in the preparation of an experimental campaign aiming to understand the formation of plasma jets in table-top pulsed power X-pinch devices. Two state-of-the-art magneto-hydro-dynamic codes, GORGON and PLUTO, are used to simulate the evolution of the plasma and describe its key dynamic features. GORGON and PLUTO are built on different approximation schemes and the simulation results obtained are discussed and analyzed in relation to the physics adopted by each code. Both codes manage to accurately handle the numerical demands of the X-pinch plasma evolution and provide precise details on the mechanisms of the plasma expansion, the jet-formation, and the pinch generation. Furthermore, the influence of electrical resistivity, radiation transport and optically thin losses on the dynamic behaviour of the simulated X-pinch produced plasma is studied in PLUTO. Our findings highlight the capabilities of the GORGON and PLUTO codes in simulating the wide range of plasma conditions found in X-pinch experiments, enabling a direct comparison to the scheduled experiments.
Styles APA, Harvard, Vancouver, ISO, etc.
9

Valdivia, M. P., G. W. Collins IV, F. Conti et F. N. Beg. « Wire, hybrid, and laser-cut X-pinches as Talbot–Lau backlighters for electron density diagnostics ». Plasma Physics and Controlled Fusion 64, no 3 (28 janvier 2022) : 035011. http://dx.doi.org/10.1088/1361-6587/ac4b95.

Texte intégral
Résumé :
Abstract Talbot–Lau x-ray deflectometry (TXD) enables refraction-based imaging for high-energy-density physics experiments, and thus, it has been studied and developed with the goal of diagnosing plasmas relevant to inertial confinement and magnetic liner inertial fusion. X-pinches, known for reliably generating fast (∼1 ns), small (∼1 µm) x-ray sources, were driven on the compact current driver generator for ablation structure and implosion studies (∼200 kA, 150 ns) as a potential backlighter source for TXD. Considering that different X-pinch configurations have characteristic advantages and drawbacks as x-ray generating loads, three distinct copper X-pinch configurations were studied: the wire X-pinch, the hybrid X-pinch, and the laser-cut X-pinch. The Cu K-shell emission from each configuration was characterized and analyzed regarding the specific backlighter requirements for an 8 keV TXD system: spatial and temporal resolution, number of sources, time of emission, spectrum, and reproducibility. Recommendations for future experimental improvements and applications are presented. The electron density of static objects was retrieved from Moiré images obtained through TXD. This allowed to calculate the mass density of static samples within 4% of the expected value for laser-cut X-pinches, which were found to be the optimal X-pinch configuration for TXD due to their high reproducibility, small source size (⩽5 µm), short duration (∼1 ns), and up to 106 W peak power near 8 keV photon energy. Plasma loads were imaged through TXD for the first-time using laser-cut X-pinch backlighting. Experimental images were compared with simulations from the x-ray wave-front propagation code, demonstrating that TXD can be a powerful x-ray refraction-based diagnostic for dense Z-pinch loads. Future plans for Talbot–Lau interferometry diagnostics in the pulsed-power environment are described.
Styles APA, Harvard, Vancouver, ISO, etc.
10

Shelkovenko, T. A., S. A. Pikuz, R. D. McBride, P. F. Knapp, G. Wilhelm, D. B. Sinars, D. A. Hammer et N. Yu Orlov. « Symmetric multilayer megampere X-pinch ». Plasma Physics Reports 36, no 1 (janvier 2010) : 50–66. http://dx.doi.org/10.1134/s1063780x10010046.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
11

Anan’ev, S. S., Yu L. Bakshaev, P. I. Blinov, V. A. Bryzgunov, V. V. Vikhrev, S. A. Dan’ko, A. A. Zelenin et al. « X-pinch-based neutron source ». Plasma Physics Reports 36, no 7 (juillet 2010) : 601–8. http://dx.doi.org/10.1134/s1063780x1007007x.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
12

Artyomov, A. P., A. S. Zhigalin, I. V. Lavrinovich, V. I. Oreshkin, N. A. Ratakhin, A. G. Rousskikh, A. V. Fedyunin et al. « A synchronized X-pinch driver ». Instruments and Experimental Techniques 57, no 4 (juillet 2014) : 461–74. http://dx.doi.org/10.1134/s0020441214040010.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
13

Zhang Ran, 张然, 赵彤 Zhao Tong, 邹晓兵 Zou Xiaobing, 王新新 Wang Xinxin, 赵勇超 Zhao Yongchao, 杜彦强 Du Yanqiang et 王联辉 Wang lianhui. « X-ray backlighting using an X-pinch ». High Power Laser and Particle Beams 22, no 4 (2010) : 931–35. http://dx.doi.org/10.3788/hplpb20102204.0931.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
14

Appartaim, R. K. « X-rays from a microsecond X-pinch ». Journal of Applied Physics 114, no 8 (28 août 2013) : 083304. http://dx.doi.org/10.1063/1.4819176.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
15

Kalantar, Daniel H., David A. Hammer et Alan W. De Silva. « Nitrogen laser system for diagnosing z-pinch and x-pinch plasmas ». Review of Scientific Instruments 68, no 7 (juillet 1997) : 2725–29. http://dx.doi.org/10.1063/1.1148186.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
16

Ham, Seunggi, Jonghyeon Ryu, Hakmin Lee, Sungbin Park, Y. C. Ghim, Y. S. Hwang et Kyoung-Jae Chung. « Estimation of plasma parameters of X-pinch with time-resolved x-ray spectroscopy ». Matter and Radiation at Extremes 8, no 3 (1 mai 2023) : 036901. http://dx.doi.org/10.1063/5.0131369.

Texte intégral
Résumé :
We estimate the parameters of a Cu plasma generated by an X-pinch by comparing experimentally measured x-rays with synthetic data. A filtered absolute extreme ultraviolet diode array is used to measure time-resolved x-ray spectra with a spectral resolution of ∼1 keV in the energy range of 1–10 keV. The synthetic spectra of Cu plasmas with different electron temperatures, electron densities, and fast electron fractions are calculated using the FLYCHK code. For quantitative comparison with the measured spectrum, two x-ray power ratios with three different spectral ranges are calculated. We observe three x-ray bursts in X-pinch experiments with two Cu wires conducted on the SNU X-pinch at a current rise rate of ∼0.2 kA/ns. Analysis of the spectra reveals that the first burst comprises x-rays emitted by hot spots and electron beams, with characteristics similar to those observed in other X-pinches. The second and third bursts are both generated by long-lived electron beams formed after the neck structure has been completely depleted. In the second burst, the formation of the electron beam is accompanied by an increase in the electron density of the background plasma. Therefore, the long-lived electron beams generate the additional strong x-ray bursts while maintaining a plasma channel in the central region of the X-pinch. Moreover, they emit many hard x-rays (HXRs), enabling the SNU X-pinch to be used as an HXR source. This study confirms that the generation of long-lived electron beams is crucial to the dynamics of X-pinches and the generation of strong HXRs.
Styles APA, Harvard, Vancouver, ISO, etc.
17

Safronova, A. S., V. L. Kantsyrev, P. Neill, U. I. Safronova, D. A. Fedin, N. D. Ouart, M. F. Yilmaz et al. « The importance of EBIT data for Z-pinch plasma diagnostics ». Canadian Journal of Physics 86, no 1 (1 janvier 2008) : 267–76. http://dx.doi.org/10.1139/p07-170.

Texte intégral
Résumé :
The results from the last six years of X-ray spectroscopy and spectropolarimetry of high-energy density Z-pinch plasmas complemented by experiments with the electron beam ion trap (EBIT) at the Lawrence Livermore National Laboratory (LLNL) are presented. The two topics discussed are the development of M-shell X-ray W spectroscopic diagnostics and K-shell Ti spectropolarimetry of Z-pinch plasmas. The main focus is on radiation from a specific load configuration called an “X-pinch”. In this work the study of X-pinches with tungsten wires combined with wires from other, lower Z materials is reported. Utilizing data produced with the LLNL EBIT at different energies of the electron beam the theoretical prediction of line positions and intensity of M-shell W spectra were tested and calibrated. Polarization-sensitive X-pinch experiments at the University of Nevada, Reno (UNR) provide experimental evidence for the existence of strong electron beams in Ti and Mo X-pinch plasmas and motivate the development of X-ray spectropolarimetry of Z-pinch plasmas. This diagnostic is based on the measurement of spectra recorded simultaneously by two spectrometers with different sensitivity to the linear polarization of the observed lines and compared with theoretical models of polarization-dependent spectra. Polarization-dependent K-shell spectra from Ti X-pinches are presented and compared with model calculations and with spectra generated by a quasi-Maxwellian electron beam at the LLNL EBIT-II electron beam ion trap.PACS Nos.: 32.30.Rj, 52.58.Lq, 52.70.La
Styles APA, Harvard, Vancouver, ISO, etc.
18

Skoulakis, Alexandros, Evaggelos Kaselouris, Antonis Kavroulakis, Christos Karvounis, Ioannis Fitilis, John Chatzakis, Vasilis Dimitriou, Nektarios A. Papadogiannis et Michael Tatarakis. « Characterization of an X-ray Source Generated by a Portable Low-Current X-Pinch ». Applied Sciences 11, no 23 (25 novembre 2021) : 11173. http://dx.doi.org/10.3390/app112311173.

Texte intégral
Résumé :
An X-pinch scheme of a low-current generator (45 kA, 50 ns rise time) is characterized as a potential efficient source of soft X-rays. The X-pinch target consists of wires of 5 μm in diameter—made from either tungsten (W) or gold (Au)-plated W—loaded at two angles of 55° and 98° between the crossed wires. Time-resolved soft X-ray emission measurements are performed to provide a secure correlation with the optical probing results. A reconstruction of the actual photodiode current profile procedure was adopted, capable of overcoming the limits of the slow rising and falling times due to the “slow” response of the diodes and the noise. The pure and Au-plated W deliver an average X-ray yield, which depends only on the angle of the crossed wires, and is measured to be ~50 mJ and ~70 mJ for the 98° and 55° crossed wire angles, respectively. An additional experimental setup was developed to characterize the X-pinch as a source of X-rays with energy higher than ~6 keV, via time-integrated measurements. The X-ray emission spectrum was found to have an upper limit at 13 keV for the Au-plated W configuration at 55°. The portable tabletop X-pinch proved to be ideal for use in X-ray radiography applications, such as the detection of interior defects in biological samples.
Styles APA, Harvard, Vancouver, ISO, etc.
19

Safronova, A. S., V. L. Kantsyrev, A. A. Esaulov, U. I. Safronova, V. V. Shlyaptseva, I. Shrestha, G. C. Osborne et al. « Radiative signatures of Z-pinch plasmas at UNR : from X-pinches to wire arrays ». International Journal of Modern Physics : Conference Series 32 (janvier 2014) : 1460316. http://dx.doi.org/10.1142/s2010194514603160.

Texte intégral
Résumé :
University-scale Z-pinch generators are able to produce High Energy Density (HED) plasmas in a broad range of plasma parameters under well-controlled and monitored experimental conditions suitable for radiation studies. The implosion of X-pinch and wire array loads at a 1 MA generator yields short (1-20 nsec) x-ray bursts from one or several bright plasma spots near the wire cross point (for X-pinches) or along and near Z-pinch axis (for wire arrays). Such X- and Z-pinch HED plasma with scales from a few µm to several mm in size emits radiation in a broad range of energies from 10 eV to 0.5 MeV and is subject of our studies during the last ten years. In particular, the substantial number of experiments with very different wire loads was performed on the 1 MA Zebra generator and analyzed: X-pinch, cylindrical, nested, and various types of the novel load, Planar Wire Arrays (PWA). Also, the experiments at an enhanced current of 1.5-1.7 MA on Zebra using Load Current Multiplier (LCM) were performed. This paper highlights radiative signatures of X-pinches and Single and Double PWAs which are illustrated using the new results with combined wire loads from two different materials.
Styles APA, Harvard, Vancouver, ISO, etc.
20

Zhao, Shen, Ran Zhang, Xinlei Zhu, Xiaobing Zou et Xinxin Wang. « Timing of x-ray burst from X-pinch ». Physics of Plasmas 22, no 6 (juin 2015) : 063105. http://dx.doi.org/10.1063/1.4922682.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
21

Hammer, D. A., D. H. Kalantar, K. C. Mittal et N. Qi. « X‐pinch soft x‐ray source for microlithography ». Applied Physics Letters 57, no 20 (12 novembre 1990) : 2083–85. http://dx.doi.org/10.1063/1.103948.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
22

Beg, F. N., K. Krushelnick, P. Lichtsteiner, A. Meakins, A. Kennedy, N. Kajumba, G. Burt et A. E. Dangor. « Table-top X-pinch for x-ray radiography ». Applied Physics Letters 82, no 25 (23 juin 2003) : 4602–4. http://dx.doi.org/10.1063/1.1584782.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
23

Xia, Tian Xiang, Tong Zhao, Liang Zou, Li Zhang et Feng Zhu. « Research on Two-Dimensional MHD Simulations of X-Pinch Implosion and its Physical Aspects ». Applied Mechanics and Materials 525 (février 2014) : 316–19. http://dx.doi.org/10.4028/www.scientific.net/amm.525.316.

Texte intégral
Résumé :
Based on a large quantity of experimental work and study of the two-dimensional MHD (Magnetohydrodynamic) simulation describing the implosion dynamics of X-pinch, at the same time taking basic physical processes of implosion into account, this paper seeks to build a two-dimensional MHD simulation model on implosion dynamics throughout the whole constriction evolution (including formation of dense plasma, compression, generation of hot spot, X-ray pulsed radiation), determine the target area for numerical simulation, as well as the initial time for simulation and plasma initial state. As for two-dimensional MHD models which indicate the physical process during different stages, a clear boundary condition is explored along with Lagrange-Euler numerical method which strives to reproduce the dynamics of the X-pinch implosion and better study the physical properties during the X-pinch implosion dynamics. Results of this thesis will enrich the X-pinch research areas of basic theories and analytical methods, which is of great theoretical significance and application value.
Styles APA, Harvard, Vancouver, ISO, etc.
24

Ramirez, J. J. « The X-1 Z-pinch driver ». IEEE Transactions on Plasma Science 25, no 2 (avril 1997) : 155–59. http://dx.doi.org/10.1109/27.602486.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
25

Barykov, I. А., G. S. Volkov, V. А. Gasilov, Е. V. Grabovskij, V. I. Zaitsev, А. S. Boldarev et О. G. Olkhovskaya. « GAS X-PINCH : MODELING AND REALIZATION ». Problems of Atomic Science and Technology, Ser. Thermonuclear Fusion 40, no 4 (2017) : 80–85. http://dx.doi.org/10.21517/0202-3822-2017-40-4-80-85.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
26

Shelkovenko, T. A., S. A. Pikuz, A. D. Cahill, P. F. Knapp, D. A. Hammer, D. B. Sinars, I. N. Tilikin et S. N. Mishin. « Hybrid X-pinch with conical electrodes ». Physics of Plasmas 17, no 11 (novembre 2010) : 112707. http://dx.doi.org/10.1063/1.3504226.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
27

Hoyt, C. L., P. F. Knapp, S. A. Pikuz, T. A. Shelkovenko, P. A. Gourdain, J. B. Greenly, B. R. Kusse et D. A. Hammer. « $X$-Pinch Radiography of Exploding “Cables” ». IEEE Transactions on Plasma Science 39, no 11 (novembre 2011) : 2404–5. http://dx.doi.org/10.1109/tps.2011.2162750.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
28

Cochran, F. L., et J. Davis. « Evolution of an X‐pinch plasma ». Physics of Fluids B : Plasma Physics 2, no 6 (juin 1990) : 1238–46. http://dx.doi.org/10.1063/1.859263.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
29

Qi, N., D. A. Hammer, D. H. Kalantar, G. D. Rondeau et K. C. Mittal. « Characterization of X‐pinch plasma (abstract) ». Review of Scientific Instruments 61, no 10 (octobre 1990) : 2815. http://dx.doi.org/10.1063/1.1141793.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
30

Volkov, G. S., V. I. Zaitsev, N. I. Lakhtyushko et M. V. Fedulov. « Z-pinch X-ray polarisation research ». Plasma Devices and Operations 13, no 2 (juin 2005) : 129–33. http://dx.doi.org/10.1080/10519990500048462.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
31

Zhao Shen, Zhu Xin-Lei, Shi Huan-Tong, Zou Xiao-Bing et Wang Xin-Xin. « Axial backlighting of two-wire Z-pinch using an X-pinch as an X-ray source ». Acta Physica Sinica 64, no 1 (2015) : 015203. http://dx.doi.org/10.7498/aps.64.015203.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
32

Song, Y., B. D. Peng, G. Z. Song, Z. Q. Yue, B. J. Duan, Y. Li, N. Cao et al. « Diagnosing X-pinch and cylindrical wire array Z-pinch with an all-optical framing camera on the “QiangGuang-I” facility ». Journal of Instrumentation 17, no 09 (1 septembre 2022) : P09030. http://dx.doi.org/10.1088/1748-0221/17/09/p09030.

Texte intégral
Résumé :
Abstract An all-optical framing camera has been established on the 1-MA “QiangGuang-I” facility for investigating the imploding dynamics of the X-pinch and the cylindrical wire array Z-pinch. This camera measures the photons flux distribution by detecting the photon-induced refractive index changes in the InP semiconductor with a probe laser beam. The InP-based imaging sensor with a 100 nm thick Al film and a 10 μm thick gold transmission grating of 20 μm spatial period was fabricated based on the lithography method. Two sequential frames with 1.5 ns time resolution and 13 ns inter frame separation time can be recorded in one single shot. Framing images indicating the plasma generation and dissipation of the X-pinch and the cylindrical wire array Z-pinch have been obtained, showing that this framing camera is a promising technique for investigating the mechanisms of the Z-pinch and other high energy density physics.
Styles APA, Harvard, Vancouver, ISO, etc.
33

Patnaik, Akash, Neeraj K. Jaiswal, Rohit Singh et Pankaj Sharma. « Analytical model for 2DEG charge density in β-(Al x Ga1−x )2O3/Ga2O3 HFET ». Semiconductor Science and Technology 37, no 2 (15 décembre 2021) : 025002. http://dx.doi.org/10.1088/1361-6641/ac3f1f.

Texte intégral
Résumé :
Abstract In this paper, a physics-based analytical model for two-dimensional electron gas (2DEG) charge density (n s) and pinch-off voltage (V off) in β -(Al x Ga1−x )2O3/Ga2O3 heterostructure field effect transistor (HFET) is reported. The modeling approach includes solving the Poisson–Schrödinger equation in β -(Al x Ga1−x )O3 barrier layer followed by using standard Fermi–Dirac statistics equations for calculating 2DEG charge density in the potential well. The developed model is then used to analyze the effect of Al composition (x) and barrier thickness (d) of β -(Al x Ga1−x )2O3 layer on 2DEG charge density. The obtained parameters from our model for charge density and pinch-off voltages are validated with the experimental results in the literature demonstrating a good accuracy. It was observed that the 2DEG charge density increases with Al composition and Al x Ga1−x O barrier layer thickness, but at the cost of increased pinch off voltage. A trade-off between both is necessary to achieve parametric optimization of β -(Al x Ga1−x )2O3/Ga2O3 HFET. This model will be useful to study the various parametric constraints for device optimization in terms of 2DEG charge density and pinch off voltage.
Styles APA, Harvard, Vancouver, ISO, etc.
34

Winterberg, F. « Pulse Power Compression by Cutting a Dense Z-Pinch with a Laser Beam ». Zeitschrift für Naturforschung A 54, no 6-7 (1 juillet 1999) : 443–47. http://dx.doi.org/10.1515/zna-1999-6-716.

Texte intégral
Résumé :
Abstract A thin cut made through a z-pinch by an intense laser beam can become a magnetically insulated diode crossed by an intense ion beam. For larger cuts, the gap is crossed by an intense relativistic electron beam, stopped by magnetic bremsstrahlung resulting in a pointlike intense x-ray source. In either case, the impedance of the pinch discharge is increased, with the power delivered rising in the same pro-portion. A magnetically insulated cut is advantageous for three reasons: First, with the ion current com-parable to the Alfvèn ion current, the pinch instabilities are reduced. Second, with the energy deposit-ed into fast ions, a non-Maxwellian velocity distribution is established increasing〈σ ν〉 value for nuclear fusion reactions taking place in the pinch discharge. Third, in a high density z-pinch plasma, the intense ion beam can launch a thermonuclear detonation wave propagating along the pinch discharge channel. For larger cuts the soft x-rays produced by magnetic bremsstrahlung can be used to drive a thermonuclear hohlraum target. Finally, the proposed pulse power compression scheme permits to use a cheap low power d.c. source charging a magnetic storage coil delivering the magnetically stored energy to the pinch discharge load by an exploding wire opening switch.
Styles APA, Harvard, Vancouver, ISO, etc.
35

Choi, Seongmin, Seunggi Ham, Jonghyeon Ryu, Sungbin Park, Jung-Hwa Kim, YeongHwan Choi, Kyoung-Jae Chung, Y. S. Hwang et Y. c. Ghim. « Measurement of the voltage evolution on a load of X-pinch plasma system using the Pockels effect ». Journal of Instrumentation 18, no 11 (1 novembre 2023) : C11019. http://dx.doi.org/10.1088/1748-0221/18/11/c11019.

Texte intégral
Résumé :
Abstract A diagnostic system using the Pockels effect (linear electro-optic effect) has been developed to measure a voltage on a load of the SNU X-pinch device [Ryu et al., Rev. Sci. Instrum. 92, 053533 (2021)]. The sensor component of the diagnostic system comprises of a lithium niobate (LN) crystal and its mount. When the LN crystal is subjected to an external electric field, the refractive indices of the LN crystal change due to the Pockels effect, leading to a change in the polarization state of the propagating laser beam through the crystal. This concept allows the separation and shielding of electronic devices from the intense electric pulses generated by the X-pinch system. Furthermore, the compact size and high electric field tolerance of the LN crystal enable us to position the sensor in a close proximity to the load of the X-pinch, facilitating the measurement of voltage evolution on the load. In contrast to circuit-based voltage probes, our sensor possesses low inductance, allowing us to measure resistive-dominant voltage even in the presence of rapid current changes within the X-pinch system. In this paper, we outline the configuration of our voltage measurement system using the LN crystal within the X-pinch device and provide measurement results of the load voltage. Additionally, we explore the temporal evolution of the voltage in relation to the phase transition of the load.
Styles APA, Harvard, Vancouver, ISO, etc.
36

Sinars, D. B., S. A. Pikuz, T. A. Shelkovenko, K. M. Chandler et D. A. Hammer. « Temporal parameters of the X-pinch x-ray source ». Review of Scientific Instruments 72, no 7 (juillet 2001) : 2948–56. http://dx.doi.org/10.1063/1.1379961.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
37

Zhang, Ran, Xiaobing Zou, Xinlei Zhu, Shen Zhao, Haiyun Luo et Xinxin Wang. « X-Ray Emission From a Tabletop $X$-Pinch Device ». IEEE Transactions on Plasma Science 40, no 12 (décembre 2012) : 3354–59. http://dx.doi.org/10.1109/tps.2012.2207919.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
38

Zou Jian, 邹俭, 王川 Wang Chuan, 郑侠 Zheng Xia, 曾乃工 Zeng Naigong, 张天爵 Zhang Tianjue et 姜兴东 Jiang Xingdong. « Measure probes on X-pinch compact pulsed power source ». High Power Laser and Particle Beams 23, no 6 (2011) : 1687–91. http://dx.doi.org/10.3788/hplpb20112306.1687.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
39

Andola, Sanjay Chandra, Ashutosh Chandrajeet Jaiswar, Trilok Chand Kaushik et Keshaw Datt Joshi. « Study of microsecond X-pinches of refractory and non-refractory metals ». Journal of Physics D : Applied Physics 55, no 22 (3 mars 2022) : 225202. http://dx.doi.org/10.1088/1361-6463/ac569c.

Texte intégral
Résumé :
Abstract In this report, we present a comparative study on the properties of x-rays from X-pinches made of two groups of metallic wires. The results were obtained on a small current driver having dI/dt of 0.04–0.11 kA ns−1. The X-pinches made of refractory (Mo and W) and non-refractory (Al and Cu) wires were studied for the current required to pinch and their x-ray parameters such as x-ray yield, timing, jitter, number of bursts, and source size. It has been observed that despite lower linear mass density, the Cu group requires a higher current for plasma to pinch than the W group X-pinches. For a given configuration, a faster current compresses the plasma at a higher current which leads to comparatively higher x-ray yield. Substantial enhancement in the quality of x-rays has also been observed in wires with few micron thick dielectric coating. The results of this work can be useful in the development of a small capacitive X-pinch system suitable for studies related to high energy density physics.
Styles APA, Harvard, Vancouver, ISO, etc.
40

Elshafiey, A. T., E. S. Lavine, S. A. Pikuz, T. A. Shelkovenko et D. A. Hammer. « Implosion mediated gas-puff hybrid X-pinch ». Physics of Plasmas 28, no 1 (janvier 2021) : 010703. http://dx.doi.org/10.1063/5.0032339.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
41

Duan Shuchao, 段书超, 李晶 Li Jing, 但加坤 Dan Jiakun, 谢卫平 Xie Weiping, 周少彤 Zhou Shaotong, 张思群 Zhang Siqun, 蔡红春 Cai Hongchun et al. « X-pinch 3D simulations with FOI-PERFECT ». High Power Laser and Particle Beams 27, no 1 (2015) : 10102. http://dx.doi.org/10.3788/hplpb20152701.10102.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
42

Davis, J., R. Clark, J. P. Apruzese et P. C. Kepple. « A Z-pinch neonlike X-ray laser ». IEEE Transactions on Plasma Science 16, no 5 (1988) : 482–90. http://dx.doi.org/10.1109/27.8954.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
43

Bailey, J. E., G. A. Chandler, D. Cohen, M. E. Cuneo, M. E. Foord, R. F. Heeter, D. Jobe et al. « Radiation science using Z-pinch x rays ». Physics of Plasmas 9, no 5 (mai 2002) : 2186–94. http://dx.doi.org/10.1063/1.1459454.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
44

Oreshkin, V. I., S. A. Chaikovsky, A. P. Artyomov, N. A. Labetskaya, A. V. Fedunin, A. G. Rousskikh et A. S. Zhigalin. « X-pinch dynamics : Neck formation and implosion ». Physics of Plasmas 21, no 10 (octobre 2014) : 102711. http://dx.doi.org/10.1063/1.4900644.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
45

Liu, Lifeng, Shali Xiao, Jiayu Qian, Xianbin Huang et Hongchun Cai. « X-ray backlight imaging in Z-pinch ». Nuclear Instruments and Methods in Physics Research Section A : Accelerators, Spectrometers, Detectors and Associated Equipment 684 (août 2012) : 93–96. http://dx.doi.org/10.1016/j.nima.2012.05.034.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
46

Zhao, Shen, Chuang Xue, Xin-Lei Zhu, Ran Zhang, Hai-Yun Luo, Xiao-Bing Zou, Xin-Xin Wang, Cheng Ning, Ning Ding et Xiao-Jian Shu. « Determining the resistance of X-pinch plasma ». Chinese Physics B 22, no 4 (avril 2013) : 045205. http://dx.doi.org/10.1088/1674-1056/22/4/045205.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
47

Volkov, G. S., V. I. Zaitsev, A. V. Kartashov, N. I. Lahtushko, A. A. Rupasov et A. S. Shikanov. « X-ray radiation of Z-pinch source ». Plasma Devices and Operations 13, no 2 (juin 2005) : 123–28. http://dx.doi.org/10.1080/10519990500048397.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
48

Pikuz, S. A., B. A. Bryunetkin, G. V. Ivanenkov, A. R. Mingaleev, V. M. Romanova, I. Yu Skobelev, A. Ya Faenov, S. Ya Khakhalin et T. A. Shelkovenko. « Radiative properties of hot dense X-pinch ». Journal of Quantitative Spectroscopy and Radiative Transfer 51, no 1-2 (janvier 1994) : 291–302. http://dx.doi.org/10.1016/0022-4073(94)90091-4.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
49

Liu, R., X. Zou, X. Wang, N. Zeng et L. He. « X-ray emission from an X-pinch and its applications ». Laser and Particle Beams 26, no 3 (29 juillet 2008) : 455–60. http://dx.doi.org/10.1017/s0263034608000463.

Texte intégral
Résumé :
AbstractThe temporal and spatial X-ray emission from PPG-X, an X-pinch driven by pulsed power generator, was studied by using diamond photo-conducting detectors and pinhole cameras. It was found that the X-ray pulse usually consists of two sub-nanosecond peaks with a time interval of about 0.5 ns, these two X-ray peaks are consistent with two point sources of X-ray recorded with pinhole camera. The total X-ray energy changes from shot to shot and is averaged to be 0.35 J for hν > 1.5 keV. The size of the X-ray point source is in the range from 100 µm to 5 µm, decreasing rapidly with the increase of the photon energy. The X-pinch was used as X-ray source for backlighting the electrical explosion of single wire and for phase-contrast imaging of a mosquito.
Styles APA, Harvard, Vancouver, ISO, etc.
50

Koguchi, H., T. Shimada, T. Asai, Y. Yagi, Y. Hirano et H. Sakakita. « Soft x-ray tomography system for the toroidal pinch experiment-RX reversed-field pinch ». Review of Scientific Instruments 75, no 10 (octobre 2004) : 4004–6. http://dx.doi.org/10.1063/1.1789606.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Nous offrons des réductions sur tous les plans premium pour les auteurs dont les œuvres sont incluses dans des sélections littéraires thématiques. Contactez-nous pour obtenir un code promo unique!

Vers la bibliographie