Articles de revues sur le sujet « Wu 49 o63 2002 »

Pour voir les autres types de publications sur ce sujet consultez le lien suivant : Wu 49 o63 2002.

Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres

Choisissez une source :

Consultez les 22 meilleurs articles de revues pour votre recherche sur le sujet « Wu 49 o63 2002 ».

À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.

Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.

Parcourez les articles de revues sur diverses disciplines et organisez correctement votre bibliographie.

1

Chen, Fang-Pey, Maw-Shiou Jong, Yu-Chun Chen, Yen-Ying Kung, Tzeng-Ji Chen, Fun-Jou Chen et Shinn-Jang Hwang. « Prescriptions of Chinese Herbal Medicines for Insomnia in Taiwan during 2002 ». Evidence-Based Complementary and Alternative Medicine 2011 (2011) : 1–9. http://dx.doi.org/10.1093/ecam/nep018.

Texte intégral
Résumé :
Chinese herbal medicine (CHM) has been commonly used for treating insomnia in Asian countries for centuries. The aim of this study was to conduct a large-scale pharmaco-epidemiologic study and evaluate the frequency and patterns of CHM use in treating insomnia. We obtained the traditional Chinese medicine (TCM) outpatient claims from the National Health Insurance in Taiwan for the year 2002. Patients with insomnia were identified from the diagnostic code of International Classification of Disease among claimed visiting files. Corresponding prescription files were analyzed, and an association rule was applied to evaluate the co-prescription of CHM. Results showed that there were 16 134 subjects who visited TCM clinics for insomnia in Taiwan during 2002 and received a total of 29 801 CHM prescriptions. Subjects between 40 and 49 years of age comprised the largest number of those treated (25.3%). In addition, female subjects used CHMs for insomnia more frequently than male subjects (female : male = 1.94 : 1). There was an average of 4.8 items prescribed in the form of either an individual Chinese herb or formula in a single CHM prescription for insomnia. Shou-wu-teng (Polygonum multiflorum) was the most commonly prescribed single Chinese herb, while Suan-zao-ren-tang was the most commonly prescribed Chinese herbal formula. According to the association rule, the most commonly prescribed CHM drug combination was Suan-zao-ren-tang plus Long-dan-xie-gan-tang, while the most commonly prescribed triple drug combination was Suan-zao-ren-tang,Albizia julibrissin, andP. multiflorum. Nevertheless, further clinical trials are needed to evaluate the efficacy and safety of these CHMs for treating insomnia.
Styles APA, Harvard, Vancouver, ISO, etc.
2

Hanna, J. W., N. B. Klopfenstein et M. S. Kim. « First Report of the Root-Rot Pathogen, Armillaria nabsnona, from Hawaii ». Plant Disease 91, no 5 (mai 2007) : 634. http://dx.doi.org/10.1094/pdis-91-5-0634b.

Texte intégral
Résumé :
The genus Armillaria (2) and Armillaria mellea sensu lato (3) have been reported previously from Hawaii. However, Armillaria species in Hawaii have not been previously identified by DNA sequences, compatibility tests, or other methods that distinguish currently recognized taxa. In August 2005, Armillaria rhizomorphs and mycelial bark fans were collected from two locations on the island of Hawaii. Stands in which isolates were collected showed moderate to heavy tree mortality and mycelial bark fans. Pairing tests (4) to determine vegetative compatibility groups revealed three Armillaria genets (HI-1, HI-7, and HI-9). Rhizomorphs of genet HI-1 were collected from both dead and healthy mature trees of the native 'Ohia Lehua (Metrosideros polymorpha) approximately 27 km west of Hilo, HI (approximately 19°40′49″N, 155°19′24″W, elevation 1,450 m). Rhizomorphs of HI-7 and HI-9 were collected, respectively, from dead/declining, mature, introduced Nepalese alder (Alnus nepalensis) and from an apparently healthy, mature, introduced Chinese banyan (Ficus microcarpa) in the Waipi'o Valley (approximately 20°03′29″N, 155°37′35″W, elevation 925 m). On the basis of somatic pairing tests and intergenic spacer-1 (IGS-1) nucleotide sequence identities of 99 to 100% with North American A. nabsnona (GenBank Accession No. AY509178), HI-1 (GenBank Accession No. DQ995356), HI-7 (GenBank Accession No. DQ995358), and HI-9 (GenBank Accession No. DQ995359) were identified as A. nabsnona, a pathogen of hardwoods (1). The IGS-1 sequences of A. nabsnona genets (HI-1, HI-7, and HI-9) had a greater similarity to North American collections of A. nabsnona than to the Asian A. nabsnona, even though the two introduced hosts originated from Asia. Phylogeographic studies could help determine the potential introduction and original source of A. nabsnona in Hawaii. Although A. nabsona was isolated from multiple hosts in declining stands, pathogenicity studies are needed to confirm whether this pathogen causes disease on diverse native and exotic tree species in Hawaii. References: (1) E. Allen et al. Pages 2–7 in: Common Tree Diseases of British Columbia. Natural Resources Canada. Canadian Forest Service, Victoria, BC, Canada, 1998. (2) D. E. Hemmes and D. E. Desjardin. Pages 129 and 153 in: Mushrooms of Hawaii. Ten Speed Press, Berkeley, CA, 2002. (3) F. F. Laemmlen and R. V. Bega. Plant Dis. Rep. 58:102, 1974. (4) Y. Wu et al. USDA Forest Service Tech. Rep. R2-58, 1996.
Styles APA, Harvard, Vancouver, ISO, etc.
3

Nisha, Ananthan, Pandaram Maheswari, Santhanakumar Subanya, Ponnusamy Munusamy Anbarasan, Karuppaiya Balasundaram Rajesh et Zbigniew Jaroszewicz. « Ag-Ni bimetallic film on CaF2 prism for high sensitive surface plasmon resonance sensor ». Photonics Letters of Poland 13, no 3 (30 septembre 2021) : 58. http://dx.doi.org/10.4302/plp.v13i3.1114.

Texte intégral
Résumé :
We present a surface plasmon resonance (SPR) structure based on Kretschmann configuration incorporating bimetallic layers of noble (Ag) and magnetic materials (Ni) over CaF2 prism. Extensive numerical analysis based on transfer matrix theory has been performed to characterize the sensor response considering sensitivity, full width at half maxima, and minimum reflection. Notably, the proposed structure, upon suitably optimizing the thickness of bimetallic layer provides consistent enhancement of sensitivity over other competitive SPR structures. Hence we believe that this proposed SPR sensor could find the new platform for the medical diagnosis, chemical examination and biological detection. Full Text: PDF ReferencesJ. Homola, S.S. Yee, G. Gauglitz, "Surface plasmon resonance sensor based on planar light pipe: theoretical optimization analysis", Sens. Actuators B Chem. 54, 3 (1999). CrossRef X.D. Hoa, A.G. Kirk, M. Tabrizian, "Towards integrated and sensitive surface plasmon resonance biosensors: A review of recent progress", Bioelectron, 23, 151 (2007). CrossRef Z. Lin, L. Jiang, L. Wu, J. Guo, X. Dai, Y. Xiang, D. Fan, "Tuning and Sensitivity Enhancement of Surface Plasmon Resonance Biosensor With Graphene Covered Au-MoS 2-Au Films", IEEE Photonics J. 8(6), 4803308 (2016). CrossRef T. Srivastava, R. Jha, R. Das, "High-Performance Bimetallic SPR Sensor Based on Periodic-Multilayer-Waveguides", IEEE Photonics Technol. Lett. 23(20), 1448 (2011). CrossRef P.K. Maharana, R. Jha, "Chalcogenide prism and graphene multilayer based surface plasmon resonance affinity biosensor for high performance", Sens. Actuators B Chem. 169, 161 (2012). CrossRef R. Verma, B.D. Gupta, R. Jha, "Sensitivity enhancement of a surface plasmon resonance based biomolecules sensor using graphene and silicon layers", Sens. Actuators B Chem. 160, 623 (2011). CrossRef I. Pockrand, "Surface plasma oscillations at silver surfaces with thin transparent and absorbing coatings", Surf. Sci. 72, 577 (1978). CrossRef R. Jha, A. Sharma, "High-performance sensor based on surface plasmon resonance with chalcogenide prism and aluminum for detection in infrared", Opt. Lett. 34(6), 749 (2009). CrossRef E.V. Alieva, V.N. Konopsky, "Biosensor based on surface plasmon interferometry independent on variations of liquid’s refraction index", Sens. Actuators B Chem. 99, 90 (2004). CrossRef S.A. Zynio, A. Samoylov, E. Surovtseva, V. Mirsky, Y. Shirshov, "Bimetallic Layers Increase Sensitivity of Affinity Sensors Based on Surface Plasmon Resonance", Sensors 2, 62 (2002). CrossRef S.Y. Wu, H.P. Ho, "Sensitivity improvement of the surface plasmon resonance optical sensor by using a gold-silver transducing layer", Proceedings IEEE Hong Kong Electron Devices Meeting 63 (2002). CrossRef B.H. Ong, X. Yuan, S. Tjin, J. Zhang, H. Ng, "Optimised film thickness for maximum evanescent field enhancement of a bimetallic film surface plasmon resonance biosensor", Sens. Actuators B Chem. 114, 1028 (2006). CrossRef B.H. Ong, X. Yuan, Y. Tan, R. Irawan, X. Fang, L. Zhang, S. Tjin, "Two-layered metallic film-induced surface plasmon polariton for fluorescence emission enhancement in on-chip waveguide", Lab Chip 7, 506 (2007). CrossRef X. Yuan, B. Ong, Y. Tan, D. Zhang, R. Irawan, S. Tjin, "Sensitivity–stability-optimized surface plasmon resonance sensing with double metal layers", J. Opt. A: Pure Appl. Opt. 8, 959, (2006). CrossRef M. Ghorbanpour, "A novel method for the production of highly adherent Au layers on glass substrates used in surface plasmon resonance analysis: substitution of Cr or Ti intermediate layers with Ag layer followed by an optimal annealing treatment", J. Nanostruct, 3, 309, (2013). CrossRef Y. Chen, R.S. Zheng, D.G. Zhang, Y.H. Lu, P. Wang, H. Ming, Z.F. Luo, Q. Kan, "Bimetallic chips for a surface plasmon resonance instrument", Appl. Opt. 50, 387 (2011). CrossRef N.H.T. Tran, B.T. Phan, W.J. Yoon, S. Khym, H. Ju, "Dielectric Metal-Based Multilayers for Surface Plasmon Resonance with Enhanced Quality Factor of the Plasmonic Waves", J. Electron. Mater. 46, 3654 (2017). CrossRef D. Nesterenko Z. Sekkat, "Resolution Estimation of the Au, Ag, Cu, and Al Single- and Double-Layer Surface Plasmon Sensors in the Ultraviolet, Visible, and Infrared Regions", Plasmonics 8, 1585 (2013). CrossRef M.A. Ordal, R.J. Bell, R.W. Alexander, L.L. Long, M.R. Querry, "Optical properties of fourteen metals in the infrared and far infrared: Al, Co, Cu, Au, Fe, Pb, Mo, Ni, Pd, Pt, Ag, Ti, V, and W.", Appl. Opt. 24, 4493 (1985). CrossRef H. Ehrenreich, H.R. Philipp, D.J. Olechna, "Optical Properties and Fermi Surface of Nickel", Phys. Rev. 31, 2469 (1963). CrossRef S. Shukla, N.K. Sharma, V. Sajal, "Theoretical Study of Surface Plasmon Resonance-based Fiber Optic Sensor Utilizing Cobalt and Nickel Films", Braz. J. Phys. 46, 288 (2016). CrossRef K. Shah, N.K. Sharma, AIP Conf. Proc. 2009, 020040 (2018). [23] G. AlaguVibisha, Jeeban Kumar Nayak, P. Maheswari, N. Priyadharsini, A. Nisha, Z. Jaroszewicz, K.B. Rajesh, "Sensitivity enhancement of surface plasmon resonance sensor using hybrid configuration of 2D materials over bimetallic layer of Cu–Ni", Opt. Commun. 463, 125337 (2020). CrossRef A. Nisha, P. Maheswari, P.M. Anbarasan, K.B. Rajesh, Z. Jaroszewicz, "Sensitivity enhancement of surface plasmon resonance sensor with 2D material covered noble and magnetic material (Ni)", Opt. Quantum Electron. 51, 19 (2019). CrossRef M.H.H. Hasib, J.N. Nur, C. Rizal, K.N. Shushama, "Improved Transition Metal Dichalcogenides-Based Surface Plasmon Resonance Biosensors", Condens.Matter 4, 49, (2019). CrossRef S. Herminjard, L. Sirigu, H. P. Herzig, E. Studemann, A. Crottini, J.P. Pellaux, T. Gresch, M. Fischer, J. Faist, "Surface Plasmon Resonance sensor showing enhanced sensitivity for CO2 detection in the mid-infrared range", Opt. Express 17, 293 (2009). CrossRef M. Wang, Y. Huo, S. Jiang, C. Zhang, C. Yang,T. Ning, X. Liu, C Li, W. Zhanga, B. Mana, "Theoretical design of a surface plasmon resonance sensor with high sensitivity and high resolution based on graphene–WS2 hybrid nanostructures and Au–Ag bimetallic film", RSC Adv. 7, 47177 (2017). CrossRef P.K. Maharana, P. Padhy, R. Jha, "On the Field Enhancement and Performance of an Ultra-Stable SPR Biosensor Based on Graphene", IEEE Photonics Technol. Lett. 25, 2156 (2013). CrossRef
Styles APA, Harvard, Vancouver, ISO, etc.
4

Maziarz, Richard T., Annie Guerin, Genevieve Gauthier, Julie Heroux, Maryia Zhdanava, Eric Q. Wu, Simu K. Thomas et Lei Chen. « Five-Year Direct Cost of Pediatric Patients with Acute Lymphoblastic Leukemia (ALL) Undergoing Allogeneic Stem Cell Transplantation (HSCT) : An Analysis from US Payers' Perspective ». Blood 126, no 23 (3 décembre 2015) : 872. http://dx.doi.org/10.1182/blood.v126.23.872.872.

Texte intégral
Résumé :
Abstract Background: Between 54%-85% of pediatric patients (pts) with ALL can be cured by definitive chemotherapy protocols. HSCT may be considered for high-risk pts after induction therapy or for refractory/relapsed pts. However, HSCT is recognized as a highly specialized, costly and resource intensive procedure requiring ongoing care over months to years. HSCT is associated with significant life-threatening complications with transplant related mortality of 20-30% and acute/chronic graft vs. host disease and infections. The objective of this study was to assess the economic burden up to 5 years of pediatric pts with ALL who received HSCT from the US commercial payers' perspective. Method: Pediatric pts (<18 years old) with ALL (ICD-9 CM codes 204.0x) who underwent an allogeneic HSCT ([ICD-9 CM] procedure codes 41.02, 41.03, 41.05, 41.06, 41.08) in the US (2002-2013) were identified from two large administrative claims databases. Selected pts were continuously enrolled in their healthcare plan for ≥6 months before and ≥1 month after the index date (i.e., the date the first HSCT procedure was recorded). Age and gender as of the index date and total healthcare costs (direct medical costs and pharmacy costs) during the 6 months preceding the index date were reported. The economic burden associated with HSCT was described by assessing the healthcare resource utilization (HRU) and costs over the following study periods: between the index date and the HSCT hospitalization discharge date, during the first 100 days following the index date, and, during the first, second, third, fourth and fifth years following the index date. For each period, the analyses were conducted among pts with continuous healthcare plan enrollment for that entire period. Healthcare costs reported reflect the costs reimbursed by US private payers for a pediatric pt with ALL who underwent HSCT. Costs were adjusted for inflation (based on the consumer price index for medical components) and reported as 2014 US dollars (USD). Results: A total of 209 pediatric ALL pts were identified. Mean age was 10 years and 43.1% of pts were female. The median follow-up period after the index date was 1.3 years. During the 6 months prior to the index date, pts incurred average total healthcare costs of $287,001. The median duration of the initial hospitalization for the HSCT was 41 days (interquartile range 32-55). Over the five years following the index date, results showed substantial HRU and costs associated with the HSCT. The most intensive HRU and highest healthcare costs were observed within the first year following the index date; pts had an average of 49 days with outpatient (OP) visits, 29 days with OP laboratory services, and 68 inpatient (IP) days corresponding to 3.10 IP admissions (including the hospitalization for the first HSCT) and incurred mean total healthcare costs of $683,099 (median of $511,021) (Figure 1 and 2). Costs associated with the first HSCT hospitalization represented 62.4% of the total costs incurred during the first year. Although a decreasing trend was observed over time, HRU and costs remained high; 28.8% of pts had at least one IP admission at year 2, 19.6% at year 3, 20.0% at year 4, and 6.7% at year 5 (Figure 1). The number of days with OP visits and the number of days with laboratory services also remained high over time (Figure 1). The average total healthcare cost was $104,584 (median of $21,877) at year 2, $79,092 (median of $11,000) at year 3, $106,334 (median of $10,426) at year 4 and, and $38,291 (median of $10,082) at year 5 (Figure 2). Our results also showed high variation in healthcare costs across pediatric pts following the index date; 29.4% of the total costs (over the entire sample) in year 1 were incurred by the 10% pts with the highest costs. Starting from the second year, the 10% of pts with the highest costs accounted for 61.3 to 76.6% of the total costs for each year, suggesting that a small proportion of pts still incur very high costs several years after HSCT. Conclusions: Healthcare resource utilization and direct costs associated with allogeneic HSCT are substantial with the first year direct cost alone of $683,099 with substantial costs over the following years. Further studies are needed to understand the humanistic and financial burden of HSCT for pediatric pts and their caregivers. Figure 1. HRU after Index Date Figure 1. HRU after Index Date Figure 2. Total Healthcare Costs after Index Date Figure 2. Total Healthcare Costs after Index Date Disclosures Maziarz: Athersys: Consultancy, Patents & Royalties, Research Funding; Novartis: Consultancy. Guerin:GlaxoSmithKline, Janssen Scientific Affairs, Janssen-Ortho, Inc., Merck & Co., Inc., Merck Frosst Canada, Novartis Pharmaceuticals Corporation, Novo Nordisk Inc., Ogilvy Renault, Ortho-Clinical Diagnostics, Inc., Otsuka America Pharmaceutical, Inc.,: Consultancy, Other: Annie Guerin is an employee of Analysis Group Inc, which has received consultancy fees from the listed organizations; Pfizer Canada, Inc., RX&D, Sanofi, Savient Pharmaceuticals, Inc., Shire Pharmaceuticals Inc., Sunovion Pharmaceuticals Inc., Takeda Global Research & Development Center, Inc., Takeda Pharmaceuticals U.S.A., Inc.: Consultancy, Other: Annie Guerin is an employee of Analysis Group Inc, which has received consultancy fees from the listed organizations; AbbVie Inc., Alcon Laboratories, Bayer Healthcare Pharmaceuticals, LLC, Celgene Corporation, Cempra Inc., Centocor Ortho Biotech, Cooley LLP, Cyberonics, Inc., DLA Piper, Eli Lilly & Company,Forest Laboratories, Inc., Genentech, Inc.,: Consultancy, Other: Annie Guerin is an employee of Analysis Group Inc, which has received consultancy fees from the listed organizations. Gauthier:AbbVie Inc., Celgene Corporation, Eli Lilly & Company, Genentech, Inc. ,GlaxoSmithKline, Janssen Scientific Affairs, LLC, Novartis Pharmaceuticals Corporation, Pfizer Canada, Inc., Sanofi, Savient Pharmaceuticals, Inc., Shire Pharmaceuticals Inc.,: Consultancy, Other: Genevieve Gauthier is an employee of Analysis Group Inc, which has received consultancy fees from the listed organizations; Sunovion Pharmaceuticals Inc.,Takeda Pharmaceuticals U.S.A., Inc.: Consultancy, Other: Genevieve Gauthier is an employee of Analysis Group Inc, which has received consultancy fees from the listed organizations. Heroux:AbbVie Inc., Alcon Laboratories, Celgene Corporation, Genentech, Inc., Merck Frosst Canada, Novartis Pharmaceuticals Corporation, Shire Pharmaceuticals Inc., Sunovion Pharmaceuticals Inc., Takeda Pharmaceuticals U.S.A., Inc.: Consultancy, Other: Julie Heroux is an employee of Analysis Group Inc, which has received consultancy fees from the listed organizations. Zhdanava:AbbVie Inc., Genentech, Inc., Merck Frosst Canada, Novartis Pharmaceuticals Corporation,Shire Pharmaceuticals Inc., Takeda Pharmaceuticals U.S.A., Inc.: Consultancy, Other: Maryia Zhdanava is an employee of Analysis Group Inc, which has received consultancy fees from the listed organizations. Wu:Molecular Insight Pharmaceuticals, Inc., Novartis Pharmaceuticals Corporation, Ortho McNeil Pharmaceuticals, Inc., Sanofi, Savient Pharmaceuticals, Inc., Shire Pharmaceuticals Inc.,: Consultancy, Other: Eric Q Wu is an employee of Analysis Group Inc, which has received consultancy fees from the listed organizations; Takeda Global Research & Development Center, Inc., Takeda Pharmaceuticals U.S.A., Inc., TAP Pharmaceutical Products, Inc., Vertex Pharmaceuticals Incorporated: Consultancy, Other: Eric Q Wu is an employee of Analysis Group Inc, which has received consultancy fees from the listed organizations; Janssen Pharmaceutica, Inc., Janssen Scientific Affairs, LLC, Lilly Research Laboratories, McNeil Consumer & Specialty Pharmaceuticals, MedImmune, LLC, Melinta Therapeutics, Inc., Millennium Pharmaceuticals, Inc.,: Consultancy, Other: Eric Q Wu is an employee of Analysis Group Inc, which has received consultancy fees from the listed organizations; Celgene Corporation, Centocor Ortho Biotech, Cephalon, Inc., ConvaTec Inc., Corus Pharma, Inc., Eli Lilly & Company, Eli Lilly & Company, Ethicon, Inc., Forest Laboratories, Inc., Genentech, Inc., GlaxoSmithKline, Janssen Global Services, LLC,: Consultancy, Other: Eric Q Wu is an employee of Analysis Group Inc, which has received consultancy fees from the listed organizations; AbbVie Inc., Alcon Laboratory, Astellas Pharma Inc., Astellas Pharma US, Inc., AstraZeneca, Barger & Wolen LLP, Bayer Healthcare Pharmaceuticals, LLC, Biosense Webster, Inc., Blue Cross Blue Shield Association, Boehringer Ingelheim, Bristol-Myers Squibb C: Consultancy, Other: Eric Q Wu is an employee of Analysis Group Inc, which has received consultancy fees from the listed organizations. Thomas:Novartis: Employment. Chen:Novartis Pharmaceuticals Corporation: Employment, Equity Ownership, Other: Lei Chen is an employee of and owns stocks/options of Novartis Pharmaceuticals Corporation, the sponsor of this study.
Styles APA, Harvard, Vancouver, ISO, etc.
5

Colaco, K., K. A. Lee, S. Akhtari, R. Winer, P. Welsh, N. Sattar, I. Mcinnes et al. « POS1068 Cardiac biomarkers are associated with the development of cardiovascular events in patients with psoriatic arthritis and psoriasis ». Annals of the Rheumatic Diseases 80, Suppl 1 (19 mai 2021) : 812.2–813. http://dx.doi.org/10.1136/annrheumdis-2021-eular.1297.

Texte intégral
Résumé :
Background:N-terminal pro-brain-type natriuretic peptide (NT-proBNP) and troponin I (TnI) are established cardiac biomarkers that predict cardiovascular events (CVEs) in the general population. While patients with psoriatic arthritis and psoriasis, collectively termed psoriatic disease (PsD), have an increased risk of developing CVEs, the use of these cardiac biomarkers to predict CV risk has not been investigated in this population.Objectives:We aimed to evaluate the association between these cardiac biomarkers and incident CVEs, and assess their predictive value beyond the Framingham Risk Score (FRS).Methods:A longitudinal cohort study was conducted in patients with PsD without prior history of CVEs. NT-proBNP and TnI concentrations were measured using automated clinical assays in the first available serum sample. The study outcome included any of the following CVEs occurring within the first 10 years of biomarker assessment: angina, myocardial infarction, transient ischemic attack, stroke, revascularization and CV death. Associations with incident CVEs were analyzed separately for each biomarker using Cox proportional hazards regression models first adjusted for age and sex, and subsequently for the FRS. The added value of cardiac biomarkers to improve predictive performance beyond the FRS was assessed using the area under the receiver operator characteristic curve (AUC), net reclassification index (NRI) and integrated discrimination index (IDI).Results:A total of 1000 patients with PsD were assessed between 2002 and 2019 (mean age 49 ± 12.8 years, 44.6% female) (Table 1). During a mean follow-up of 7.1 years, 64 patients developed incident CVEs. Both TnI (Hazard Ratio (HR) 3.02, 95% Confidence Interval (CI) 1.12, 8.16) and NT-proBNP (HR 2.02; 95% CI 1.28, 3.18) predicted CVEs independently of the FRS (Figure 1). The association was stronger in males than females. Including all cardiac biomarkers and the FRS in a single model, NT-proBNP retained statistical significance (HR 1.91, 95% CI 1.23, 2.97), while TnI did not (HR 2.60, 95% CI 0.98, 6.87). When comparing the predictive performance of the base model (FRS alone, AUC 75.4) to the expanded models, there was no significant improvement in any of the predictive indices with the addition of TnI (AUC 73.5, p = 0.21; NRI 0.08, p = 0.67; IDI 0.005, p = 0.37), NT-proBNP (AUC 71.0, p = 0.35; NRI 0.20, p = 0.06; IDI 0.017, p = 0.10), or both TnI and NT-proBNP (AUC 70.0, p = 0.23; NRI 0.27, p = 0.05; IDI 0.021, p =0.05).Conclusion:In patients with PsD, elevated NT-proBNP and TnI predict incident CVEs independent of the FRS. We did not observe a significant improvement in the performance of the predictive model when combining these cardiac biomarkers with the FRS.References:[1]Eder L, Wu Y, Chandran V, et al. Incidence and predictors for cardiovascular events in patients with psoriatic arthritis. Ann Rheum Dis 2016;75(9):1680-6.Table 1.Baseline characteristics of the study population (n=1000)VariableMean ± SD / Frequency (%)PsA, no. (%)648 (64.8)PsC, no. (%)352 (35.2)Age (years)49 ± 12.8Male sex, no. (%)554 (55.4)Disease duration (years)20.2 ± 14.1Ethnicity, Caucasian (%)834 (83.4)Current smoker (%)164 (16.4)FRS (%)8.2 ± 8.6Diabetes77 (7.7)Hypertension274 (27.4)BMI (kg/m2)28.7 ± 5.9PASI4.1 ± 6.3Use of lipid-lowering medications (%)100 (10)Current use of DMARDs362 (36.2)Current use of Biologics214 (21.4)Current use of NSAIDs (daily use)265 (26.5)1 Applicable only to patients with PsA CVE, cardiovascular events; DMARD, disease-modifying antirheumatic drug; FRS, Framingham Risk Score; NSAID, non-steroidal anti-inflammatory drug; PASI, Psoriasis Area Severity Index; PsA, psoriatic arthritis; PsC, psoriasis without arthritisFigure 1.Hazard ratios of cardiac biomarker measures for incident cardiovascular events (n = 1000, 64 events). Error bars denote 95% confidence intervals. CI indicates confidence interval; CVEs, cardiovascular events; FRS, Framingham Risk Score; NT-proBNP, N-terminal pro-brain-type natriuretic peptide; TnI, troponin I.Acknowledgements:Keith Colaco is supported by the Enid Walker Estate, Women’s College Research Institute, Arthritis Society (TGP-19-0446), National Psoriasis Foundation (Early Career Grant) and the Edward Dunlop Foundation. Lihi Eder is supported by a Young Investigator Award from the Arthritis Society and an Early Researcher Award from the Ontario Ministry of Science and Innovation. The study was supported in part by a discovery grant from the National Psoriasis Foundation and an operating grant from the Arthritis Society (YIO-16-394).Disclosure of Interests:None declared.
Styles APA, Harvard, Vancouver, ISO, etc.
6

Deugnier, Yves, Bruno Turlin, Victor Dong, Vanessa Giannone, Yiyun Zhang, Louis Griffel et Pierre Brissot. « Deferasirox Improves Liver Pathology In β-Thalassemia Patients with Transfusional Iron Overload ». Blood 116, no 21 (19 novembre 2010) : 4274. http://dx.doi.org/10.1182/blood.v116.21.4274.4274.

Texte intégral
Résumé :
Abstract Abstract 4274 Background: While iron overload is known to cause hepatic toxicity, the effect of iron chelation therapy on liver pathology is not well understood. Data evaluating liver fibrosis during iron chelation therapy are limited to small studies (eg, Wu SF et al. Hemoglobin 2006 [n=17], Berdoukas V et al. Hematol J 2005 [n=49], Wanless IR et al. Blood 2002 [n=56]). In order to address such effects in a more robust patient population, we assessed liver biopsy samples from β-thalassemia patients enrolled in two large clinical studies (Porter J et al. Blood 2005, Cappellini MD et al. Blood 2006) that evaluated the effects of deferasirox on iron burden for up to 5 years. Methods: Patients with β-thalassemia and transfusional hemosiderosis receiving ≥8 blood transfusions/year, with liver biopsy assessment (defined as having either liver iron concentration [LIC], Ishak grading or Ishak staging assessment), after at least 3 years of deferasirox treatment, were included. Deferasirox dose was 5–40 mg/kg/day based upon level of iron overload (Study 107, patients randomized to deferoxamine [DFO] or deferasirox for the first year; Study 108, patients received deferasirox only). Treatment response success was defined according to baseline (start of deferasirox dosing) and end-of-study (EOS) LIC measurements (Table). Histological total iron score (TIS) was derived from the iron load observed in hepatocytes (hepatocytic iron score [HIS] range, 0–12), sinusoidal cells (sinusoidal iron score [SIS] range, 0–4) and main structures of the portal tracts (portal iron score [PIS]). A heterogeneity factor (H = 1, 2 or 3) was then applied, based on the overall appearance of the tissue, to provide TIS, calculated as (HIS + SIS + PIS) × (H/3) [range 0–60]. Hepatocytic to total liver iron ratio was calculated as HIS/(HIS + SIS + PIS) (Deugnier Y et al. Gastroenterol 1992). Fibrosis staging was performed according to Ishak scale from 0 (no fibrosis) to 6 (cirrhosis, probable or definite). Liver inflammation was assessed according to the Ishak necroinflammatory grading system with an overall scoring range from 0–18 (Ishak K et al. J Hepatology 1995). Results: Of 770 patients enrolled in the deferasirox studies, 219 with histological biopsy data at baseline and at the end of at least 3 years of treatment with deferasirox were eligible for analyses. Mean LIC was 15.7 ± 9.9 mg Fe/g dw and median serum ferritin was 2069 ng/mL (range 273–11698) at the start of deferasirox treatment. After at least 3 years of treatment, overall LIC success response rate was 63.8% (n=134), and mean LIC decreased by 5.5 ± 10.6 to 10.1 ± 8.2 mg Fe/g dw. Mean absolute change in TIS and liver iron ratio were -8.2 ± 13.3 and -2.1 ± 27.3, respectively. The range of Ishak necroinflammatory scores at baseline was 0–8 with a mean of 2.0 (2.2 in patients who met success rate criteria [Group A], 1.6 in patients who did not meet the success rate criteria [Group B]). At EOS the necroinflammatory score improved to a mean of 0.8 overall, and in both subgroups, with a mean relative change of -66% (69% in Group A and -61% in Group B). Overall 83.3% (n=175) [85.8% (n=115) in Group A, 78.9% (n=60) in Group B] of patients experienced either stabilization or improvement in their Ishak fibrosis score. Ishak staging remained stable (change of -1, 0 or +1) in 55.7% (n=122) of patients. Fifty-nine patients (26.9%) had an improvement in Ishak grading by a score of ≥2. Similar improvements were observed between Group A (26.1%, n=35) and Group B (30.3%, n=23). Conclusions: This is the first study to assess the effect of iron chelation therapy on liver pathology in a large cohort of iron-overloaded patients with β-thalassemia. In addition to reducing total iron burden, deferasirox led to an improvement in pathological markers of iron overload-induced liver damage in the majority of patients; 83.3% showed stabilization or improvement in Ishak fibrosis staging as well as an overall improvement in necroinflammatory score. These effects were similar in both patients who met the LIC success rate criteria and those who did not, suggesting that the observed effects may be at least partly independent of the drug's chelation effect. These findings are important as stabilization or regression of hepatic fibrosis in the face of chronic insult may prevent progressive liver disease. Disclosures: Deugnier: Novartis: Honoraria. Dong:Novartis: Employment. Giannone:Novartis: Employment. Zhang:Novartis: Employment. Griffel:Novartis: Employment. Brissot:Novartis: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding, Speakers Bureau.
Styles APA, Harvard, Vancouver, ISO, etc.
7

Kim, Wonhyeong, Doohee Lee, Guodong Wu, Yoolim Cha, Sungeun Cho et Dong-Joo Kim. « Furaneol Detection with Molecularly Imprinted Polymer (MIP)-Based Polyaniline (PANI) Gas Sensor ». ECS Meeting Abstracts MA2022-02, no 62 (9 octobre 2022) : 2281. http://dx.doi.org/10.1149/ma2022-02622281mtgabs.

Texte intégral
Résumé :
Strawberry is one of the beloved fruits worldwide due to its exquisite flavor with highly nutritious compounds which give promising health benefits. [1] With dragging the great attention, efforts to monitor the quality of strawberries and strawberry derivatives are becoming significant to obtain better flavor and nutrition. 2,5-Dimethyl-4-hydroxy-3(2H)-furanone(furaneol) is one of the compounds which plays an important role in a flavor that can be naturally found in various fruits such as strawberry, pineapple, raspberry, and mango. Especially, furaneol composition is reported as a significant factor for maturity condition monitoring of strawberries due to the different amounts at the ripening stage. [2] Furaneol is also known to be an essential signature for controlling the food production process, verifying the food production origin, and regulating the quality of products. Currently, furaneol detection is conducted with time-consuming techniques, such as gas chromatography (GC) and high-performance liquid chromatography (HPLC). For example, Yuan et al. [3] showed the identification of furaneol with HPLC. Also, Buttery et al. [4], and Lopez et al. [5], used GC for the determination of furaneol in foods. Developing a real-time gas sensor for fast, cheap, stable, sensitive detection of furaneol is a significant challenge in the area of the food industry. Chemo-resistive gas sensors can be an attractive approach due to their miniaturization, simple operation, ease of fabrication, and low production cost. For utilizing resistive gas sensors, polyaniline (PANI) got great attention because of its environmental stability, simple synthesis, and ease of tailoring the surface charge characteristics by changing the dopants. However, PANI-based gas sensors are reactive to numerous gases which limits the selective detection of target gas molecules. Many compounds in strawberries may restrict the use of PANI-based sensors. [6] Molecular imprinting technology (MIT), which can create molecularly imprinted polymers (MIPs) obtaining specific binding sites for target molecules, is utilized to achieve selective gas sensing similar to biological antibodies. [7] The improved affinity not only provides selective detection but also enhances response to target gas molecules. In this study, a resistive gas sensor based on synthesized molecularly imprinted polymer and polyaniline is demonstrated for the detection of furaneol gas molecules for its operation in food packaging. Herein, we developed a unique method to synthesize molecularly imprinted polymer and polyaniline (MIP-PANI) nanocomposites with an interfacial polymerization technique. Aniline monomer is polymerized and oxidized simultaneously to tailor the surface charge characteristics forming polyaniline. Then, the molecularly imprinting process on polyaniline is conducted with methacrylic acid (MAA) as a functional monomer, ethylene glycol dimethacrylate (EGDMA) as a crosslinker, furaneol as a template, and benzoyl peroxide as a radical initiator. After the furaneol template was constructed, MIP-PANI presented a high affinity to furaneol target molecules and showed a high sensing response. Their response signals are enhanced tens of times compared to the pure PANI. Furthermore, selective detection of the target furaneol molecules was observed. This study may broaden the application of resistive gas sensors for selective and sensitive detection of volatile organic compounds in food industries. Reference [1] S. Afrin, M. Gasparrini, T.Y. Forbes-Hernandez, P. Reboredo-Rodriguez, B. Mezzetti, A. Varela-Lopez, F. Giampieri, M. Battino, Promising Health Benefits of the Strawberry: A Focus on Clinical Studies, J Agric Food Chem 64 (2016) 4435-4449. [2] C. Aubert, S. Baumann, H. Arguel, Optimization of the analysis of flavor volatile compounds by liquid-liquid microextraction (LLME). Application to the aroma analysis of melons, peaches, grapes, strawberries, and tomatoes, Journal of Agricultural and Food Chemistry 53 (2005) 8881-8895. [3] J.P. Yuan, F. Chen, Separation and identification of furanic compounds in fruit juices and drinks by high-performance liquid chromatography photodiode array detection, Journal of Agricultural and Food Chemistry 46 (1998) 1286-1291. [4] R.G. Buttery, G.R. Takeoka, M. Naim, H. Rabinowitch, Y. Nam, Analysis of furaneol in tomato using dynamic headspace sampling with sodium sulfate, Journal of Agricultural and Food Chemistry 49 (2001) 4349-4351. [5] R. Lopez, M. Aznar, J. Cacho, V. Ferreira, Determination of minor and trace volatile compounds in wine by solid-phase extraction and gas chromatography with mass spectrometric detection, Journal of Chromatography A 966 (2002) 167-177. [6] A.T. Oz, G. Baktemur, S.P. Kargi, E. Kafkas, Volatile Compounds of Strawberry Varieties, Chemistry of Natural Compounds 52 (2016) 507-509. [7] L. Chen, X. Wang, W. Lu, X. Wu, J. Li, Molecular imprinting: perspectives and applications, Chem Soc Rev 45 (2016) 2137-2211.
Styles APA, Harvard, Vancouver, ISO, etc.
8

Кючуков Хрісто et Віллєрз Джіл. « Language Complexity, Narratives and Theory of Mind of Romani Speaking Children ». East European Journal of Psycholinguistics 5, no 2 (28 décembre 2018) : 16–31. http://dx.doi.org/10.29038/eejpl.2018.5.2.kyu.

Texte intégral
Résumé :
The paper presents research findings with 56 Roma children from Macedonia and Serbia between the ages of 3-6 years. The children’s knowledge of Romani as their mother tongue was assessed with a specially designed test. The test measures the children’s comprehension and production of different types of grammatical knowledge such as wh–questions, wh-complements, passive verbs, possessives, tense, aspect, the ability of the children to learn new nouns and new adjectives, and repetition of sentences. In addition, two pictured narratives about Theory of Mind were given to the children. The hypothesis of the authors was that knowledge of the complex grammatical categories by children will help them to understand better the Theory of Mind stories. The results show that Roma children by the age of 5 know most of the grammatical categories in their mother tongue and most of them understand Theory of Mind. References Bakalar, P. (2004). The IQ of Gypsies in Central Europe. The Mankind Quarterly, XLIV, (3&4), 291-300. Bedore L.M., Peña E.D., García, M. & Cortez, C. (2012). Conceptual versus monolingual scoring: when does it make a difference? J Speech Lang Hear Res 55(1), 1-15. Berko, J. (1958). The Child's Learning of English Morphology. Word 14, 150-177. Berman, R. & Slobin, D. (2009). Relating Events in Narrative: A Cross-Linguistic developmental Study, vol. 1. New York and London: Psychology Press. Bialystok, E. (2001). Bilingualism in development: Language literacy and cognition. Cambridge University Press: Cambridge. Bialystok, E. & Craik, F. (2010). Cognitive and Linguistic processing in the bilingual mind. Current Directions in Psychological Science, 19, (1), 19-23. Bialystok, E., Craik, F., and Freedman, M. (2007). Bilingualism as a protection against the onset of symptoms of dementia. Neuropsychologia, 45, 459-464. Brucker, J. L. (n.d). A study of Barriers to Educational Attainment in the Former Yugoslav Republic of Macedonia. www.unicef.org/ceecis/Roma_children.pdf Bruner, J. (1986). Actual mind, possible worlds. Cambridge: Harvard University Press. Carlson, S. & Meltzoff, A. (2008). Bilingual Experience and Executive Functioning. Bilingualism: Language and Cognition, 6 (1), 1-15. Chen, C. & Stevenson. H. (1988). Cross-Linguistic Differences in Digit Span of Preschool Children. Journal of Experimental Child Psychology 46, 150-158 Conti-Ramsden, S., Botting, N. & Faragher, B. (2001). Psycholinguistic Marker for specific Language Impairment (SLI). Journal of Language Psychology and Psychiatry, 42 (6), 741-748. Curenton, S. M. (2004). The association between narratives and theory of mind for low-income preschoolers. Early Education and Development, 15 (2), 120–143. Deen, Kamil Ud (2011). The Acquisition of the Passive. In de Villiers, J. & T. Roeper. (eds) Handbook of Generative Approaches to Language Acquisition (pp. 155-188). Amsterdam: John Benjamins Publisher. de Villiers, J., Pace, A., Yust, P., Takahesu Tabori, A., Hirsh-Pasek, K., Golinkoff, R. M., Iglesias, A., & Wilson, M.S. (2014). Predictive value of language processes and products for identifying language delays. Poster accepted to the Symposium on Research in Child Language Disorders, Madison, WI. de Villiers, J. G. (2015). Taking Account of Both Languages in the Assessment of Dual Language Learners. In Iglesias, A. (Ed) Special issue, Seminars in Speech, 36 (2) 120-132. de Villiers, J. G. (2005). Can language acquisition give children a point of view? In J. Astington & J. Baird (Eds.), Why Language Matters for Theory of Mind. (pp186-219) New York: Oxford Press. de Villiers J. G. & Pyers, J. (2002). Complements to Cognition: A Longitudinal Study of the Relationship between Complex Syntax and False-Belief Understanding. Cognitive Development, 17: 1037-1060. de Villiers, J. G., Roeper, T., Bland-Stewart, L. & Pearson, B. (2008). Answering hard questions: wh-movement across dialects and disorder. Applied Psycholinguistics, 29: 67-103. Friedman, E., Gallová Kriglerová, E., Kubánová, M. & Slosiarik, M. (2009). School as Ghetto: Systemic Overrepresentation of Roma in Special Education in Slovakia. Roma Education Fund. ERRC (European Roma Rights Center) (1999). A special remedy: Roma and Special schools for the Mentally Handicapped in the Czech Republic. Country Reports Series no. 8 (June) ERRC (European Roma Rights Centre) (2014). Overcoming barriers: Ensuring that the Roma children are fully engaged and achieving in education. The office for standards in education. online at http://www.errc.org ERRC (European Roma Rights Centre) (2015). Czech Republic: Eight years after the D.H. judgment a comprehensive desegregation of schools must take place http://www.errc.org Fremlova, L. & Ureche, H. (2011). From Segregation to Inclusion: Roma pupils in the United Kingdom. A Pilot research Project. Budapest: Roma Education Fund. Gleitman, L., Cassidy, K., Nappa, R., Papafragou, A. & Trueswell, J. (2005). Hard words. Language Learning and Development, 1, 23-64. Goetz, P. (2003). The effects of bilingualism on theory of mind development. Bilingualism: Language and Cognition. 6. 1-15. Hart, B. & Risley, T.R (1995). Meaningful Differences in the Everyday Experiences of Young American Children. Baltimore, MD: Brookes Publishing Heath, S. B. (1982). What no Bedtime Story Means: Narrative skills at home and at school. In Language and Society. 11.2:49-76. Hirsh-Pasek, K., Kochanoff, A., Newcombe, N. & de Villiers, J.G. (2005). Using scientific knowledge to inform preschool assessment: making the case for empirical validity. Social Policy report (SRCD) Volume XIX, 1, 3-19. Hirsh-Pasek K., Adamson, I.B., Bakeman, R., Tresch Owen, M., Golinkoff, R.M., Pace, A., Yust, P & Suma, K. (2015). The Contribution of Early Communication Quality to Low- Income Children’s Language Success. Psychological Science Online First, June 5, 2015 doi:10.1177/0956797615581493 Hoff, E. (2013). Interpreting the early language trajectories of children from low-SES and language minority homes: implications for closing achievement gaps. Developmental Psychology, 49(1):4-14. Hoff, E. & Elledge, C. (2006). Bilingualism as One of Many Environmental Variables that Affect Language Development in Young Children. In J. Cohen, K. McAlister & J. MacSwan (Eds.), Proceedings of the 4th International symposium on Bilingualism (pp. 1034-1040). Somerville, Ma: Cascadilla press. Hoge, W. (1998). A Swedish Dilemma: The Immigrant Ghetto. The New York Times, October 6th. Kovacs, A. (2009). Early Bilingualism Enhances Mechanisms of False-Belief Reasoning. Developmental Science, 12 (1), 48-54. Kyuchukov, H. (2005). Early socialization of Roma children in Bulgaria. In: X. P. Rodriguez-Yanez, A. M. Lorenzo Suarez & F. Ramallo (Eds.), Bilingualism and Education: From the Family to the School. Muenchen: Lincom Europa. (pp. 161-168) Kyuchukov, H. (2010) Romani language competence. In: J. Balvin and L. Kwadrants (Eds.), Situation of Roma Minority in Czech, Hungary, Poland and Slovakia (pp. 427-465). Wroclaw: Prom. Kyuchukov, H. (2014). Acquisition of Romani in a Bilingual Context. Psychology of Language and Communication, vol. 18 (3), 211-225. Kyuchukov, H. (2013). Romani language education and identity among the Roma children in European context. In: J. Balvin, L. Kwadrans and H. Kyuchukov (eds) Roma in Visegrad Countries: History, Culture, Social Integration, Social work and Education (pp. 465-471). Wroclaw: Prom. Kyuchukov, H. (2015). Socialization of Roma children through Roma oral culture. In: Socializaciya rastushego cheloveka v kontekste progressyivnyih nauchnich ideii XXI veka: socialnoe razvitie detey doshkolnogo vozrastta. [Socialization of the growing man in the context of progressive ideas of the XXI c.: social development of the preschool age children] Proceedings form the First international All-Russia conference, 1-3 April, Yakutsk, pp. 798-802. Kyuchukov, H. & de Villiers, J. (2009). Theory of Mind and Evidentiality in Romani-Bulgarian Bilingual children. Psychology of Language and Communication, 13(2), 21-34. Kyuchukov, H. & de Villiers, J. (2014a). Roma children’s knowledge on Romani. Journal of Psycholinguistics, 19, 58-65. Kyuchukov, H. & de Villiers, J. (2014b). Addressing the rights of Roma children for a language assessment in their native language of Romani. Poster presented at the 35th Annual Symposium on Research in Child Language Disorders in Madison, Wisconsin June 12-14. Lajčakova, J. (2013). Civil Society Monitoring Report on the Implementation of the National Roma Integration Strategy and Roma Decade Action Plan in 2012 in Slovakia. Budapest: Decade of Roma Inclusion. Secretariat Foundation. Landry, S. and the School Readiness Research Consortium (2014). Enhancing Early Child Care Quality and Learning for Toddlers at Risk: The Responsive Early Childhood Program. Developmental Psychology, 50 (2), 526-541. Lust, B., Flynn, S. & Foley, C. (1996). What Children Know about What They Say: Elicited Imitation as a Research Method for Assessing Children's Syntax. In D. McDaniel, C. McKee, & H. Smith Cairns (Eds.), Methods for Assessing Children's Syntax (pp. 55-76). Cambridge, Mass.: MIT Press. Maratsos, M., Fox, D.E.C., Becker, J.A. & Chalkley, M.A. (1985). Semantic restrictions on children’s passives. Cognition, 19, 167-191. Merz, E.C. Zucker, T.A., Landry, S.H. Williams, J., Assel, M., Taylor, H.B, Lonigan, C.L., Phillips, B., Clancy-Menchetti, J., Barnes, M., Eisenberg, N., de Villiers, J. (2015). Parenting predictors of cognitive skills and emotion knowledge in socioeconomically disadvantaged preschoolers. Journal of Experimental Child Psychology 132, 14-31 Pearson, B. Z., Jackson, J. E., & Wu, H. (2014). Seeking a valid gold standard for an innovative dialect-neutral language test. Journal of Speech-Language and Hearing Research. 57(2). 495-508. Reger, Z. (1999). Teasing in the linguistic socialization of Gypsy children in Hungary. Acta Linguistica Hungarica, 46, 289-315. Réger, Z. and Berko-Gleason, J. (1991). Romāni Child-Directed Speech and Children's Language among Gypsies in Hungary Language in Society, 20 (4), 601-617. Roeper, T & de Villiers, J.G. (2011). The acquisition path for wh-questions. In de Villiers, J.G. & Roeper, T. (Eds), Handbook of Generative Approaches to Language Acquisition. Springer. Seymour, H., Roeper, T. & de Villiers, J. (2005). The DELV-NR. (Norm-referenced version) The Diagnostic Evaluation of Language Variation. The Psychological Corporation, San Antonio. Schulz, P. & Roeper, T. (2011). Acquisition of exhaustively in wh-questions: a semantic dimensions of SLI. Lingua, 121(3), 383-407. Stokes, S. F., Wong, A. M-Y., Fletcher, P., & Leonard, L. B. (2006). Nonword repetition and sentence repetition as clinical markers of SLI: The case of Cantonese. Journal of Speech, Language and Hearing Research, 49(2), 219-236. Vassilev, R. (2004). The Roma of Bulgaria: A Pariah Minority. The Global Review of Ethnopolitics, 3 (2), 40-51. Wellman, H.M., Cross, D., & Watson, J. (2001). Meta-analysis of theory-of-mind development: The truth about false belief. Child Development, 72, 655-684. Wimmer, H., & Perner, J. (1983). Beliefs about beliefs: Representation and constraining function of wrong beliefs in young children’s understanding of deception. Cognition, 13, 103–128.
Styles APA, Harvard, Vancouver, ISO, etc.
9

Chowdhury, Uttam. « Arsenic and Protein Expression : It might help to know the mechanism of As toxicity ». International Journal of Biochemistry and Peptides 1, no 1 (8 novembre 2021) : 34–37. http://dx.doi.org/10.55124/ijbp.v1i1.124.

Texte intégral
Résumé :
Arsenic and Protein Expression: It might help to know the mechanism of As toxicity is described Introduction One of the largest public health problems at present is the drinking of water containing levels of Inorg-As that are known to be carcinogenic. The chronic ingestion of Inorg-As can results in skin cancer, urinary bladder cancer, lungs cancer, kidneys cancer, liver cancer, and cancer of other human organs 1-6. The molecular mechanisms of the carcinogenicity and toxicity of inorganic arsenic are not well understood 7–9. Many mechanisms of arsenic toxicity and carcinogenicity have been suggested 1, 7, 10 including chromosome abnormalities 11, oxidative stress 12, 13, altered growth factors 14, cell proliferation 15, altered DNA repair 16, altered DNA methylation patterns 17, inhibition of several key enzymes 18, gene amplification 19 etc. Some of these mechanisms result in alterations in protein expression. Proteomics is a powerful tool developed to enhance the study of complex biological system 20. This technique has been extensively employed to investigate the proteome response of cells to drugs and other diseases 21, 22. A proteome analysis of the Na-As (III) response in cultured lung cells found in vitro oxidative stress-induced apoptosis 23. In one of the study, hamsters were exposed to sodium arsenite (173 mg As/L) in drinking water for 6 days and several protein spots were over expressed and several were under expressed in the livers and urinary bladders of hamsters (Fig.) 24, 25. Hamsters were exposed to sodium arsenite (173 mg As/L) in drinking water for 6 days. The control hamsters were given tap water. The spot pairs of (A) equally expressed, (B) overexpressed, and (C) under expressed proteins in the liver tissues were shown. The amount of the protein is proportional to the volume of the protein peak. Transgelin was down-regulated, and GST-pi was up-regulated in the urinary bladder tissues of hamsters. In the liver tissues ornithine aminotransferase (OAT) was up-regulated, and senescence marker protein 30 (SMP 30), and fatty acid binding protein (FABP) were down-regulated. Down-regulation of transgelin has been noted in the urinary bladders of rats having bladder outlet obstruction 26. Ras-dependent and Ras-independent mechanisms can cause the down regulation of transgelin in human breast and colon carcinoma cell lines and patient-derived tumor samples 27. The loss of transgelin expression has been found in prostate cancer cells 28 and in human colonic neoplasms 29. It has been suggested that the loss of transgelin expression may be an important early event in tumor progression and a diagnostic marker for cancer development 26-29. Figure. Three-dimentional simulation of over-and under expressed protein spots in the livers of hamsters using Decyder software. Over-expression of GST-pi has been found in colon cancer tissues 30. Strong expression of GST-pi also has been found in gastric cancer 31, malignant melanoma 32, lung cancer 33, breast cancer 34 and a range of other human tumors 35. GST-pi has been up-regulated in transitional cell carcinoma of human urinary bladder 36. OAT has a role in regulating mitotic cell division and it is required for proper spindle assembly in human cancer cell 37. Ornithine amino transferase knockdown in human cervical carcinoma and osteosarcoma cells by RNA interference blocks cell division and causes cell death 37. It has been suggested that ornithine amino transferase has a role in regulating mitotic cell division and it is required for proper spindle assembly in human cancer cells 37. SMP 30 expressed mostly in the liver. By stimulating membrane calcium-pump activity it protects cells against various injuries 38. High levels of saturated, branched chain fatty acids are deleterious to cells and resulting in lipid accumulation and cytotoxicity. FABP expression has protected the cells against branched chain saturated fatty acid 39. Proteomics would be a powerful tool to know the unknown cellular mechanisms of arsenic toxicity in humans. References. NRC (National Research Council). (2001). Arsenic in Drinking Water. Update to the 1999 Arsenic in Drinking Water Report. National Academy Press, Washington, DC. Chen, C. J., Chen, C. , Wu, M. M., Kuo, T. L. (1992). Cancer potential in liver, lung, bladder, and kidney due to ingested inorganic arsenic in drinking water. Br. J. Cancer 66, 888-892. Hopenhayn-Rich, C., M.L. Biggs, A. Fuchs, et al. 1996. Bladder cancer mortality with arsenic in drinking water in Argentina. Epidemiology 7: 117–124. International Agency for Research on Cancer. (1987). In IARC Monograph on the Evaluation of Carcinogenicity Risk to Humans. Overall Evaluation of Carcinogenicity:An Update of IARC Monographs 1–42 (Suppl. 7). Lyon, France: International Agency for Research on Can-cer, pp. 100–106. Rossman, T.G., Uddin, A.N., and Burns, F.J. (2004). Evidence that arsenite acts as a cocarcinogen in skin cancer. Toxicol. Appl. Pharmacol. 198: 394–404. Smith, A.H., Hopenhayn-Rich, C., Bates, M.N., et al. (1992). Cancer risks from arsenic in drinking water. Environ. Health Perspect. 97: 259–267. Aposhian, H.V. & Aposhian, M.M. (2006). Arsenic toxicology: five questions. Chem. Res. Toxicol. 19: 1–15. Goering, P.L., Aposhian, H.V., Mass, M.J., et al. (1999). The enigma of arsenic carcinogenesis: role of metabolism. Toxicol. Sci. 49: 5–14. Waalkes, M.P., Liu, J., Ward, J.M., et al. (2004). Mechanisms underlying arsenic carcinogenesis: hypersensitivity of mice exposed to inorganic arsenic during gestation. Toxicology 198: 31–38. Kitchin, K. T., Recent advances in arsenic carcinogenesis: modes of action, animal model systems, and methylated arsenic metabolites. Appl. Pharmacol. 2001, 172, 249-261. Beckman, G., Beckman, L., Nordenson, I., Chromosome aberrations in workers exposed to arsenic. Environ. Health Perspect. 1977, 19, 145-146. Yamanaka, K., Hoshino, M., Okanoto, M., Sawamura, R., et al., Induction of DNA damage by dimethylarsine, a metabolite of inorganic arsenics, is for the major part likely due to its peroxyl radical. Biophys. Res. Commun. 1990, 168, 58-64. Yamanaka, K., Okada, S., Induction of lung-specific DNA damage by metabolically methylated arsenics via the production of free radicals. Health Perspect. 1994, 102, 37-40. Simeonova, P., Luster, M. I., Mechanisms of arsenic carcinogenicity:Genetic or epigenetic mechanisms? J. Environ. Pathol. Toxicol. Oncol. 2000, 19, 281-286. Popovicova, J., Moser, G. J., Goldsworthy, T. , Tice, R. R., Carcinogenicity and co-carcinogenicity of sodium arsenite in p53+/- male mice. Toxicologist 2000, 54, 134. Li, J. H., Rossman, T. G., Mechanism of co-mutagenesis of sodium arsenite with N-methyl-N-nitrosourea. Bi Trace Elem. 1989, 21, 373-381. Zhao, C. Q., Young, M. R., Diwan, B. A., Coogan, T. P., et , Association of arsenic-induced malignant transformation with DNA hypomethylation and aberrant gene expression. Proc. Natl. Acad. Sci. USA 1997, 94, 10907-10912. Abernathy, C. O., Lui, Y. P., Longfellow, D., Aposhian, H. , et al., Arsenic: Health effects, mechanisms of actions and research issues. Environ. Health Perspect. 1999, 107, 593-597. Lee, T. C., Tanaka, N., Lamb, P. W., Gilmer, T. M., et al., Induction of gene amplification by arsenic. Science 1988, 241, 79-81. Lau, A. T., He, Q. Y., Chiu, J. F. (2003). Proteomic technology and its biomedical applications. Acta Biochim. Bioph Sin. 35, 965-975. Jungblut, P. R., Zimny-Arndt, U., Zeindl-Eberhart, E., Stulik, J., Koupilova, K., Pleissner, K. P., Otto, A., Muller, E. C., Sokolowska-Kohler, W., Grabher, G., Stoffler, G. (1999). Proteomics in human disease: cancer, heart and infectious diseases. Electrophoresis 20, 2100-2110. Hanash, S. M., Madoz-Gurpide, J., Misek, D. E. (2002). Identification of novel targets for cancer therapy using expression proteomics. Leukemia 16, 478-485. Lau, A. T., He, Q. Y., Chiu, J. F. (2004). A proteome analysis of the arsenite response in cultured lung cells: evidence for in vitro oxidative stress-induced apoptosis. J. 382, 641-650. Chowdhury, U. K., Aposhian, H. V. (2008). Protein expression in the livers and urinary bladders of hamsters exposed to sodium arsenite. A N. Y. Acad. Sci. 1140, 325-334. Chowdhury, U.K. Expression of proteins in the tissues of hamsters exposed to sodium arsenite. Int. J. of Toxicol., 2021, 1, 1-8. Kim, H-J., Sohng, I., Kim, D-H., Lee, D-C., et al., 2005. Investigation of early protein changes in the urinary bladder following partial bladder outlet obstruction by proteomic approach. J. Korean Med. Sci. 20, 1000-1005. Shields, J.M., Rogers-Graham, K., Der, C.J., 2002. Loss of transgelin in breast and colon tumors and in RIE-1 cells by Ras deregulation of gene expression through Raf-independent pathways. J. Biol. Chem. 277, 9790-9799. Yang, Z., Chang, Y- J., Miyamoto, H., Ni, J., et al., Transgelin functions as a suppressor via inhibition of ARA54-enhanced androgen receptor transactivation and prostate cancer cell grown. Mol. Endocrinol. 2007, 21, 343-358. Yeo, , Kim, D- K., Park, H. J., Oh, T. Y., et al., Loss of transgelin in repeated bouts of ulcerative colitis-induced colon carcinogenesis. Proteomics 2006, 6, 1158-1165. Tsuchida, S., Sekine, Y., Shineha, R., Nishihira, T., et al., Elevation of the placental glutathione S-transferase form (GST-PI) in tumor tissues and the levels in sera of patients with cancer. Cancer Re 1989, 43, 5225-5229. Tsutsumi, M., Sugisaki, T., Makino, T., Miyagi, N., et al., Oncofetal expression of glutathione S-transferase placental form in human stomach carcinomas. 1987, 78, 631-633. Mannervik, B., Castro, V. M., Danielson, U. H., Tahir, M. K., et , Expression of class Pi glutathione transferase in human malignant melanoma cells. Carcinogenesis (Lond.) 1987, 8, 1929-1932. Di llio, C., Del Boccio, G., Aceto, A., Casaccia, R., et al,. Elevation of glutathione transferase activity in human lung tumor. Carcinogenesis (Lond.) 1988, 9, 335-340. Sreenath, A. S., Ravi, K. K., Reddy, G. V., Sreedevi, B., et al., Evidence for the association of synaptotagmin with glutathione S- transferase: implications for a novel function in human breast cancer. Clinical Biochem. 2005, 38, 436-443. Shea, T. C., Kelley S. L, Henner, W. D., Identification of an anionic form of glutathione transferase present in many human tumors and human tumor cell lines. Cancer Res. 1988, 48, 527-533. Simic, T., Mimic-Oka, J., Savic-Radojevic, A., Opacic, M., et al., Glutathione S- transferase T1-1 activity upregulated in transitional cell carcinoma of urinary bladder. Urology 2005, 65, 1035-1040. Wang, G., Shang, L., Burgett, A. W. G., Harran, P. G., et al., Diazonamide toxins reveal an unexpected function for ornithine d-amino transferase in mitotic cell division. PNAS 2007, 104, 2068-2073. Fujita, T., Inoue, H., Kitamura, T., Sato, N., et a, Senescence marker protein-30 (SMP30) rescues cell death by enhancing plasma membrane Caat-pumping activity in hep G2 cells. Biochem. Biophys. Res. Commun. 1998, 250, 374-380. Atshaves, B. P., Storey, S. M., Petrescu, A., Greenberg, C. C., et al., Expression of fatty acid binding proteins inhibits lipid accumulation and alters toxicity in L cell fibroblasts. A J. Physiol. Cell Physiol. 2002, 283, C688-2703.
Styles APA, Harvard, Vancouver, ISO, etc.
10

Chowdhury, Uttam. « Selenium (Se) as well as mercury (Hg) may influence the methylation and toxicity of inorganic arsenic, but further research is needed with combination of Inorg-arsenic, Se, and Hg ». Journal of Toxicology and Environmental Sciences 1, no 1 (19 juin 2021) : 1–8. http://dx.doi.org/10.55124/jtes.v1i1.46.

Texte intégral
Résumé :
Our studies have indicated that the relative concentration of Se or Hg to As in urine and blood positively correlates with percentage of inorganic arsenic (% Inorg-As) and percentage of monomethlyarsonic acid [% MMA (V)]. We also found a negative correlation with percentage of dimethylarsinic acid [% DMA (V)] and the ratio of % DMA (V) to % MMA (V). In another study, we found that a group of proteins were significantly over expressed and conversely other groups were under-expressed in tissues in Na-As (III) treated hamsters. Introduction.Inorganic arsenic (Inorg-As) in drinking water.One of the largest public health problems at present is the drinking of water containing levels of Inorg-As that are known to be carcinogenic. At least 200 million people globally are at risk of dying because of arsenic (As) in their drinking water1-3. The chronic ingestion of Inorg-As can results in skin cancer, bladder cancer, lung cancer, and cancer of other organs1-3. The maximum contamination level (MCL) of U.S. drinking water for arsenic is 10 ug/L. The arsenic related public health problem in the U.S. is not at present anywhere near that of India4, Bangladesh4, and other countries5. Metabolism and toxicity of Inorg-As and arsenic species.Inorg-As is metabolized in the body by alternating reduction of pentavalent arsenic to trivalent form by enzymes and addition of a methyl group from S-adenosylmethionine6, 7; it is excreted mainly in urine as DMA (V)8. Inorganic arsenate [Inorg-As (V)]is biotransformed to Inorg-As (III), MMA (V), MMA (III), DMA (V), and DMA (III)6(Fig. 1). Therefore, the study of the toxicology of Inorg-As (V) involves at least these six chemical forms of arsenic. Studies reported the presence of 3+ oxidation state arsenic biotransformants [MMA (III) and DMA (III)] in human urine9and in animal tissues10. The MMA (III) and DMA (III) are more toxic than other arsenicals11, 12. In particular MMA (III) is highly toxic11, 12. In increased % MMA in urine has been recognized in arsenic toxicity13. In addition, people with a small % MMA in urine show less retention of arsenic14. Thus, the higher prevalence of toxic effects with increased % MMA in urine could be attributed to the presence of toxic MMA (III) in the tissue. Previous studies also indicated that males are more susceptible to the As related skin effects than females13, 15. A study in the U.S population reported that females excreted a lower % Inorg-As as well as % MMA, and a higher % DMA than did males16. Abbreviation: SAM, S-adenosyl-L-methionine; SAHC, S-adenosyl-L-homocysteine. Differences in susceptibility to arsenic toxicity might be manifested by differences in arsenic metabolism among people. Several factors (for examples, genetic factors, sex, duration and dosage of exposure, nutritional and dietary factors, etc.) could be influence for biotransformation of Inorg-As,6, 17 and other unknown factors may also be involved. The interaction between As, Se, and Hg.The toxicity of one metal or metalloid can be dramatically modulated by the interaction with other toxic and essential elements18. Arsenic and Hg are toxic elements, and Se is required to maintain good health19. But Se is also toxic at high levels20. Recent reports point out the increased risk of squamous cell carcinoma and non-melanoma skin cancer in those treated with 200 ug/day of selenium (Nutritional Prevention of Cancer Trial in the United States)21. However, it is well known that As and Se as well as Se and Hg act as antagonists22. It was also reported that Inorg-As (III) influenced the interaction between selenite and methyl mercury23. A possible molecular link between As, Se, and Hg has been proposed by Korbas et al. (2008)24. The identifying complexes between the interaction of As and Se, Se and Hg as well as As, Se, and Hg in blood of rabbit are shown in Table 1. Influence of Se and Hg on the metabolism of Inorg-As.The studies have reported that Se supplementation decreased the As-induced toxicity25, 26. The concentrations of urinary Se expressed as ug/L were negatively correlated with urinary % Inorg-As and positively correlated with % DMA27. The study did not address the urinary creatinine adjustment27. Other researchers suggested that Se and Hg decreased As methylation28-31(Table 2). They also suggested that the synthesis of DMA from MMA might be more susceptible to inhibition by Se (IV)29 as well as by Hg (II)30,31 compared to the production of MMA from Inorg-As (III). The inhibitory effects of Se and Hg were concentration dependent28-31. The literature suggests that reduced methylation capacity with increased % MMA (V), decreased % DMA (V), or decreased ratios of % DMA to % MMA in urine is positively associated with various lesions32. Lesions include skin cancer and bladder cancer32. The results were obtained from inorganic arsenic exposed subjects32. Our concern involves the combination of low arsenic (As) and high selenium (Se) ingestion. This can inhibit methylation of arsenic to take it to a toxic level in the tissue. Dietary sources of Se and Hg.Global selenium (Se) source are vegetables in the diet. In the United States, meat and bread are the common source. Selenium deficiency in the US is rare. The US Food and Drug Administration (FDA) has found toxic levels of Se in dietary supplements, up to 200 times greater than the amount stated on the label33. The samples contained up to 40,800 ug Se per recommended serving. For the general population, the most important pathway of exposure to mercury (Hg) is ingestion of methyl mercury in foods. Fish (including tuna, a food commonly eaten by children), other seafood, and marine mammals contain the highest concentrations. The FDA has set a maximum permissible level of 1 ppm of methyl mercury in the seafood34. The people also exposed mercury via amalgams35. Proteomic study of Inorg-As (III) injury.Proteomics is a powerful tool developed to enhance the study of complex biological system36. This technique has been extensively employed to investigate the proteome response of cells to drugs and other diseases37, 38. A proteome analysis of the Na-As (III) response in cultured lung cells found in vitro oxidative stress-induced apoptosis39. However, to our knowledge, no in vivo proteomic study of Inorg-As (III) has yet been conducted to improve our understanding of the cellular proteome response to Inorg-As (III) except our preliminary study 40. Preliminary Studies: Results and DiscussionThe existing data (Fig. 1) from our laboratory and others show the complex nature of Inorg-As metabolism. For many years, the major way to study, arsenic (As) metabolism was to measure InorgAs (V), Inorg-As (III), MMA (V), and DMA (V) in urine of people chronically exposed to As in their drinking water. Our investigations demonstrated for the first time that MMA (III) and DMA (III) are found in human urine9. Also we have identified MMA (III) and DMA (III) in the tissues of mice and hamsters exposed to sodium arsenate [Na-As (V)]10, 41. Influence of Se as well as Hg on the As methyltransferase.We have reported that Se (IV) as well as mercuric chloride (HgCl2) inhibited As (III) methyltransferase and MMA (III) methyltransferase in rabbit liver cytosol. Mercuric chloride was found to be a more potent inhibitor of MMA (III) methyltransferase than As (III) methyltransferase30. These results suggested that Se and Hg decreased arsenic methylation. The inhibitory effects of Se and Hg were concentration dependent30. Influence of Se and Hg in urine and blood on the percentage of urinary As metabolites.Our human studies indicated that the ratios of the concentrations of Se or Hg to As in urine and blood were positively correlated with % Inorg-As and % MMA (V). But it negatively correlated with % DMA (V) and the ratios of % DMA (V) to % MMA (V) in urine of both males and females (unpublished data) (Table 3). These results confirmed that the inhibitory effects of Se as well as Hg for the methylation of Inorg-As in humans were concentration dependent. We also found that the concentrations of Se and Hg were negatively correlated with % Inorg-As and % MMA (V). Conversely it correlated positively with % DMA (V) and the ratios of % DMA (V) to % MMA (V) in urine of both sexes (unpublished data). These correlations were not statistically significant when urinary concentrations of Se and Hg were adjusted for urinary creatinine (Table 3). Interactions of As, Se, Hg and its relationship with methylation of arsenic are summarized in Figure 2. Sex difference distribution of arsenic species in urine.Our results indicate that females have more methylation capacity of arsenic as compared to males. In our human studies (n= 191) in Mexico, we found that females (n= 98) had lower % MMA (p<0.001) and higher % DMA (p=0.006) when compared to males (n= 93) (Fig. 3). The means ratio of % MMA (V) to % Inorg-As and % DMA (V) to %MMA (V) were also lower (p<0.05) and higher (p<0.001), respectively in females compared to males. The protein expression profiles in the tissues of hamsters exposed to Na-As (III).In our preliminary studies40, hamsters were exposed to Na-As (III) (173 pg/ml as As) in their drinking water for 6 days and control hamsters were given only the water used to make the solutions for the experimental animals. After DIGE (Two-dimensional differential in gel electrophoresis) and analysis by the DeCyder software, several protein spots were found to be over-expressed (red spot) and several were under expressed (green spot) as compared to control (Figs. 4a-c). Three proteins (one was over-expressed and two were under-expressed) of each tissue (liver and urinary bladder) were identified by LC-MS/MS (liquid chromatography-tandem mass spectrometry).DIGE in combination with LC-MS/MS is a powerful tool that may help cancer investigators to understand the molecular mechanisms of cancer progression due to Inorg-As. Propose a new researchThese results suggested that selenium (Se) as well as mercury (Hg) may influence the methylation of Inorg-As and this influence could be dependent on the concentration of Se, Hg and/or the sex of the animal. Our study also suggested that the identification and functional assignment of the expressed proteins in the tissues of Inorg-As (III) exposed animals will be useful for understanding and helping to formulate a theory dealing with the molecular events of arsenic toxicity and carcinogenicity.Therefore, it would be very useful if we could do a research study with combination of Inorg-arsenic, Se, and Hg. The new research protocol could be the following:For metabolic processing, hamsters provide a good animal model. For carcinogenesis, mouse model is well accepted. The aims of this project are: 1) To map the differential distributions of arsenic (As) metabolites/species in relation to selenium (Se) and mercury (Hg) levels in male and female hamsters and 2) To chart the protein expression profile and identify the defense proteins in mice and hamsters after As injury. Experimental hamsters (male or female) will include four groups. The first group will be treated with Na arseniteNa-As(III), the second group with Na-As (III) and Na-selenite (Na-Se (IV)], the third group with Na As (III) and methyl mercuric chloride (MeHgCl), and the final group with Na-As (III), Na-Se (IV), and MeHgci at different levels. Urine and tissue will be collected at different time periods and measured for As species using high performance liquid chromatography/inductively coupled plasma-mass spectrometry (HPLC/ICP-MS). For proteomics, mice (male and female) and hamsters (male and female) will be exposed to Na-As (III)at different levels in tap water, and control mice and hamsters will be given only the tap water. Tissue will be harvested at different time periods. TWO dimensional differential in gel electrophoresis (2D-DIGE) combined with liquid chromatography-tandem mass spectrometry (LC-MS/MS) will be employed to identify the expressed protein. In summary, we intend to extend our findings to: 1) Differential distribution of As metabolites in kidney, liver, lung, and urinary bladder of male and female hamsters exposed to Na-As (III), and combined with Na-As (III) and Na-Se (IV) and/or MeHgCl at different levels and different time periods, 2) Show the correlation of As species distribution in the tissue and urine for both male and female hamsters treated with and without Na-Se (IV) and/or MeHgCl, and 3) Show protein expression profile and identify the defense proteins in the tissues (liver, lung, and urinary bladder epithelium) in mice after arsenic injury. The significance of this study: The results of which have the following significances: (A) Since Inorg-As is a human carcinogen, understanding how its metabolism is influenced by environmental factors may help understand its toxicity and carcinogenicity, (B) The interactions between arsenic (As), selenium (Se), and mercury (Hg) are of practical significance because populations in various parts of the world are simultaneously exposed to Inorg-As & Se and/or MeHg, (C) These interactions may inhibit the biotransformation of Inorg-As (III) which could increase the amount and toxicity of Inorg-As (III) and MMA (III) in the tissues, (D) Determination of arsenic species profile in the tissues after ingestion of Inorg-As (III), Se (IV), and/or MeHg+ will help understand the tissue specific influence of Se and Hg on Inorg-As (III) metabolism, (E) Correlation of arsenic species between tissue and urine might help to understand the tissue burden of arsenic species when researchers just know the distribution of arsenic species in urine, (F) The identification of the defense proteins (over-expressed and under-expressed) in the tissues of the mouse may lead to understanding the mechanisms of inorganic arsenic injury in human. The Superfund Basic Research Program NIEHS Grant Number ES 04940 from the National Institute of Environmental Health Sciences supported this work. Additional support for the mass spectrometry analyses was provided by grants from NIWHS ES 06694, NCI CA 023074 and the BIO5 Institute of the University of Arizona. Acknowledge:The Authorwantsto dedicate this paper to the memory of Dr. H. VaskenAposhian and Dr. Mary M. Aposhian who collected urine and bloodsamples from Mexican population. The work was done under Prof. H. V. Aposhian sole supervision and with his great contribution. References NRC (National Research Council). Arsenic in Drinking Water. Update to the 1999 Arsenic in Drinking Water Report. National Academy Press, Washington, DC. 2001. Gomez-Caminero, A.; Howe, P.; Hughes, M.; Kenyon, ; Lewis, D. R.; Moore, J.; Mg, J.; Aitio, A.; Becking, G. Environmental Health Criteria 224. Arsenic and Arsenic Compounds (Second Edition). International Programme on Chemical Safety, World Health Organization. 2001. Chen, C. J.; Chen, C. W.; Wu, M.; Kuo, T. L. Cancer potential in liver, lung, bladder, and kidney due to ingested inorganic arsenic in drinking water. Br. J. Cancer. 1992, 66, 888-892. Chakraborti, D.; Rahman, M.; Paul, K.; Chowdhury, U. K.; Sengupta, M. K.; Lodh, D.; Chanda, C. R.; Saha, K. C.; Mukherjee, S. C. Arsenic calamity in the Indian subcontinent. What lessons have been learned? 2002, 58, 3-22. Nordstrom, D. K. Worldwide occurrences of arsenic in ground water. Scienc 2002, 296, 2143-2145. Aposhian, H. V.; Aposhian, M. M. Arsenic toxicology: five question Chem. Res. Toxicol. 2006, 19, 1-15. Aposhian, H. V. Enzymatic methylation of arsenic species and other new approaches to arsenic toxicity. An Rev. Pharmacol. Toxicol. 1997, 37, 397-419. Vahter, M. Variation in human metabolism of arsenic. In: Abernathy, C. O.; Calderon, R. L.; Chappell, W. R., (eds) Arsenic exposure and Health effect Elsevier Science, New York, 1999, pp 267-279. Aposhian, H. V., Gurzau, E. , Le, X. C., Gurzau, A., Healy, S. M., Lu, X., Ma, M., Yip, L., Zakharyan, R. A., Maiorino, R. M., Dart, R. C., Tircus, M. G., Gonzalez-Ramirez, D., Morgan, D. L., Avram, D., Aposhian, M. M. (2000). Occurrence of monomethylarsonous acid in urine of humans exposed to inorganic arsenic. Chem. Res. Toxicol. 13, 693-697. ; U. K.; Zakharyan, R. A.; Hernandez, A.; Avram, M.D.; Kopplin, M. J.; Aposhian, H. V. Glutathione-S-transferase-omega [MMA (V) reductase] knockout mice: Enzyme and arsenic species concentrations in tissues after arsenate administration. Toxicol. Appl. Pharmacol. 2006, 216, 446-457. Styblo, M.; Del Razo, L. M.; Vega, L.; Germolec, D. R.; LeCluyse, E. L.; Hamilton, G. A.; Reed, W.; Wang, C.; Cullen, W. R.; Thomas, D.J. Comparative toxicity of trivalent and pentavalent inorganic and methylated arsenicals in rat and human cells. A Toxicol., 2000, 74, 289-299. Petrick, J. S.; Jagadish, B.; Mash, E. A.; Aposhian, H. V. Monomethylarsonous acid (MMAIII) and arsenite: LD50 in hamsters and in vitro inhibition of pyruvate dehydrogenase. Ch Res. Toxicol. 2001, 14, 651-656. Lindberg, A. L.; Rahman, M.; Persson, L. A.; Vahter, M. The risk of arsenic induced skin lesions in Bangladeshi men and women is affected by arsenic metabolism and the age at first exposure. Appl. Pharmacol. 2008, 230, 9-16. Vahter, M. Mechanisms of arsenic biotransformation. Toxicolog 2002, 181-182, 211-217. Chen, Y. C.; Guo, Y. L.; Su, H. J.; Hsueh, Y. M.; Smith, T. J.; Ryan, L. M.; Lee, M. S.; Chao, S. C.; Lee, J. Y.; Christiani, D. C. Arsenic methylation and skin cancer risk in southwestern Taiwan. Occup. Environ. Med. 2003, 45, 241-248. Steinmaus, C.; Carrigan, K.; Kalman, D.; Atallah, R.; Yuan, Y.; Smith, A.H. Dietary intake and arsenic methylation in a U.S. population. Health Perspect. 2005, 113, 1153-1159. Tseng, C. H. A review on environmental factors regulating arsenic methylation in humans. Appl. Pharmacol. 2009, 235, 338-350. Goyer, R. A. Factors influencing metal toxicity. In: Goyer, R. A.; Klaassen, C. D.; Waalkes, M. P. (eds) Metal toxicolog Academic Press, San Diego, 1995, pp 31-45. Wilber, C. G. Toxicology of selenium. Toxicol. 1980, 17, 171-230. Skerfving, S. Interaction between selenium and methylmercury. Environ. Health Persp 1978, 25, 57-65. Duffield-Lillico, A. J.; Slate, E. H.; Reid, M. E.; Turnbull, B. W.; Wilkins, P. A.; Combs, G. F.; Kim Park, Jr. H.; Gross, E. G.; Graham, G. F.; Stratton, M. S.; Marshall, J. R.; Clark, L. C. Selenium supplementation and secondary prevention of nonmelanoma skin cancer in a randomized trial. Natl. Cancer Inst. 2003, 95, 1477-1481. Gailer, J. Arsenic-selenium and mercury-selenium bonds in biology. Chem. Rev. 2007, 251, 234-254. Alexander, J. The influence of arsenite on the interaction between selenite and methyl mercury. Dev. Toxicol. Environ. Sci. 1980, 8, 585-590. Korbas, M.; Percy, J.; Gailer, J.; George, G. N. A possible molecular link between the toxicological effects of arsenic, selenium and methyl mercury: methyl mercury (II) selenobis (S glutathionyl) arsenic (III). J. Biol. Inorg. Chem. 2008, 13, 461-470. Yang, ; Wang, W.; Hou, S.; Peterson, P. J.; Williams, W. P. Effect of selenium supplementation on arsenism: an intervention trial in Inner Mongolia. Environ. Geochem. Health. 2002, 24, 359-374. Verret, W. J.; Chen, Y.; Ahmed, A.; Islam, T.; Parvez, F.; Kibriya, M. G.; Graziano, J. H.; Ahsan, H. Effects of vitamin E and selenium on arsenic-induced skin lesions. Occup. Environ. Med. 2005, 47, 1026-1035. Hsueh, Y. M.; Ko, Y. F.; Huang, Y. K.; Chen, H. W.; Chiou, H. Y.; Huang, Y. L.; Yang, M. ; Chen, C. J. Determinants of inorganic arsenic methylation capability among residents of the Lanyang Basin, Taiwan: arsenic and selenium exposure and alcohol consumption. Toxicol. Lett. 2003, 137, 49-63. Kenyon, E. M.; Hughes, M. K.; Levander, 0. Influence of dietary selenium on the disposition of arsenate in the female B6C3F1 mouse. J. Toxicol. Environ. Health. 1997, 51, 279-299. Styblo, M.; Thomas, D, J. Selenium modifies the metabolism and toxicity of arsenic in primary rat hepatocytes. Toxicol Appl. Pharmacol. 2001, 172, 52-61. Zakharyan, R.; Wu, Y.; Bogdan, G. M.; Aposhian, H. V. Enzymatic methylation of arsenic compounds: assay, partial purification, and properties of arsenite methyltransferase and monomethylarsonic acid methyltransferase of rabbit liver. Res. Toxicol.1995, 8, 1029-1038. Styblo, M.; Delnomdedieu, M.; Thomas, D. J. Mono- and dimethylation of arsenic in rat liver cytosol in vitro. -Biol. Interact. 1996, 99, 147-164. Tseng C. H. Arsenic methylation, urinary arsenic metabolites and human diseases: current perspective. J. Environ. Sci. Health Part C. 2007, 25, 1-22. FDA (The US Food and Drug administration). (2008). Hazardous levels of selenium in samples of "Total Body Formula" and "Total Body Mega Formula”. FDA Ne 2008. ATSDR (Agency for Toxic Substances and Disease Registry). Toxicological profile for mercury (CAS # 7439-97-6). Atlanta, GA: U.S. Department of Health and Human Services, Public Health Service. 1999. Dye, B. A.; Schober, S. E.; Dillon, C. F.; Jones, R. L.; Fryar, C.; McDowell, M.; Sinks, T. H. Urinary mercury concentrations associated with dental restorations in adults women aged 16-49 years: United States, 1999-2000. O Environ. Med. 2005, 62, 368-375. Lau, A. T.; He, Q. Y.; Chiu, J. F. Proteomic technology and its biomedical applications. A Biophys. Sin. 2003, 35, 965-975. Jungblut, P. R.; Zimny-Arndt, U.; Zeindl-Eberhart, E.; Stulik, J.; Koupilova, K.; Pleissner, K. P.; Otto, A.; Muller, E. C.; Sokolowska-Kohler, W.; Grabher, G.; Stoffler, G. Proteomics in human disease: cancer, heart and infectious diseases. Electrophoresis. 1999, 20, 2100-2110. Hanash, S. M.; Madoz-Gurpide, J.; Misek, D. E. Identification of novel targets for cancer therapy using expression proteomics. L 2002, 16, 478-485. Lau, A. T.; He, Q. Y.; Chiu, J. F. A proteome analysis of the arsenite response in cultured lung cells: evidence for in vitro oxidative stress-induced apoptosis. J. 2004, 382, 641-650. Chowdhury, U. K.; Aposhian, H. V. Protein expression in the livers and urinary bladders of hamsters exposed to sodium arsenite. A N. Y. Acad. Sci. 2008, 1140, 325-334. Sampayo-Reyes, A.; Zakharyan, R. A.; Healy, S. M.; Aposhian, A. V. Monomethylarsonic acid reductase and monomethylarsonou acid in hamster tissue. Chem. Res. Toxicol. 2000, 13, 1181-1186.
Styles APA, Harvard, Vancouver, ISO, etc.
11

Iqra Arshad, Hifza Iqbal, Syeda Saira Iqbal, Muhammad Afzaal et Yasir Rehman. « A Review on the Synergistic Approaches for Heavy Metals Bioremediation : Harnessing the Power of Plant-Microbe Interactions ». Lahore Garrison University Journal of Life Sciences 8, no 2 (29 juin 2024) : 268–86. http://dx.doi.org/10.54692/lgujls.2024.0802343.

Texte intégral
Résumé :
Heavy metals contamination is a serious threat to all life forms. Long term exposure of heavy metals can lead to different life-threatening medical conditions including cancers of different body parts. Phytoremediation and bioremediation offer a potential eco-friendly solution to such problems. Different microbes can interact with heavy metals in a variety of ways such as biotransformation, oxidation/reduction, and biosorption. Phytoremediation of the heavy metals using plants mostly involves rhizofilteration, phytoextraction, phytovolatization, and Phyto stabilization. A synergistic approach using both plants and microbes has proven much more efficient as compared to the individual applications of microbes or plants. This article aims to highlight the synergistic methods used in bioremediation, emphasizing the potent collaboration between bacteria and plants for environmental cleaning, along with the discussion of the importance of site-specific variables and potential constraints. While identifying the necessity for all-encompassing solutions, this review places emphasis on the combination of methodologies as a multifarious rehabilitation approach. This discussion offers insightful suggestions for scholars, scientists and decision-makers about the sustainable recovery of heavy metal-contaminated environments using a comprehensive strategy. REFERENCES Ankit, Bauddh K, Korstad J (2022). Phycoremediation: Use of algae to sequester heavy metals. Hydrobiol. 1(3): 288-303. Arantza SJ, Hiram MR, Erika K, Chávez-Avilés MN, Valiente-Banuet JI, Fierros-Romero G (2022). Bio-and phytoremediation: Plants and microbes to the rescue of heavy metal polluted soils. SN Appl. Sci. 4(2): 59. Azubuike CC, Chikere CB, Okpokwasili GC (2016). Bioremediation techniques–classification based on site of application: principles, advantages, limitations and prospects. World J. Microbiol. Biotechnol. 32: 1-18. Berti WR, Cunningham SD (2000). Phytostabilization of metals. Phytoremediation of toxic metals: Using plants to clean up the environment. Wiley, New York. 71-88. Bingöl NA, Özmal F, Akın B (2017). Phytoremediation and biosorption potential of Lythrum salicaria for nickel removal from aqueous solutions. Pol. J. Environ. Stud. 26(6): 2479-2485. Chandra R, Saxena G, Kumar V (2015). Phytoremediation of environmental pollutants: an eco-sustainable green technology to environmental management, In Advances in biodegradation and bioremediation of industrial waste. 1-29. Chaudhary K, Agarwal S, Khan S (2018). Role of phytochelatins (PCs), metallothioneins (MTs), and heavy metal ATPase (HMA) genes in heavy metal tolerance, In Mycoremediation and Environmental Sustainability. Volume 2: 39-60. Choudhary M, Kumar R, Datta A, Nehra V, Garg N (2017). Bioremediation of heavy metals by microbes, In Bioremediation of salt affected soils: an Indian perspective. 233-255. Chugh M, Kumar L, Shah MP, Bharadvaja N (2022). Algal bioremediation of heavy metals: An insight into removal mechanisms, recovery of by-products, challenges, and future opportunities. Energy Nexus. 7:100129. Congeevaram S, Dhanarani S, Park J, Dexilin M, Thamaraiselvi K (2007). Biosorption of chromium and nickel by heavy metal resistant fungal and bacterial isolates. J. Hazard. Mat. 146(1-2): 270-277. Cristaldi A, Conti GO, Jho EH, Zuccarello P, Grasso A, Copat C, Ferrante M (2017). Phytoremediation of contaminated soils by heavy metals and PAHs. A brief review. Environ. Technol. Inno. 8: 309-326. Crusberg T, Mark S. (2000). Heavy metal remediation of wastewaters by microbial biotraps, In Springer. 123-137. Emenike CU, Jayanthi B, Agamuthu P, Fauziah S (2018). Biotransformation and removal of heavy metals: a review of phytoremediation and microbial remediation assessment on contaminated soil. Environ. Rev. 26(2): 156-168. Ghosh M, Singh S (2005). A review on phytoremediation of heavy metals and utilization of it’s by products. Asian J. Energy Environ. 6(4): 18. Guignardi Z, Schiavon M (2017). Biochemistry of plant selenium uptake and metabolism, In Selenium in plants: molecular, physiological, ecological and evolutionary aspects. 21-34. Hong-Bo S, Li-Ye C, Cheng-Jiang R, Hua L, Dong-Gang G, Wei-Xiang L (2010). Understanding molecular mechanisms for improving phytoremediation of heavy metal-contaminated soils. Crit. Rev. Biotechnol. 30(1): 23-30. Igiri BE, Okoduwa SI, Idoko GO, Akabuogu EP, Adeyi AO, Ejiogu IK (2018). Toxicity and bioremediation of heavy metals contaminated ecosystem from tannery wastewater: a review. J. Toxicol. 2018. Jabeen R, Ahmad A, Iqbal M (2009). Phytoremediation of heavy metals: physiological and molecular mechanisms. Bot. Rev. 75: 339-364. Joshi P, Swarup A, Maheshwari S, Kumar R, Singh N (2011). Bioremediation of heavy metals in liquid media through fungi isolated from contaminated sources. Indian J. Microbiol. 51: 482-487. Junaid M, Hashmi MZ, Tang YM, Malik RN, Pei,DS (2017). Potential health risk of heavy metals in the leather manufacturing industries in Sialkot, Pakistan. Sci. Rep. 7(1): 8848. Kapahi M, Sachdeva S (2019). Bioremediation options for heavy metal pollution. J. Health Pollut. 9(24): 191203. Lebeau T, Jézéquel K, Braud A (2011). Bioaugmentation-assisted phytoextraction applied to metal-contaminated soils: state of the art and future prospects, In Microbes and Microbial Technology: Agricultural and Environmental Applications. 229-266. Leong YK, Chang JS (2020). Bioremediation of heavy metals using microalgae: Recent advances and mechanisms. Bioresour.Technol. 303: 122886. Limmer M, Burken J (2016). Phytovolatilization of organic contaminants. Environ. Sci. Technol. 50(13): 6632-6643. Ma Y, Oliveira RS, Freitas H, Zhang C (2016). Biochemical and molecular mechanisms of plant-microbe-metal interactions: relevance for phytoremediation. Front. Plant Sci. 7: 918. Manzoor M, Gul I, Ahmed I, Zeeshan M, Hashmi I, Amin BAZ, Kallerhoff J, Arshad M (2019). Metal tolerant bacteria enhanced phytoextraction of lead by two accumulator ornamental species. Chemosphere. 227: 561-569. Mueller B, Rock S, Gowswami D, Ensley D (1999). Phytoremediation decision tree. Prepared by-Interstate Technology and Regulatory Cooperation Work Group. 1-36. Nies DH (1999). Microbial heavy-metal resistance. Appl. Microbiol. Biotechnol. 51: 730-750. Nies DH, Silver S (1995). Ion efflux systems involved in bacterial metal resistances. J. Ind. 14: 186-199. Pande V, Pandey SC, Sati D, Bhatt P, Samant M (2022). Microbial interventions in bioremediation of heavy metal contaminants in agroecosystem. Front. Microbiol. 13: 824084. Pandey VC, Bajpai O (2019). Phytoremediation: from theory toward practice, In Phytomanagement of polluted sites. 1-49. Robinson BH, Leblanc M, Petit D, Brooks RR, Kirkman JH, Gregg PE (1998). The potential of Thlaspi caerulescens for phytoremediation of contaminated soils. Plant Soil. 203: 47-56. Romantschuk M, Lahti-Leikas K, Kontro M, Allen JA, Sinkkonen A (2023). Bioremediation of contaminated soil and groundwater by in situ Front. Microbiol. 14: 1258148. Sabreena, Hassan S, Bhat SA, Kumar V, Ganai BA, Ameen F (2022). Phytoremediation of heavy metals: An indispensable contrivance in green remediation technology. Plants. 11(9): 1255. Saha L, Tiwari J, Bauddh K, Ma Y (2021). Recent developments in microbe–plant-based bioremediation for tackling heavy metal-polluted soils. Front. Microbiol. 12: 731723. Sharma I. (2020). Bioremediation techniques for polluted environment: concept, advantages, limitations, and prospects, In Trace metals in the environment-new approaches and recent advances. IntechOpen. Sharma JK, Kumar N, Singh NP, Santal, AR (2023). Phytoremediation technologies and their mechanism for removal of heavy metal from contaminated soil: An approach for a sustainable environment. Front. Plant Sci. 14: 1076876. Shen X, Dai M, Yang J, Sun L, Tan X, Peng C, Ali I, and Naz I (2022). A critical review on the phytoremediation of heavy metals from environment: Performance and challenges. Chemosphere. 291: 132979. Silver S (2011). BioMetals: a historical and personal perspective. Biometals. 24(3): 379-390. Silver S, Phung LT (2005). A bacterial view of the periodic table: genes and proteins for toxic inorganic ions. J. Ind. Microbiol. Biotechnol. 32: 587-605. Singh N, Santal AR (2015). Phytoremediation of heavy metals: the use of green approaches to clean the environment, In Phytoremediation: Management of Environmental Contaminants. Volume 2: 115-129. Strong PJ, Burgess JE (2008). Treatment methods for wine-related and distillery wastewaters: a review. Bioremediation J. 12(2): 70-87. Syranidou E, Christofilopoulos S, Gkavrou G, Thijs S, Weyens N, Vangronsveld J, Kalogerakis N (2016). Exploitation of endophytic bacteria to enhance the phytoremediation potential of the wetland helophyte Juncus acutus. Front. Microbiol. 7: 1016. Umrania VV (2006). Bioremediation of toxic heavy metals using acidothermophilic autotrophes. Bioresour. Technol. 97(10): 1237-1242. Valls M, De Lorenzo V (2002). Exploiting the genetic and biochemical capacities of bacteria for the remediation of heavy metal pollution. FEMS Microbiol. Rev. 26(4): 327-338. Verma P, George K, Singh H, Singh S, Juwarkar A, Singh R (2006). Modeling rhizofiltration: heavy-metal uptake by plant roots. Environ. Model. Assess. 11: 387-394. Wu Y, Li Z, Yang Y, Purchase D, Lu Y, Dai Z (2021). Extracellular polymeric substances facilitate the adsorption and migration of Cu2+ and Cd2+ in saturated porous media. Biomolecules. 11(11): 1715. Wuana RA, Okieimen FE (2011). Heavy metals in contaminated soils: a review of sources, chemistry, risks and best available strategies for remediation. International Scholarly Research Notices. Yan A, Wang Y, Tan SN, Mohd Yusof ML, Ghosh S, Chen Z (2020). Phytoremediation: a promising approach for revegetation of heavy metal-polluted land. Front. Plant Sci. 11: 359. Zhang Y, Hu J, Bai J, Wang J, Yin R, Wang J, and Lin X (2018). Arbuscular mycorrhizal fungi alleviate the heavy metal toxicity on sunflower (Helianthus annuus) plants cultivated on a heavily contaminated field soil at a WEEE-recycling site. Sci. Total Environ. 628: 282-290.
Styles APA, Harvard, Vancouver, ISO, etc.
12

Chowdhury, Uttam. « Regulation of transgelin and GST-pi proteins in the tissues of hamsters exposed to sodium arsenite ». International Journal of Toxicology and Toxicity Assessment 1, no 1 (19 juin 2021) : 1–8. http://dx.doi.org/10.55124/ijt.v1i1.49.

Texte intégral
Résumé :
Hamsters were exposed to sodium arsenite (173 mg As/L) in drinking water for 6 days. Equal amounts of proteins from urinary bladder or liver extracts of control and arsenic-treated hamsters were labeled with Cy3 and Cy5 dyes, respectively. After differential in gel electrophoresis and analysis by the DeCyder software, several protein spots were found to be down-regulated and several were up regulated. Our experiments indicated that in the bladder tissues of hamsters exposed to arsenite, transgelin was down-regulated and GST-pi was up-regulated. The loss of transgelin expression has been reported to be an important early event in tumor progression and a diagnostic marker for cancer development [29-32]. Down-regulation of transgelin expression may be associated with the carcinogenicity of inorganic arsenic in the urinary bladder. In the liver of arsenite-treated hamsters, ornithine aminotransferase was up-regulated, and senescence marker protein 30 and fatty acid binding protein were down-regulated. The volume ratio changes of these proteins in the bladder and liver of hamsters exposed to arsenite were significantly different than that of control hamsters. Introduction Chronic exposure to inorganic arsenic can cause cancer of the skin, lungs, urinary bladder, kidneys, and liver [1-6]. The molecular mechanisms of the carcinogenicity and toxicity of inorganic arsenic are not well understood [7-9). Humans chronically exposed to inorganic arsenic excrete MMA(V), DMA(V) and the more toxic +3 oxidation state arsenic biotransformants MMA(III) and DMA (III) in their urine [10, 11], which are carcinogen [12]· After injection of mice with sodium arsenate, the highest concentrations of the very toxic MMA(III) and DMA(III) were in the kidneys and urinary bladder tissue, respectively, as shown by experiments of Chowdhury et al [13]. Many mechanisms of arsenic toxicity and carcinogenicity have been suggested [1, 7, 14] including chromosome abnormalities [15], oxidative stress [16, 17], altered growth factors [18], cell proliferation [19], altered DNA repair [20], altered DNA methylation patterns [21], inhibition of several key enzymes [22], gene amplification [23] etc. Some of these mechanisms result in alterations in protein expression. Methods for analyzing multiple proteins have advanced greatly in the last several years. In particularly, mass spectrometry (MS) and tandem MS (MS/MS) are used to analyze peptides following protein isolation using two-dimensional (2-D) gel electrophoresis and proteolytic digestion [24]. In the present study, Differential In Gel Electrophoresis (DIGE) coupled with Mass Spectrometry (MS) has been used to study some of the proteomic changes in the urinary bladder and liver of hamsters exposed to sodium arsenite in their drinking water. Our results indicated that transgelin was down-regulated and GST-pi was up-regulated in the bladder tissues. In the liver tissues ornithine aminotransferase was up-regulated, and senescence marker protein 30, and fatty acid binding protein were down-regulated. Materials and Methods Chemicals Tris, Urea, IPG strips, IPG buffer, CHAPS, Dry Strip Cover Fluid, Bind Silane, lodoacetamide, Cy3 and Cy5 were from GE Healthcare (formally known as Amersham Biosciences, Uppsala, Sweden). Thiourea, glycerol, SDS, DTT, and APS were from Sigma-Aldrich (St. Louis, MO, USA). Glycine was from USB (Cleveland, OH, USA). Acrylamide Bis 40% was from Bio-Rad (Hercules, CA, USA). All other chemicals and biochemicals used were of analytical grade. All solutions were made with Milli-Q water. Animals Male hamsters (Golden Syrian), 4 weeks of age, were purchased from Harlan Sprague Dawley, USA. Upon arrival, hamsters were acclimated in the University of Arizona animal care facility for at least 1 week and maintained in an environmentally controlled animal facility operating on a 12-h dark/12-h light cycle and at 22-24°C. They were provided with Teklad (Indianapolis, IN) 4% Mouse/Rat Diet # 7001 and water, ad libitum, throughout the acclimation and experimentation periods. Sample preparation and labelling Hamsters were exposed to sodium arsenite (173 mg) in drinking water for 6 days and the control hamsters were given tap water. On the 6th day hamsters were decapitated rapidly by guillotine. Urinary bladder tissues and liver were removed, blotted on tissue papers (Kimtech Science, Precision Wipes), and weighed. Hamster urinary bladder or liver tissues were homogenized in lysis buffer (30mMTris, 2M thiourea, 7M urea, and 4% w/w CHAPS adjusted to pH 8.5 with dilute HCI), at 4°C using a glass homogenizer and a Teflon coated steel pestle; transferred to a 5 ml acid-washed polypropylene tube, placed on ice and sonicated 3 times for 15 seconds. The sonicate was centrifuged at 12,000 rpm for 10 minutes at 4°C. Small aliquots of the supernatants were stored at -80°C until use (generally within one week). Protein concentration was determined by the method of Bradford [25] using bovine serum albumin as a standard. Fifty micrograms of lysate protein was labeled with 400 pmol of Cy3 Dye (for control homogenate sample) and Cy5 Dye (for arsenic-treated urinary bladder or liver homogenate sample). The samples containing proteins and dyes were incubated for 30 min on ice in the dark. To stop the labeling reaction, 1uL of 10 mM lysine was added followed by incubation for 10 min on ice in the dark. To each of the appropriate dye-labeled protein samples, an additional 200 ug of urinary bladderor liver unlabeled protein from control hamster sample or arsenic-treated hamster sample was added to the appropriate sample. Differentially labeled samples were combined into a single Microfuge tube (total protein 500 ug); protein was mixed with an equal volume of 2x sample buffer [2M thiourea, 7M urea, pH 3-10 pharmalyte for isoelectric focusing 2% (v/v), DTT 2% (w/v), CHAPS 4% (w/v)]; and was incubated on ice in the dark for 10 min. The combined samples containing 500 ug of total protein were mixed with rehydration buffer [CHAPS 4% (w/v), 8M urea, 13mM DTT, IPG buffer (3-10) 1% (v/v) and trace amount of bromophenol blue]. The 450 ul sample containing rehydration buffer was slowly pipetted into the slot of the ImmobilinedryStripReswelling Tray and any large bubbles were removed. The IPG strip (linear pH 3-10, 24 cm) was placed (gel side down) into the slot, covered with drystrip cover fluid (Fig. 1), and the lid of the Reswelling Tray was closed. The ImmobillineDryStrip was allowed to rehydrate at room temperature for 24 hours. First dimension Isoelectric focusing (IEF) The labeled sample was loaded using the cup loading method on universal strip holder. IEF was then carried out on EttanIPGphor II using multistep protocol (6 hr @ 500 V, 6 hr @ 1000 V, 8 hr @ 8000 V). The focused IPG strip was equilibrated in two steps (reduction and alkylation) by equilibrating the strip for 10 min first in 10 ml of 50mM Tris (pH 8.8), 6M urea, 30% (v/v) glycerol, 2% (w/v) SDS, and 0.5% (w/v) DTT, followed by another 10 min in 10 ml of 50mM Tris (pH 8.8), 6M urea, 30% (v/v) glycerol, 2% (w/v) SDS, and 4.5% (w/v) iodoacetamide to prepare it for the second dimension electrophoresis. Second dimension SDS-PAGE The equilibrated IPG strip was used for protein separation by 2D-gel electrophoresis (DIGE). The strip was sealed at the top of the acrylamide gel for the second dimension (vertical) (12.5% polyacrylamide gel, 20x25 cm x 1.5 mm) with 0.5% (w/v) agarose in SDS running buffer [25 mMTris, 192 mM Glycine, and 0.1% (w/v) SDS]. Electrophoresis was performed in an Ettan DALT six electrophoresis unit (Amersham Biosciences) at 1.5 watts per gel, until the tracking dye reached the anodic end of the gel. Image analysis and post-staining The gel then was imaged directly between glass plates on the Typhoon 9410 variable mode imager (Sunnyvale, CA, USA) using optimal excitation/emission wavelength for each DIGE fluor: Cy3 (532/580 nm) and Cy5 (633/670 nm). The DIGE images were previewed and checked with Image Quant software (GE Healthcare) where all the two separate gel images could be viewed as a single gel image. DeCyde v.5.02 was used to analyze the DIGE images as described in the Ettan DIGE User Manual (GE Healthcare). The appropriate up-/down regulated spots were filtered based on an average volume ratio of ± over 1.2 fold. After image acquisition, the gel was fixed overnight in a solution containing 40% ethanol and 10% acetic acid. The fixed gel was stained with SyproRuby (BioRad) according to the manufacturer protocol (Bio-Rad Labs., 2000 Alfred Nobel Drive, Hercules, CA 94547). Identification of proteins by MS Protein spot picking and digestion Sypro Ruby stained gels were imaged using an Investigator ProPic and HT Analyzer software, both from Genomic Solutions (Ann Arbor, MI). Protein spots of interest that matched those imaged using the DIGE Cy3/Cy5 labels were picked robotically, digested using trypsin as described previously [24] and saved for mass spectrometry identification. Liquid chromatography (LC)- MS/MS analysis LC-MS/MS analyses were carried out using a 3D quadrupole ion trap massspectrometer (ThermoFinnigan LCQ DECA XP PLUS; ThermoFinnigan, San Jose, CA) equipped with a Michrom Paradigm MS4 HPLC (MichromBiosources, Auburn, CA) and a nanospray source, or with a linear quadrupole ion trap mass spectrometer (ThermoFinnigan LTQ), also equipped with a Michrom MS4 HPLC and a nanospray source. Peptides were eluted from a 15 cm pulled tip capillary column (100 um I.D. x 360 um O.D.; 3-5 um tip opening) packed with 7 cm Vydac C18 (Vydac, Hesperia, CA) material (5 µm, 300 Å pore size), using a gradient of 0-65% solvent B (98% methanol/2% water/0.5% formic acid/0.01% triflouroacetic acid) over a 60 min period at a flow rate of 350 nL/min. The ESI positive mode spray voltage was set at 1.6 kV, and the capillary temperature was set at 200°C. Dependent data scanning was performed by the Xcalibur v 1.3 software on the LCQ DECA XP+ or v 1.4 on the LTQ [27], with a default charge of 2, an isolation width of 1.5 amu, an activation amplitude of 35%, activation time of 50 msec, and a minimal signal of 10,000 ion counts (100 ion counts on the LTQ). Global dependent data settings were as follows: reject mass width of 1.5 amu, dynamic exclusion enabled, exclusion mass width of 1.5 amu, repeat count of 1, repeat duration of a min, and exclusion duration of 5 min. Scan event series were included one full scan with mass range of 350-2000 Da, followed by 3 dependent MS/MS scans of the most intense ion. Database searching Tandem MS spectra of peptides were analyzed with Turbo SEQUEST, version 3.1 (ThermoFinnigan), a program that allows the correlation of experimental tandem MS data with theoretical spectra generated from known protein sequences. All spectra were searched against the latest version of the non redundant protein database from the National Center for Biotechnology Information (NCBI 2006; at that time, the database contained 3,783,042 entries). Statistical analysis The means and standard error were calculated. The Student's t-test was used to analyze the significance of the difference between the control and arsenite exposed hamsters. P values less than 0.05 were considered significant. The reproducibility was confirmed in separate experiments. Results Analysis of proteins expression After DIGE (Fig. 1), the gel was scanned by a Typhoon Scanner and the relative amount of protein from sample 1 (treated hamster) as compared to sample 2 (control hamster) was determined (Figs. 2, 3). A green spot indicates that the amount of protein from sodium arsenite-treated hamster sample was less than that of the control sample. A red spot indicates that the amount of protein from the sodium arsenite-treated hamster sample was greater than that of the control sample. A yellow spot indicates sodium arsenite-treated hamster and control hamster each had the same amount of that protein. Several protein spots were up-regulated (red) or down-regulated (green) in the urinary bladder samples of hamsters exposed to sodium arsenite (173 mg As/L) for 6 days as compared with the urinary bladder of controls (Fig. 2). In the case of liver, several protein spots were also over-expressed (red) or under-expressed (green) for hamsters exposed to sodium arsenite (173 mg As/L) in drinking water for 6 days (Fig. 3). The urinary bladder samples were collected from the first and second experiments in which hamsters were exposed to sodium arsenite (173 mg As/L) in drinking water for 6 days and the controls were given tap water. The urinary bladder samples from the 1st and 2nd experiments were run 5 times in DIGE gels on different days. The protein expression is shown in Figure 2 and Table 1. The liver samples from the 1st and 2nd experiments were also run 3 times in DIGE gels on different days. The proteins expression were shown in Figure 3 and Table 2. The volume ratio changed of the protein spots in the urinary bladder and liver of hamsters exposed to arsenite were significantly differences than that of the control hamsters (Table 1 and 2). Protein spots identified by LC-MS/MS Bladder The spots of interest were removed from the gel, digested, and their identities were determined by LC-MS/MS (Fig. 2 and Table 1). The spots 1, 2, & 3 from the gel were analyzed and were repeated for the confirmation of the results (experiments; 173 mg As/L). The proteins for the spots 1, 2, and 3 were identified as transgelin, transgelin, and glutathione S-transferase Pi, respectively (Fig. 2). Liver We also identified some of the proteins in the liver samples of hamsters exposed to sodium arsenite (173 mg As/L) in drinking water for 6 days (Fig. 3). The spots 4, 5, & 6 from the gels were analyzed and were repeated for the confirmation of the results. The proteins for the spots 4, 5, and 6 were identified as ornithine aminotransferase, senescence marker protein 30, and fatty acid binding protein, respectively (Fig. 3) Discussion The identification and functional assignment of proteins is helpful for understanding the molecular events involved in disease. Weexposed hamsters to sodium arsenite in drinking water. Controls were given tap water. DIGE coupled with LC-MS/MS was then used to study the proteomic change in arsenite-exposed hamsters. After electrophoresis DeCyder software indicated that several protein spots were down-regulated (green) and several were up-regulated (red). Our overall results as to changes and functions of the proteins we have studied are summarized in Table 3. Bladder In the case of the urinary bladder tissue of hamsters exposed to sodium arsenite (173 mg As/L) in drinking water for 6 days, transgelin was down-regulated and GST-pi was up-regulated. This is the first evidence that transgelin is down-regulated in the bladders of animals exposed to sodium arsenite. Transgelin, which is identical to SM22 or WS3-10, is an actin cross linking/gelling protein found in fibroblasts and smooth muscle [28, 29]. It has been suggested that the loss of transgelin expression may be an important early event in tumor progression and a diagnostic marker for cancer development [30-33]. It may function as a tumor suppressor via inhibition of ARA54 (co-regulator of androgen receptor)-enhanced AR (androgen receptor) function. Loss of transgelin and its suppressor function in prostate cancer might contribute to the progression of prostate cancer [30]. Down-regulation of transgelin occurs in the urinary bladders of rats having bladder outlet obstruction [32]. Ras-dependent and Ras-independent mechanisms can cause the down regulation of transgelin in human breast and colon carcinoma cell lines and patient-derived tumorsamples [33]. Transgelin plays a role in contractility, possibly by affecting the actin content of filaments [34]. In our experiments loss of transgelin expression may be associated or preliminary to bladder cancer due to arsenic exposure. Arsenite is a carcinogen [1]. In our experiments, LC-MS/MS analysis showed that two spots (1 and 2) represent transgelin (Fig. 2 and Table 1). In human colonic neoplasms there is a loss of transgelin expression and the appearance of transgelin isoforms (31). GST-pi protein was up-regulated in the bladders of the hamsters exposed to sodium arsenite. GSTs are a large family of multifunctional enzymes involved in the phase II detoxification of foreign compounds [35]. The most abundant GSTS are the classes alpha, mu, and pi classes [36]. They participate in protection against oxidative stress [37]. GST-omega has arsenic reductase activity [38]. Over-expression of GST-pi has been found in colon cancer tissues [39]. Strong expression of GST-pi also has been found in gastric cancer [40], malignant melanoma [41], lung cancer [42], breast cancer [43] and a range of other human tumors [44]. GST-pi has been up-regulated in transitional cell carcinoma of human urinary bladder [45]. Up-regulation of glutathione – related genes and enzyme activities has been found in cultured human cells by sub lethal concentration of inorganic arsenic [46]. There is evidence that arsenic induces DNA damage via the production of ROS (reactive oxygen species) [47]. GST-pi may be over-expressed in the urinary bladder to protect cells against arsenic-induced oxidative stress. Liver In the livers of hamsters exposed to sodium arsenite, ornithine amino transferase was over-expressed, senescence marker protein 30 was under-expressed, and fatty acid binding protein was under-expressed. Ornithine amino transferase has been found in the mitochondria of many different mammalian tissues, especially liver, kidney, and small intestine [48]. Ornithine amino transferase knockdown inhuman cervical carcinoma and osteosarcoma cells by RNA interference blocks cell division and causes cell death [49]. It has been suggested that ornithine amino transferase has a role in regulating mitotic cell division and it is required for proper spindle assembly in human cancer cells [49]. Senescence marker protein-30 (SMP30) is a unique enzyme that hydrolyzes diisopropylphosphorofluoridate. SMP30, which is expressed mostly in the liver, protects cells against various injuries by stimulating membrane calcium-pump activity [50]. SMP30 acts to protect cells from apoptosis [51]. In addition it protects the liver from toxic agents [52]. The livers of SMP30 knockout mice accumulate phosphatidylethanolamine, cardiolipin, phosphatidyl-choline, phosphatidylserine, and sphingomyelin [53]. Liver fatty acid binding protein (L-FABP) also was down- regulated. Decreased liver fatty acid-binding capacity and altered liver lipid distribution hasbeen reported in mice lacking the L-FABP gene [54]. High levels of saturated, branched-chain fatty acids are deleterious to cells and animals, resulting in lipid accumulation and cytotoxicity. The expression of fatty acid binding proteins (including L-FABP) protected cells against branched-chain saturated fatty acid toxicity [55]. Limitations: we preferred to study the pronounced spots seen in DIGE gels. Other spots were visible but not as pronounced. Because of limited funds, we did not identify these others protein spots. In conclusion, urinary bladders of hamsters exposed to sodium arsenite had a decrease in the expression of transgelin and an increase in the expression of GST-pi protein. Under-expression of transgelin has been found in various cancer systems and may be associated with arsenic carcinogenicity [30-33). Inorganic arsenic exposure has resulted in bladder cancer as has been reported in the past [1]. Over-expression of GST-pi may protect cells against oxidative stress caused by arsenite. In the liver OAT was up regulated and SMP-30 and FABP were down regulated. These proteomic results may be of help to investigators studying arsenic carcinogenicity. The Superfund Basic Research Program NIEHS Grant Number ES 04940 from the National Institute of Environmental Health Sciences supported this work. Additional support for the mass spectrometry analyses was provided by grants from NIWHS ES06694, NCI CA023074 and the BIOS Institute of the University of Arizona. Acknowledgement The Author wants to dedicate this paper to the memory of his former supervisor Dr. H. VaskenAposhian who passed away in September 6, 2019. He was an emeritus professor of the Department of Molecular and Cellular Biology at the University of Arizona. This research work was done under his sole supervision and with his great contribution.I also would like to thanks Dr. George Tsapraills, Center of Toxicology, The University of Arizona for identification of proteins by MS. References NRC (National Research Council), Arsenic in Drinking Water, Update to the 1999 Arsenic in Drinking Water Report. National Academy Press, Washington, DC 2001. Hopenhayn-Rich, C.; Biggs, M. L.; Fuchs, A.; Bergoglio, R.; et al. Bladder cancer mortality with arsenic in drinking water in Argentina. Epidemiology 1996, 7, 117-124. Chen, C.J.; Chen, C. W.; Wu, M. M.; Kuo, T. L. Cancer potential in liver, lung, bladder, and kidney due to ingested inorganic arsenic in drinking water. J. Cancer. 1992, 66, 888-892. IARC (International Agency for Research on Cancer), In IARC monograph on the evaluation of carcinogenicity risk to humans? Overall evaluation of carcinogenicity: an update of IARC monographs 1-42 (suppl. 7), International Agency for Research on Cancer, Lyon, France, 1987, pp. 100-106. Rossman, T. G.; Uddin, A. N.; Burns, F. J. Evidence that arsenite acts as a cocarcinogen in skin cancer. Appl. Pharmacol. 2004, 198, 394 404. Smith, A. H.; Hopenhayn-Rich, C.; Bates, M. N.; Goeden, H. M.; et al. Cancer risks from arsenic in drinking water. Health Perspect. 1992, 97, 259-267. Aposhian, H. V.; Aposhian, M. M. Arsenic toxicology: five questions. Res. Toxicol. 2006, 19, 1-15. Goering, P. L.; Aposhian, H. V.; Mass, M. J.; Cebrián, M., et al. The enigma of arsenic carcinogenesis: role of metabolism. Sci. 1999, 49, 5-14. Waalkes, M. P.; Liu, J.; Ward, J. M.; Diwan, B. A. Mechanisms underlying arsenic carcinogenesis: hypersensitivity of mice exposed to inorganic arsenic during gestation. 2004, 198, 31-38. Aposhian, H. V.; Gurzau, E. S.; Le, X. C.; Gurzau, A.; et al. Occurrence of monomethylarsonous acid in urine of humans exposed to inorganic arsenic. Res. Toxicol. 2000, 13, 693-697. Del Razo, L. M.; Styblo, M.; Cullen, W. R.; Thomas, D. J. Determination of trivalent methylated arsenicals in biological matrices. Appl. Pharmacol. 2001, 174, 282-293. Styblo, M.; Drobna, Z.; Jaspers, I.; Lin, S.; Thomas, D. J.; The role of biomethylation in toxicity and carcinogenicity of arsenic: a research update. Environ. Health Perspect. 2002, 5, 767-771. Chowdhury, U. K.; Zakharyan, R. A.; Hernandez, A.; Avram, M. D.; et al. Glutathione-S-transferase-omega [MMA(V) reductase] knockout mice: Enzyme and arsenic species concentrations in tissues after arsenate administration. Appl. Pharmaol. 2006, 216, 446-457. Kitchin, K. T. Recent advances in arsenic carcinogenesis: modes of action, animal model systems, and methylated arsenic metabolites. Appl. Pharmacol. 2001, 172, 249-261. Beckman, G.; Beckman, L.; Nordenson, I. Chromosome aberrations in workers exposed to arsenic. Health Perspect. 1977, 19, 145-146. Yamanaka, K.; Hoshino, M.; Okanoto, M.; Sawamura, R.; et al. Induction of DNA damage by dimethylarsine, a metabolite of inorganic arsenics, is for the major part likely due to its peroxyl radical. Biophys. Res. Commun. 1990, 168, 58-64. Yamanaka, K.; Okada, S. Induction of lung-specific DNA damage by metabolically methylated arsenics via the production of free radicals. Health Perspect. 1994, 102, 37-40. Simeonova, P. P.; Luster, M. I. Mechanisms of arsenic carcinogenicity:Genetic or epigenetic mechanisms? Environ. Pathol. Toxicol. Oncol. 2000, 19, 281-286. Popovicova, J.; Moser, G. J.; Goldsworthy, T. L.; Tice, R. R, Carcinogenicity and co-carcinogenicity of sodium arsenite in p53+/- male mice. 2000, 54, 134. Li, J. H.; Rossman, T. G. Mechanism of co-mutagenesis of sodium arsenite with N-methyl-N-nitrosourea. Trace Elem. 1989, 21, 373-381. Zhao, C. Q.; Young, M. R.; Diwan, B. A.; Coogan, T. P.; et al. Association of arsenic-induced malignant transformation with DNA hypomethylation and aberrant gene expression. Proc. Natl. Acad. Sci. USA, 1997, 94, 10907-10912. Abernathy, C. O.; Lui, Y. P.; Longfellow, D.; Aposhian, H. V.; et al. Arsenic: Health effects, mechanisms of actions and research issues. Health Perspect. 1999, 107, 593-597. Lee, T. C.; Tanaka, N.; Lamb, P. W.; Gilmer, T. M.; et al. Induction of gene amplification by arsenic. 1988, 241, 79-81. Lantz, R. C.; Lynch, B. J.; Boitano, S.; Poplin, G. S.; et al. Pulmonary biomarkers based on alterations in protein expression after exposure to arsenic. Health Perspect. 2007, 115, 586-591. Bradford, M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Biochem. 1976, 72, 248-254. Chowdhury, U. K.; Aposhian, H. V. Protein expression in the livers and urinary bladders of hamsters exposed to sodium arsenite. N. Y. Acad. Sci. 2008, 1140, 325-334. Andon, N. L.; Hollingworth, S.; Koller, A.; Greenland, A. J.; et al. Proteomic characterization of wheat amyloplasts using identification of proteins by Tandem Mass Spectrometry. 2002, 2, 1156-1168. Shapland, C.; Hsuan, J. J.; Totty, N. F.; Lawson, D. Purification and properties of transgelin: a transformation and shape change sensitive actin-gelling protein. Cell Biol. 1993, 121, 1065-1073. Lawson, D.; Harrison, M.; Shapland, C. Fibroblast transgelin and smooth muscle SM22 alpha are the same protein, the expression of which is down-regulated in may cell lines. Cell Motil. Cytoskeleton. 1997, 38, 250-257. Yang, Z.; Chang, Y- J.; Miyamoto, H.; Ni, J.; et al. Transgelin functions as a suppressor via inhibition of ARA54-enhanced androgen receptor transactivation and prostate cancer cell grown. Endocrinol. 2007, 21, 343-358. Yeo, M.; Kim, D- K.; Park, H. J.; Oh, T. Y.; et al. Loss of transgelin in repeated bouts of ulcerative colitis-induced colon carcinogenesis. 2006, 6, 1158-1165. Kim, H- J.; Sohng, I.; Kim, D- H.; Lee, D- C.; et al. Investigation of early protein changes in the urinary bladder following partial bladder outlet obstruction by proteomic approach. Korean Med. Sci. 2005, 20, 1000-1005. Shields, J. M.; Rogers-Graham, K.; Der, C. J. Loss of transgelin in breast and colon tumors and in RIE-1 cells by Ras deregulation of gene expression through Raf-independent pathways. Biol. Chem. 2002, 277, 9790-9799. Zeiden, A.; Sward, K.; Nordstrom, J.; Ekblad, E.; et al. Ablation of SM220c decreases contractility and actin contents of mouse vascular smooth muscle. FEBS Lett. 2004, 562, 141-146. Hoivik, D.; Wilson, C.; Wang, W.; Willett, K.; et al. Studies on the relationship between estrogen receptor content, glutathione S-transferase pi expression, and induction by 2, 3, 7, 8-tetrachlorodibenzo-p-dioxin and drug resistance in human breast cancer cells. Biochem. Biophys. 1997, 348, 174-182. Hayes, J. D.; Pulford. D. J. The glutathione S-transferase super gene family: regulation of GST and the contribution of the isoenzymes to cancer chemoprotection and drug resistance. Critical Rev. Biochem. Mol. Biol. 1995, 30, 445-600. Zhao, T.; Singhal, S. S.; Piper, J. T.; Cheng, J.; et al. The role of human glutathione S-transferases hGSTA1-1 and hGSTA2-2 in protection against oxidative stress. Biochem. Biophys. 1999, 367, 216-224. Zakharyan, R. A.; Sampayo-Reyes, A.; Healy, S. M.; Tsaprailis, G.; et al. Human monomethylarsonic acid (MMA) reductase is a member of the glutathione-S-transferase superfamily. Res. Toxicol. 2001, 14, 1051-1057. Tsuchida, S.; Sekine, Y.; Shineha, R.; Nishihira, T.; et al. Elevation of the placental glutathione S-transferase form (GST-PI) in tumor tissues and the levels in sera of patients with cancer. Cancer Res. 1989, 43, 5225-5229. Tsutsumi, M.; Sugisaki, T.; Makino, T.; Miyagi, N.; et al. Oncofetal expression of glutathione S-transferase placental form in human stomach carcinomas. Gann. 1987, 78, 631-633. Mannervik, B.; Castro, V. M.; Danielson, U. H.; Tahir, M. K.; et al. Expression of class Pi glutathione transferase in human malignant melanoma cells. Carcinogenesis (Lond.). 1987, 8, 1929-1932. Di llio, C.; Del Boccio, G.; Aceto, A.; Casaccia, R.; et al. Elevation of glutathione transferase activity in human lung tumor. Carcinogenesis (Lond.). 1988, 9, 335-340. Sreenath, A. S.; Ravi, K. K.; Reddy, G. V.; Sreedevi, B.; et al. Evidence for the association of synaptotagmin with glutathione S- transferase: implications for a novel function in human breast cancer. Clinical Biochem. 2005, 38, 436-443. Shea, T. C.; Kelley S. L.; Henner, W. D. Identification of an anionic form ofglutathione transferase present in many human tumors and human tumor cell lines. Cancer Res. 1988, 48, 527-533. Simic, T.; Mimic-Oka, J.; Savic-Radojevic, A.; Opacic, M.; et al. Glutathione S- transferase T1-1 activity upregulated in transitional cell carcinoma of urinary bladder. 2005, 65, 1035-1040. Schuliga, M.; Chouchane, S.; Snow, E. T. Up-regulation of glutathione - related genes and enzyme activities in cultured human cells by sub-lethal concentration of inorganic arsenic. Sci. 2002, 70, 183-192. Matsui, M.; Nishigori, C.; Toyokuni, S.; Takada, J.; et al. The role of oxidative DNA damage in human arsenic carcinogenesis: detection of 8 hydroxy-2'-deoxyguanosine in arsenic-related Bowen's disease. Invest. Dermatol. 1999, 113, 26-31. Sanada, Y.; Suemori, I.; Katunuma, N. Properties of ornithine aminotransferase from rat liver, kidney, and small intestine. Biophys. Acta. 1970, 220, 42-50. Wang, G.; Shang, L.; Burgett, A. W. G.; Harran, P. G.; et al. Diazonamide toxins reveal an unexpected function for ornithine d-amino transferase in mitotic cell division. PNAS, 2007, 104, 2068-2073. Fujita, T.; Inoue, H.; Kitamura, T.; Sato, N.; et al. Senescence marker protein-30 (SMP30) rescues cell death by enhancing plasma membrane Caat-pumping activity in hep G2 cells. Biophys. Res. Commun. 1998, 250, 374-380. Ishigami, A.; Fujita, T.; Handa, S.; Shirasawa, T.; et al. Senescence marker protein-30 knockout mouse liver is highly susceptible to tumors necrosis factor-∞ and fas-mediated apoptosis. J. Pathol. 2002, 161, 1273-1281. Kondo, Y.; Ishigami, A.; Kubo, S.; Handa, S.; et al. Senescence marker protein-30is a unique enzyme that hydrolyzes diisopropylphosphorofluoridate in the liver. FEBS Letters. 2004, 570, 57-62. Ishigami, A.; Kondo, Y.; Nanba, R.; Ohsawa, T.; et al. SMP30 deficiency in mice causes an accumulation of neutral lipids and phospholipids in the liver and shortens the life span. Biophys. Res. Commun. 2004, 315, 575-580. Martin, G. G.; Danneberg, H.; Kumar, L. S.; Atshaves, B. P.; et al. Decreased liver fatty acid binding capacity and altered liver lipid distribution in mice lacking the liver fatty acid binding protein gene. Biol. Chem. 2003, 278, 21429-21438. Atshaves, B. P.; Storey, S. M.; Petrescu, A.; Greenberg, C. C.; et al. Expression of fatty acid binding proteins inhibits lipid accumulation and alters toxicity in L cell fibroblasts. J. Physiol. Cell Physiol. 2002, 283, C688-2703.
Styles APA, Harvard, Vancouver, ISO, etc.
13

Co, Kimon Irvin. « correlation of human capital sustainability leadership style and resilience of the managers in airline operations group of an AIRLINE Company ». Bedan Research Journal 7, no 1 (30 avril 2022) : 89–127. http://dx.doi.org/10.58870/berj.v7i1.34.

Texte intégral
Résumé :
This study aimed to analyze the correlation between Human Capital Sustainability Leadership style and manager resilience through a pragmatic worldview. Using explanatory sequential mixed methods research design (QUAN→qual), respondents covered were managers from the Airline Operations Group of an AIRLINE Company with at least one year of managerial experience within the organization. In the quantitative phase, Human Capital Sustainability Leadership Scale by Di Fabio and Peiro (2018) and Domain-Specific Resilient Systems Scales (DRSSWork) by Maltby, Day, Hall, and Chivers (2019) were used for the online survey. Forty-five (45) eligible respondents have participated. Mean, standard deviation, and Spearman rank correlation coefficient were employed. To further explain the quantitative results, one-on-one qualitative interviews were done with eight (8) key informants, face-toface and online. Themes were identified. Results showed that Human Capital Sustainability Leadership style was exhibited by the Airline Operations Group managers to a very high degree while resilience was exhibited to a high degree. There was a linear, positive, and highly significant correlation between Human Capital Sustainability Leadership style and resilience. Each aspect of the Human Capital Sustainability Leadership style was positively, highly, and significantly correlated with manager resilience. Through triangulation, a model of leadership styles and manager resiliency was built. To implement the model, implications for a management development program were identified.ReferencesAcosta, H., Cruz-Ortiz, V., Salanova, M., & Llorens S. (2015). Healthy organization: Analysing its meaning based on the HERO model. Revista de Psicologia Social, 30 (2), 323-350. http://dx.doi.org/10.1080/21711976.2015.1016751.Ashegi, M. & Hashemi, E. (2019). The relationship of mindfulness with burnout & adaptive performance with the mediatory role of resilience among Iranian employees. Annals of Military and Health Sciences Research, 17 (1), 1-7. doi: 10.512/amh.87797.Aust, I., Matthews, B., & Muller-Camen, M. (2020). Common good HRM: A paradigm shift in sustainable HRM? Human Resource Management Review, 30 (3), 100705. https://doi.org/10.1016/j.hrmr.2019.100705.Barasa, E., Mbau, R., & Gilson, L. (2018). What is resilience & how it can be nurtured? A systematic review of empirical literature on organizational resilience. International Journal of Health Policy & Management, 7 (6), 491-503. https://doi.org/10.15171/ijhpm.2018.06.Bendell, J. & Little, R. (2015). Seeking sustainability leadership. Journal of Corporate Citizenship, 60, 13-26. https://doi.org/10.9744/GLEAF.4700.2015.de.00004.Bernard, H., Wutich, A., & Ryan, G. (2017). Analyzing qualitative data: Systematic approaches (2nd ed.). SAGE Publications Inc. Callegaro, M., Lozar Manfreda, K., & Vehovar, V. (2015). Web survey methodology. SAGE Publications.Caniels, M. & Hatak, I. (2019). Employee resilience: Considering both of the social side & the economic side of leader-follower exchanges in conjunction with the dark side of followers’ personality. The International Journal of Human Resource Management, 1-32. https://doi.org/10.1080/09585192.2019.1695648.Chinyerere, E. & Sandada, M. (2018). Job related outcomes in relation to servant leadership. Euro Economica, 1 (37), 138-150.Coetzer, M., Bussin, M., & Geldenhuys, M. (2017). The functions of a servant leader. Administrative Sciences, 7 (5), 1-32. https://doi.org/10.3390/admsci7010005.Cochran, W. (1977). Sampling techniques (3rd ed.). John Wiley & Sons.Creswell, J. (2015). Educational research: Planning, conducting, & evaluating quantitative & qualitative research (5th ed.). Pearson Education, Inc.Creswell, J. & Creswell, J. (2018). Research design: Qualitative, quantitative, & mixed methods approaches (5th ed.). SAGE Publications Inc.Creswell, J. & Plano Clark, V. (2018). Designing & conducting mixed methods research (3rd ed.). SAGE Publications Inc.Creswell, J. & Poth, C. (2018). Qualitative inquiry & research design: Choosing among five approaches (4th ed.). SAGE Publications Inc. Denzin, N. (1978). The research act: A theoretical introduction to sociological methods (2nd ed.). McGraw-Hill.Di Fabio, A. (2017). The psychology of sustainability & sustainable development for well-being in organizations. Frontiers in Psychology, 8, 1534, 1-7. https://doi.org/10.3389/fpsyg.2017.01534.Di Fabio, A. & Peiro, J. M. (2018). Human capital sustainability leadership to promote sustainable development and healthy organizations: A new scale. Sustainability, 10, 2413, 1-11. https://doi.org/10.3390/su10072413.Di Fabio, A. & Rosen, M. (2018). Opening the black box of psychological processes in the science of sustainable development: A new frontier. European Journal of Sustainable Development Research, 2 (4), 47, 1-5. doi: https://doi.org/10.20897/ejosdr/3933.Dooley, L., Alizadeh, A., Qiu, S., & Wu, H. (2020). Does servant leadership moderate the relationship between job stress and physical health? Sustainability, 12, 6591, 1-13. https://doi.org/10.3390/su12166591.Duchek, S. (2020). Organizational resilience: A capability-based conceptualization. Business Research, 13, 215-246. https://doi.org/10.1007/s40685-019-0085-7.Ehnert, I. (2009). Sustainable human resource management: A conceptual & exploratory analysis from a paradox perspective. Physica-Verlag.Espiner, S., Orchiston, C., & Higham, J. (2017). Resilience & sustainability: A complementary relationship? Towards a practical conceptual model for the sustainability-resilience nexus in tourism. Journal of Sustainable Tourism, 1-16. http://dx.doi.org/10.1080/09669582.2017.1281929.Folke, C. (2016). Resilience (Republished). Ecology & Society, 21 (4), 44, 1-30. https://doi.org/10.5751/ES-09088-210444.Fraenkel, J., Wallen, N., & Hyun, H. (2012). How to design and evaluate research in education (8th ed.). McGraw-Hill.Guest, D. (2017). Human resource management and employee well-being: Towards a new analytic framework. Human Resource Management Journal, 27 (1), 22-38. https://doi.org/10.1111/1748-8583.12139.Guest, G., MacQueen, K., & Namey, E. (2012). Applied thematic analysis. SAGE Publications Inc.Hahn, T., Pinkse, J., Preuss, L., & Higge, F. (2015). Tensions in corporate sustainability: Towards an integrative framework. Journal of Business Ethics, 127, 297-316. https://doi.org/10.1007/s10551-014-2047-5.Hahs-Vaughn, D. & Lomax, R. (2020). An introduction to statistical concepts (4th ed.). Routledge.Hair, J., Jr., Page, M., & Brunsveld, N. (2020). Essentials of business research methods (4th ed.). Routledge.Heizmann, H. & Liu, H. (2018). Becoming green, becoming leaders: Identity narratives in sustainability leadership development. Management Learning, 49 (1), 40-58. https://doi.org/10.1177/1350507617725189.Hoeppe, J. (2014). Practitioner’s view on sustainability: The case of a German bank. In I. Ehnert, W. Harry, & K. Zink (Eds.), Sustainability & human resource management: Developing sustainable business organizations. CSR, Sustainability, Ethics & Governance (pp. 273-294). Springer-Verlag. https://doi.org/10.1007/978-3- 642-37524-8.Holling, C. (1973). Resilience & stability of ecological systems. Annual Review of Ecology & Systematics, 4, 1-23. https://doi.org/10.1146/annurev.es.04.110173.000245.Holling, C. (1996). Engineering resilience versus ecological resilience. In P. Schulze (Ed.), Engineering within ecological constraints (pp. 31-44). The National Academies Press. https://doi.org/10.17226/4919.Kimura, T. & Nishikawa, M. (2018). Ethical leadership & its cultural & institutional context: An empirical study in Japan. Journal of Business Ethics, 151 (3), 707-724. https://doi.org/10.1007/s10551-016-3268-6.King, E. & Badham, R. (2018). The wheel of mindfulness: A generative framework for second-generation mindful leadership. Mindfulness, 11 (1), 166-176. doi: https://doi.org/10.1007/s12571-018-0890-7.King, N., Harrocks, C., & Brooks, J. (2019). Interviews in qualitative research (2nd ed.). SAGE Publications Inc.Kira, M. & Lifvergren, S. (2014). Sowing seeds for sustainability in work systems. In I. Ehnert, W. Harry, & K. Zink (Eds.), Sustainability & human resource management: Developing sustainable business organizations. CSR, Sustainability, Ethics & Governance (pp. 57-81). Germany: Springer-Verlag. https://doi.org/10.1007/978-3-642-37524-8.Kossek, E. & Perrigino, M. (2016). Resilience: A review using grounded integrated occupational approach. The Academy of Management Annals, 10 (1), 729-797. http://dx.doi.org/10/1080/19416520.2016.1159878.Lincoln, Y. & Guba, E. (1985). Naturalistic inquiry. Sage.Linnenluecke, M. (2017). Resilience in business and management research: A review of influential publications and a research agenda. International Journal of Management Reviews, 19, 4-30. https://doi.org/10.1111/ijmr.12076.Liu, Y., Cooper, C., & Tarba, S. (2019). Resilience, wellbeing and HRM: A multidisciplinary perspective. The International Journal of Human Resource Management, 30 (8), 1227-1238. https://doi.org/10.1080/0985192.2019.1565370.Luthans, F. (2002). The need for and meaning of positive organizational behavior. Journal of Organizational Behavior, 23, 695-706. https://doi.org/10.1002/job.165.Malaya, M. (2018). Statistical pitfalls & fallacies in applied research. Management Digest, 2 (1), 1-9. San Beda University Graduate School of Business.Malik, P., & Garg, P. (2018). Psychometric testing of the resilience at work scale using Indian sample. Vikalpa: The Journal for Decision Makers, 43 (2), 77-91. https://doi.org/10.1177/0256090918773922.Maltby, J., Day, L., Flowe, H., Vostanis, P., & Chivers, S. (2019). Psychological trait resilience within ecological systems theory: The resilient systems scale. Journal of Personality Assessment, 101 (1), 44-53. https://doi.org/10.1080/00223891.2017.1344985.Maltby, J., Day, L., & Hall, S. (2015). Refining trait resilience: Identifying engineering, ecological, and adaptive facets from extant measures of resilience. PLos ONE, 10 (7), 1-27. https://doi.org/10.1371/journal.pone.0131826.Maltby, J., Day, L., Hall, S., & Chivers, S. (2019). The measurement and role of ecological resilience systems theory across domain-specific outcomes: The domain-specific resilient systems scales. Assessment, 26 (8), 1444-1461. https://doi.org/10.1177/1073191117738045.Mascarenhas, A. & Barbosa, A. (2019). Sustainable human resource management and social and environmental responsibility: An agenda for debate. Revista De Administração De Empresas, 59 (5), 353-364. http://dx.doi.org/10.1590/S0034-759020190505.Mea, W. & Sims, R. (2019). Human dignity-centered business ethics: A conceptual framework for business leaders. Journal of Business Ethics, 160, 53-69. https://doi.org/10.1007/s10551-018-3929-8.Mergenthaler, E. & Stinson, C. (1992). Psychotherapy transcription standards. Psychotherapy Research, 2 (2), 125-142. https://doi.org/10.1080/10503309212331332904.Mitsakis, F. (2019). Human resource development (HRD) resilience: A new ‘success element’ of organizational resilience? Human Resource Development International, 1-8. https://doi.org/10.1080/13678868.2019.1669385.Molino, M., Cortese, C., & Ghislieri, C. (2019). Unsustainable working conditions: The association of destructive leadership, use of technology, & workload with workaholism & exhaustion. Sustainability, 11, 446, 1-14. https://doi.org/10.3390/su11020446.Nesselroade, K., Jr. & Grimm, L. (2019). Statistical applications for the behavioral & social sciences (2nd ed.). John Wiley & Sons Inc.Nguyen, Q., Kuntz, J., Naswall, K., & Malinen, S. (2016). Employee resilience and leadership styles: The moderating role of proactive personality and optimism. New Zealand Journal of Psychology, 45 (2), 13-21.Patton, M. (2015). Qualitative research and evaluation methods: Integrating theory and practice (4th ed.). SAGE Publications Inc.Paul, H., Bamel, U., & Garg, P. (2016). Employee resilience & OCB: Mediating effects of organizational commitment. Vikalpa: The Journal for Decision Makers, 41 (4), 308-324. https://doi.org/10.1177/0256090916672765.Pereira, V., Temouri, Y., & Patel, C. (2020). Exploring the role and importance of human capital in resilient high performing organisations: Evidence from business clusters. Applied Psychology, 69 (3), 769-804. https://doi.org/10.1111/apps.12204.Pillay, D. (2020). Positive affect & mindfulness as predictors of resilience amongst women leaders in higher education institutions. SA Journal of Human Resource Management/SA Tydskrif vir Menslikehulpbronbestuur, 18 (0), a1260, 1-10. https://doi.org/10.4102/sajhrm.v18i0.1260.Rai, R. & Prakash, A. (2016). How do servant leaders ignite absorptive capacity? The role of epistemic motivation and organizational support. Journal of Work & Organizational Psychology, 32, 123-134. http://doi.dx.org/10.1016/j.rpto.2016.02.001.Rangachari, P. & Woods, J. (2020). Preserving organizational resilience, patient safety, staff retention during COVID-19 requires a holistic consideration of the psychological safety of healthcare workers. International Journal of Environmental Research & Public Health, 17, 4267, 1-13. https://doi.org/10.3390/ijerph17124267.Ritchie-Dunham, J. (2014). Mindful leadership. In A. Ie, C. Ngnoumen, & E. Langer (Eds.), The Wiley Blackwell handbook of mindfulness (pp. 443-457). John Wiley & Sons, Ltd.Rodriguez-Olalla, A. & Aviles-Palacios, C. (2017). Integrating sustainability in organizations: An activity-based sustainability model. Sustainability, 9, 1072, 1-17. https://doi.org/10.3390/su9061072.Ryan, G. & Bernard, H. (2003). Techniques to identify themes. Field Methods, 15 (1), 85-109. https://doi.org/10.1177/1525822X02239569.Salanova, M., Llorens, S., & Martinez, I. (2016). Contributions from positive organizational psychology to develop healthy and resilient organizations. Papeles del Psicologo, 37 (3), 177-184.Saunders, M., Lewis, P., & Thronhill, A. (2019). Research methods for business students (8th ed.). Pearson Education Limited.Schindler, P. (2019). Business research methods (13th Ed). McGraw-Hill/Irwin.Securities and Exchange Commission (November 22, 2016). Code of corporate governance for publicly-listed companies. https://www.sec.gov.ph/mc-2016/mc-no-19-s-2016/.Spradley, J. (1979). The ethnographic interview. Holt, Rinehart, & Winston, Inc.Suriyankietkaew, S. & Petison, S. (2019). A retrospective & foresight: Bibliometric review of international research on strategic management for sustainability, 1991 – 2019. Sustainability, 12, 91, 1-27. https://doi.org/10.3390/su12010091.Tang, G., Kwan, H., Zhang, D., & Zhu, Z. (2016). Work-family effects of servant leadership: The roles of emotional exhaustion and personal learning. Journal of Business Ethics, 137, 285-297. https://doi.org/10.1007/s10551-015-2559-7.Tejada, J. & Punzalan, J. (2012). On the misuse of Slovin’s formula. The Philippine Statistician, 61 (1), 129-136.Tokarz, A. & Malinowska, D. (2019). From psychological theoretical assumptions to new research perspectives in sustainability & sustainable development: Motivation in the workplace. Sustainability, 11, 2222, 1-16. https://doi.org/10.3390/su11082222.Vreeling, K., Kersemaekers, W., Cillessen, L., van Dierendonck, D., & Speckens, A. (2019). How medical specialists experience the effects of a mindful leadership course on their leadership capabilities: A qualitative interview study in Netherlands. BMJ Open, 9 (12), 1-11. https://doi.org/10.1136/bmjopen-2019-031643.Winwood, P. C., Colon, R., & McEwen, K. (2013). A practical measure of workplace resilience: Developing the resilience at work scale. Journal of Occupational and Environmental Medicine, 55 (10), 1205-1212. doi: 10.1097/JOM.0b013e3182a2a60a.Xu, L. & Kajikawa, Y. (2018). An integrated framework for resilience research: A systematic review based on citation network analysis. Sustainability Science, 13, 235-254 https://doi.org/10.1007/s11625-017-0487-4.Xu, L., Marinova, D., & Guo, X. (2015). Resilience thinking: A renewed system approach for sustainability science. Sustainability Science, 10, 123-138. https://doi.org/10.1007/s11625-014-0274-4.Yin, R. (2016). Qualitative research from start to finish (2nd ed.). The Guilford Press.Yousaf, K., Abid, G., Butt, T., Ilyas, S., & Ahmed, S. (2019). Impact of ethical leadership & thriving at work on psychological wellbeing of employees: Mediating role of voice behaviour. Business, Management and Education, 17 (2), 194-217. https://doi.org/10.3846/bme.2019.11176.Zhu, W., Zheng, X., He, H., Wang, G., & Zhang, X. (2019). Ethical leadership with both “moral person” & “moral manager” aspects: Scale development & cross-cultural validation. Journal of Business Ethics, 158 (2), 547-565. doi: https://doi.org/10.1007/s10551-017-3740-y.
Styles APA, Harvard, Vancouver, ISO, etc.
14

AYANKOSO, Micheal Taiwo, Damilola Miracle OLUWAGBAMILA et Olugbenga Samson ABE. « EFFECTS OF ACTIVATED CHARCOAL ON LIVESTOCK PRODUCTION : A REVIEW ». Slovak Journal of Animal Science 56, no 01 (31 mars 2023) : 46–60. http://dx.doi.org/10.36547/sjas.791.

Texte intégral
Résumé :
Aerts, R. (1997). Nitrogen partitioning between resorption and decomposition pathways: a trade-off between nitrogen use efficiency and litter decomposability? Oikos, 80(3), 603−406. Ahmedna, M., Marshall, W. E. & Rao, R. O. (2000). Granular Activated Carbons from Agricultural By-Products: Preparation, Properties, and Application in Cane Sugar Refining. LSU AgCenter: Bulletin Number 869. Albiker, D. & Zweifel, R. (2019). Pflanzenkohle im Futter oder in der Einstreu und ihre Wirkung auf die Stickstoffretention und Leistung von Broilern. Wissenschaftstagung Ökologischer Landbau. Kassel: Stiftung Ökologie and Landbau, (15),276−283. Al-Kindi, A., Schiborra, A., Buerkert, A. & Schlecht, E. (2017). Effects of quebracho tannin extract and activated charcoal on nutrient digestibility, digesta passage and faeces composition in goats. Journal of Animal Physiology and Animal Nutrition, 101(3), 576−588. Alshannaq, A. & Yu, J. H. (2017). Occurrence, toxicity, and analysis of major mycotoxins in food. Australian Veterinary Journal, 68(4), 146−148. Anukul, N. Vangnai, K. & Mahakarnchandkul, W. (2013) Significance of regulation limits in mycotoxin contamination in Asia and risk management programs at the national level. Journal of Food and Drug Analysis, 21(3), 227−241. Bakr, B. E. A. (2008). The effect of using citrus wood charcoal in broiler rations on the performance of broilers. An-Najah University Journal for Research − Natural Sciences, 22, 17−24. Beguin, F. & Frackowiak, E. (Eds.). (2009). Carbons for Electrochemical Energy Storage and Conversion Systems, (1st ed.). CRC Press. https://doi.org/10.1201/9781420055405 Benabdeljelil, K. & Ayachi, A. (1996). Evaluation of Alternative Litter Materials for Poultry. Journal of Applied Poultry Research, 5, 203−209. Berk, J. (2009). Einfluss der Einstreuart auf Prävalenz und Schweregrad von Pododermatitis beimännlichen Broilern. (Effect of litter type on prevalence and severity of pododermatitis in male broilers). Berliner und Münchener tierärztliche Wochenschrift, 7, 257−263. Bisson, M. G., Scott, C. B. & Taylor, C. A. (2001). Activated charcoal and experience affect intake of juniper by goats. Journal of Range Management, 54, 274−278. Bolan, N. S., Szogi, A. A., Chuasavathi, T., Seshadri, B., Rothrock, M. J. & Panneerselvam, P. (2010). Uses and management of poultry litter. World's Poultry Science Journal, 66(4), 673−698. Burdock, G. A. (1997). Encyclopedia of Food and Color Additives. Boca Raton: CRC. Cheng, C. H. & Lehmann, J. (2009). Ageing of black carbon along a temperature gradient. Chemosphere, 75(8), 1021−1027. Choi, J. S., Jung, D. S., Lee, J. H., Choi, Y. I. & Lee, J. J. (2012). Growth performance, immune response and carcass characteristics of finishing pigs by feeding stevia and charcoal. Korean Journal for Food Science of Animal Resources, 32(2), 228−233. Christophersen, A. B., Levin, D., Hoegberg, L. C., Angelo, H. R. & Kampmann, J. P. (2002). Activated charcoal alone or after gastric lavage: a simulated large paracetamol intoxication. British Journal of Clinical Pharamacology, 53, 312−317. Chu, G. M., Jung, C. K., Kim, H. Y., Ha, J. H., Kim, J. H., Jung, M. S., Lee, S. J., Song, Y., Ibrahim, R. I. H., Cho, J. H., Lee, S. S. & Song, Y. M. (2013a). Effects of bamboo charcoal and bamboo vinegar as antibiotic alternatives on growth performance, immune responses and fecal microflora population in fattening pigs. Animal Science Journal, 84, 113−120. Chu, G. M., Kim, J. H., Kang, S. N. & Song, Y. M. (2013b). Effects of dietary bamboo charcoal on the carcass characteristics and meat quality of fattening pigs. Korean Journal for Food Science of Animal Resources, 33(3), 348−355. Daković, A., Tomašević-Čanović, M., Dondur, V., Rottinghaus, G. E., Medaković, V. & Zarić, S. (2005). Adsorption of mycotoxins by organozeolites. Colloids and Surfaces B: Biointerfaces, 46(1), 20−25. Darren, J. M., Beth, B. & Juan, J. V. (2020). Use of biochar by sheep: Impacts on diet selection, digestibility, and performance. Journal of Animal Science, 98(12), 1−9. Davidson, E. A., Chorover, J. & Dail, D. B. (2003). A mechanism of abiotic immobilization of nitrate in forest ecosystems: the ferrous wheel hypothesis. Global Change Biology, 9(2), 228−236. Di Natale, F., Gallo, M. & Nigro, R. (2009). Adsorbents selection for aflatoxins removal in bovine milks. Journal of Food Engineering, 95(1), 186−191. Diaz, S. (2004). The plant traits that drive ecosystems: Evidence from three continents. Journal of Vegetation Science, 15, 295−304. https://doi.org/10.1111/j.1654-1103.2004.tb02266.x Erickson, P. S., Whitehouse, N. L. & Dunn, M. L. (2011). Activated carbon supplementation of dairy cow diets: Effects on apparent total tract nutrient digestibility and taste preference. American Registry of Professional Animal Scientists, 27, 428−434. European Biochar Foundation (EBC). (2012). European biochar certificate − guidelines for a sustainable production of biochar. Version 8.2 of 19th April 2019: Accessed: 30th September, 2021. European Biochar Foundation (EBC). (2018). Guidelines for EBC-feed certification. http://www.european-biochar.org/biochar/media/doc/ebc-feed.pdf: Accessed: 30th September, 2021. Feng, F., Yang, F., Rong, W., Wu, X., Zhang, J., Chen, S., He, Ch. & Zhou, J. M. (2012). A Xanthomonas uridine 5'-monophosphate transferase inhibits plant immune kinases. Nature, 485(7396), 114−118. Galvano, F., Pietri, A., Fallico, B., Bertuzzi, T., Scirè, S., Galvano, M. & Maggiore, R. (1996). Activated carbons: in vitro affinity for aflatoxin B1 and relation of adsorption ability to physicochemical parameters. Journal of Food Protection, 59(5), 545−550. Galvano, F., Piva, A., Ritiene, A. & Galvano, G. (2001): Dietary strategies to counteract the effects of mycotoxins: A review. Journal of Food Protection, 64, 120−131. Gerlach, A. & Schmidt, H. P. (2012). Pflanzenkohle in der Rinderhaltung. Ithaka Journal, 1, 80−84. Guo, J. & Lua, A. C. (2003). Textual and chemical properties of adsorbent prepared from palm shell by phosphoric acid activation. Materials Chemistry and Physics, 80, 114−119. Hagemann, N., Joseph, S., Schmidt, H., Kammann, C. I., Harter, J., Borch, T., Young, R. B., Varga, K., Taherymoosavi, S., Elliott, K. W., Albu, M., Mayrhofer, C., Obst, M., Conte, P., Dieguez, A., Orsetti, S., Subdiaga, E., Behrens, S. & Kappler, A. (2018). Organic coating on biochar explains its nutrient retention and stimulation of soil fertility. Nature Communications, 8(1), 163. Hansen, J., Sato, M. & Ruedy, R. (2012). Perception of climate change. Proceedings of the National Academy of Sciences, 109(37), E2415−E2423. Hatch, T. P., Al-Hossainy, E. & Silverman, J. A. (1982). Adenine nucleotide and lysine transport in Chlamydia psittaci. Journal of Bacteriology, 150(2), 662−670. Hinz, K. S. J., Schättler, J. K., Spindler, B. & Kemper, N. (2019). Foot pad health and growth performance in broiler chickens as affected by supplemental charcoal and fermented herb extract (FKE): An on-farm study. European Poultry Science, 83, 13. https://doi.org/10.2136/sssaspecpub63.2014.0043.5 Hinz, K., Stracke, J., Schättler, J. K., Kemper, N. & Spindler, B. (2019). Effects of Enriched Charcoal as Permanent 0.2 % Feed-Additive in Standard and Low-Protein Diets of Male Fattening Turkeys: An On-Farm Study. Animals, 9(8), 1−15. Huwig, A., Freimund, S., Käppeli, O. & Dutler. H. (2001). Mycotoxin detoxification of animal feed by different adsorbents. Toxicology Letters, 122, 179−188. International Biochar Initiative (IBI). (2015). Standardized product definition and product testing guidelines for biochar that is used in soil. International Journal of Environmental Research and Public Health, 14(6), 632. Islam, M. M., Ahmed, S. T., Kim, Y. J., Mun, H. S., Kim, Y. J. & Yang, C. J. (2014). Effect of sea tangle (Laminaria japonica) and charcoal supplementation as alternatives to antibiotics on growth performance and meat quality of ducks. Asian-Australasian Journal of Animal Sciences, 27(2), 217–224. Johnson, K. A. & Johnson, D. E. (1995). Methane emissions from cattle. Journal of Animal Science, 73, 2483−2492. Joseph, S., Pow, D., Dawson, K., Mitchell, D., Rawal, A., Hook, J., Taherymoosavi, S., Zwieten, L., Rust, J., Donne, S., Munroe, P., Pace,B., Graber, E., Thomas, T., Nielsen, S., Ye, J., Lin, Y., Pan, G., Li, L. & Solaiman, Z. (2015). Feeding biochar to cows: an innovative solution for improving soil fertility and farm productivity. Pedosphere, 25(5), 666−679. Kana, J. R., Teguia, A., Mungfu, B. M. & Tchoumboue, J. (2011). Growth performance and carcass characteristics of broiler chickens fed diets supplemented with graded levels of charcoal from maize cob or seed of Canarium schweinfurthii Engl. Tropical Animal Health Production, 43, 51−56. Keller, A., Litzelman, K., Wisk, L. E., Maddox, T., Cheng, E. R., Creswell, P. D. & Witt, W. P. (2012). Does the perception that stress affects health matter? The association with health and mortality. Health Psychology, 31(5), 677−684. DOI: 10.1037/a0026743 Kracke, F., Vassilev, I. & Krömer, J. O. (2015). Microbial electron transport and energy conservation − the foundation for optimizing bioelectrochemical systems. Frontiers in Microbiology, 6, 575. Kutlu, H. R., Ünsal, I. & Görgülü, M. (2001). Effects of providing dietary wood (oak) charcoal to broiler chicks and laying hens. Animal Feed Science Technology, 90(3), 213−226. Lavrentyev, A., Sherne, V., Semenov, V., Zhestyanova, L. & Mikhaylova, L. (2021). Use of activated charcoal feed supplement in diets of pigs. Earth and Environmental Science, 935. Lee, J. J., Park, S. H, Jung, D. S., Choi, Y. I. & Choi, J. S. (2011). Meat quality and storage characteristics of finishing pigs by feeding stevia and charcoal. Korean Journal for Food Science of Animal Resources, 31(2), 296−303. Leng, R. A. (2013). Interactions between microbial consortia in biofilms: a paradigm shift in rumen microbial ecology and enteric methane mitigation. Perspectives on Animal Biosciences. Animal Production Science, 54(5), 519−543. https://doi.org/10.1071/AN13381 Leng, R. A., Inthapanya, S. & Preston, T. R. (2012). Biochar reduces enteric methane and improves growth and feed conversion in local "Yellow" cattle fed cassava root chips and fresh cassava foliage. Livestock Research for Rural Development, 24, 11. Li, Y., Yu, S., Strong, J. & Wang, H. (2012). Are the biogeochemical cycles of carbon, nitrogen, sulfur, and phosphorus driven by the "FeIII-FeII redox wheel" in dynamic redox environments? Journal of Soils and Sediments, 12(5), 683−693. Louis, A., Mohammed, A., Andreas, B. & Regina, R. (2018). Influence of dietary wood charcoal on growth performance, nutrient efficiency and excreta quality of male broiler chickens. International Journal of Livestock Production, 9(10), 286−292. Mabe, L. T., Su, S., Tang, D., Zhu, W., Wang, S. & Dong, Z. (2018). The effect of dietary bamboo charcoal supplementation on growth and serum biochemical parameters of juvenile common carp (Cyprinus carpio L.). Aquaculture Research, 49(3), 1142−1152. Maenz, D. D. & Classen, H. L. (1998). Phytase activity in the small intestinal brush border membrane of the chicken. Poultry Science, 77, 557−563. Majewska, T., Mikulski, D. & Siwik, T. (2009). Silica grit, charcoal and hardwood ash in turkey nutrition. Journal of Elements, 14, 489−500. Majewska, T., Pyrek, D. & Faruga, A. (2011). A note on the effect of charcoal supplementation on the performance of Big 6 heavy torn turkeys. Journal of Animal Feed Science, 11, 135−141. McFarlane, Z. D., Myer, P. R., Cope, E. R., Evans, N. D., Bone, T. C., Bliss, B. E. & Mulliniks, J. T. (2017). Effect of biochar type and size on in vitro rumen fermentation of orchard grass hay. West Central Research and Extension Center, North Platte. 110 McHenry, J. M. (2010). There is no trade-off between speed and force in a lever system. Biology Letters, 7(6), 878−879. McKenzie, R. A. (1991). Bentonite as therapy for Lantana camara poisoning of cattle. Medical Toxicology and Adverse Drug Experience, 3(1), 33−58. McLennan, M. W. & Amos, M. L. (1989). Treatment of lantana poisoning in cattle [Lantana camara; activated charcoal]. Australia Veterinarian Journal, 4(3), 45. Mekbungwan, A., Yamauchi, K. & Sakaida, T. (2004b). Intestinal villus histological alterations in piglets fed dietary charcoal powder including wood vinegar compound liquid. Anatomia, Histologia, Embryologia, 33(1), 11−16. Mekbungwan, A. Thongwittaya, N. & Yamauchi, K. (2004a). Digestibility of soyabean and pigeon pea seed meals and morphological intestinal alterations in pigs. Journal of Veterinary and Medical Sciences, 66(6), 627−633. Mézes, M., Balogh, K. & Tóth, K. (2010). Preventive and therapeutic methods against the toxic effects of mycotoxins − a review. Acta Veterinaria Hungarica, 58(1), 1−17. Misihairabgwi, J. M., Ezekiel, C. N., Sulyok, M., Shephard, G. S. & Krska, R. (2017) Mycotoxin contamination of foods in Southern Africa: A 10-year review (2007 – 2016). Critical Reviews in Food Science and Nutrition, 59(1), 43−58. DOI: 10.1080/10408398.2017.1357003 Naumann, H. D., Muir, J. P., Lambert, B. D., Tedeschi, L. O. & Kothmann, M. M. (2013). Condensed tannins in the ruminant environment: a perspective on biological activity. Journal of Agricultural Sciences, 1, 8−20. Neuvonen, P. J. & Olkkola, K. T. (1988). Oral activated charcoal in the treatment of intoxications. Journal of Animal Science, 83(8), 1939−1947. O'Toole, A., Andersson, D., Gerlach, A., Glaser, B., Kammann, C. I., Kern, J., Kuoppamäki, K., Piva, A., Casadei, G., Pagliuca, G., Cabassi, E., Galvano, F., Solfrizzo, M., Riley, R. T. & Diaz, D. E. (2005). Qualitative analysis of volatile organic compounds on biochar. Chemosphere, 85(5), 869−882. Odunsi, A. A., Oladele, T. O., Olaiya, A. O. & Onifade, O. S. (2007). Response of broiler chickens to wood charcoal and vegetable oil based diets. World Journal of Agricultural Sciences, 3(5), 572−575. Oso, A. O., Akapo, O., Sanwo, K. A. & Bamgbose, A. M. (2014). Utilization of unpeeled cassava (Manihot esculenta Crantz) root meal supplemented with or without charcoal by broiler chickens. Journal of Animal Physiology and Animal Nutrition, 98, 431−438. Phongphanith, S. & Preston, T. R. (2018). Effect of rice-wine distillers' byproduct and biochar on growth performance and methane emissions in local "Yellow" cattle fed ensiled cassava root, urea, cassava foliage and rice straw. Livestock Research for Rural Development, 28, 178. Pirarat, N., Pinpimai, K., Endo, M., Katagiri, T., Ponpornpisit, A., Chansue, N. & Maita, M. (2011). Modulation of intestinal morphology and immunity in nile tilapia (Oreochromis niloticus) by Lactobacillus rhamnosus GG. Research in Veterinary Science, 91, 92−97. Piva, A., Casadei, G., Pagliuca, G., Cabassi, E., Galvano, F., Solfrizzo, M., Riley, R. T. & Diaz, D. E. (2005). Qualitative analysis of volatile organic compounds on biochar. Chemosphere, 85(5), 869−882. Prasai, T. P., Walsh, K. B., Bhattarai, S. P., Midmore, D. J., Van, T. T. H., Moore, R. J. & Stanley, D. (2016b). Biochar, bentonite and zeolite supplemented feeding of layer chickens alters intestinal microbiota and reduces campylobacter load. PLOS ONE, 11(4), 406. Prasai, T. P., Walsh, K. B., Bhattarai, S. P., Midmore, D. J., Van, T. T., Moore, R. J. & Stanley, D., (2016a). Biochar, bentonite and zeolite supplemented feeding of layer chickens alters intestinal microbiota and reduces Campylobacter Load, PLOS ONE, 11(4), 0154061. Quaiyum, M., Jahan, R., Jahan, N., Akhter, T. & Islam, M. S. (2014). Effects of bamboo charcoal added feed on reduction of ammonia and growth of Pangasius hypophthalmus. Journal of Aquaculture Research and Development, 5, 69−76. Radostits, O. M., Gay, C. C., Blood, D. C. & Hinchcliff, K. W. (2000). Veterinary Medicine: A textbook of cattle, sheep, pigs, goats and horses, nona edizione. Saunders, London, UK. Rafiu, T. A., Babatunde, G. M., Akinwumi, A. O., Akinboro, A., Adegoke, Z. A. & Oyelola, O. B. (2014). Assessment of activated charcoal vs synthetic toxin-binder on performance, nutrient utilization and meat-quality utilization of broilers fed infected diets. International Journal of Agriculture and Biosciences, 3(5), 219−224. Rao, S. V. R., Raju, M. V. L. N., Reddy, M. R. & Panda, A. K. 2004. Replacement of yellow maize with pearl millet (Pennisetum typhoides), foxtail millet (Setaria italica) or finger millet (Eleusine coracana) in broiler chicken diets containing supplemental enzymes. Asian-Australian Journal Animimal Sciences, 17(6), 836−842. Rao, S. B. N. & Chopra, R. C. (2001). Influence of sodium bentonite and activated charcoal on aflatoxin M1 excretion in milk of goats. Small Ruminant Research, 41(3), 203−213. Totusek, R. & W. M. Beeson, W. M. (1953). The Nutritive Value of Wood Charcoal for Pigs. Journal of Animal Science, 12(2), 271−281. https://doi.org/10.2527/jas1953.122271x Ruttanavut, J., Yamauchi, K., Goto, H. & Erikawa, T. (2009). Effects of dietary bamboo charcoal powder including vinegar liquid on growth performance and histological intestinal change in Aigamo ducks. International Journal of Poultry Science, 8(3), 229−236. Saleem, M., Law, A. D., Sahib, M. R., Pervaiz, Z. H. & Zhang, Q. (2018). Impact of root system architecture on rhizosphere and root microbiome. Rhizosphere, 6, 47−51. Scharman, E. J., Cloonan, H. A. & Durback-Morris, L. F. (2001). Home administration of charcoal: can mothers administer a therapeutic dose? The Journal of Emergency Medicine, 21(4), 357−361. Schirrmann, U. (1984). Aktivkohle und ihre Wirkung auf Bakterien und deren Toxine im Gastrointestinaltrakt. Silivong, P. & Preston, T. R. (2016). Supplements of water spinach (Ipomoea aquatica) and biochar improved feed intake, digestibility, N retention and growth performance of goats fed foliage of Bauhinia acuminata as the basal diet. Livestock Research for Rural Development, 28, 113. Sivilai, B., Preston, T. R., Leng, R. A., Hang, D. T. & Linh, N. Q. (2018). Rice distillers' byproduct and biochar as additives to a forage-based diet for growing Moo Lath pigs; effects on growth and feed conversion. Livestock Research for Rural Development, 30, 113. Soo, J., Malik, B. A., Turner, J. M., Persad, R., Wine, E., Siminoski, K. & Huynh, H. Q. (2013). Use of exclusive enteral nutrition is just as effective as corticosteroids in newly diagnosed pediatric Crohn's disease. Digestive Diseases and Sciences, 58(12), 3584−3591. DOI: 10.1007/s10620-013-2855-y. Epub 2013 Sep 12. PMID: 24026403. Spokas, K. A., Novak, J. M., Stewart, C. E., Cantrell, K. B., Uchimiya, M., DuSaire, M. G. & Ro, K. S. (2011). Qualitative analysis of volatile organic compounds on biochar. Chemosphere, 85, 869−882. Steiner, C., Das, K. C., Melear, N. & Lakly, D. (2010). Reducing nitrogen loss during poultry litter composting using biochar. Journal of Environment Quality, 39(4), 1236. Steiner, C., Teixeira, W. G., Lehmann, J., Nehls, T., de Macêdo, J. L. V., Blum, W. E. & Zech, W. (2007). Long term effects of manure, charcoal and mineral fertilization on crop production and fertility on a highly weathered Central Amazonian upland soil. Plant and Soil, 291(1), 275−290. Struhsaker, T. T., Cooney, D. O. & Siex, K. S. (1997). Charcoal consumption by Zanzibar red colobus monkeys: its function and its ecological and demographic consequences. International Journal of Primatology, 18(1), 61–72. Sun, J., Hippo, E. J., Marsh, H., O'Brien, W. S. & Crelling, J. C. (1997). Activated carbon produced from an Illinois Basin 1080 Coal. Carbon, 35, 341−352. Moe, T. Shunsuke, K., Manabu, I. & Yokoyama Saichiro, Y. (2010). Effects of Supplementation of Dietary Bamboo Charcoal on Growth Performance and Body Composition of Juvenile Japanese Flounder, Paralichthys olivaceus. Journal of the World Aquaculture Society, 255−262. Toth, J. D. & Dou, Z. (2016). Use and Impact of Biochar and Charcoal in Animal Production Systems. In Guo, M., He, Z. and Uchimiya, M., Eds., Agricultural and Environmental Applications of Biochar: Advances and Barriers, Soil Science Society of America, Inc., Madison, 199−224. Van Der Zee, F. P. & Cervantes, F. J. (2009). Impact and application of electron shuttles on the redox (bio) transformation of contaminants: a review. Biotechnology Advances, 27(3), 256−277. Van Der Zee, F. P., Bisschops, I. A. E., Lettinga, G. & Field, J. A. (2003). Activated carbon as an electron acceptor and redox mediator during the anaerobic biotransformation of azo dyes. Environmental Science and Technology, 37(2), 402−408. Van, D. T. T., Mui, N. T. & Ledin, I. (2006). Effect of method of processing foliage of Acacia mangium and inclusion of bamboo charcoal in the diet on performance of growing goats. Animal Feed Science and Technology, 30(3−4), 242−256. Weber, K. & Quicker, P. G. (2018). Properties of biochar. Fuel, 217, 240−261. Wild, M., Folini, D., Hakuba, M. Z., Schar, C., Seneviratne, S. I., Kato, S. Rutan, D., Ammann, C., Wood, E. F. & Kong-Langlo, G. (2015). The energy balance over land and oceans: an assessment based on direct observations and CMIP5 climate models. Climate Dynamics, 44, 3393−3429. https://doi.org/10.1007/s00382-014-2430-z Wittstock, U. & Gershenzon, J. (2002). Constitutive plant toxins and their role in defense against herbivores and pathogens. Current Opinion in Plant Biology, 5(4), 300−307. DOI: 10.1016/s1369-5266(02)00264-9. PMID: 12179963. Youssef, M. A., El-Khodery, S. A., El-deeb, W. M. & El-Amaiem, W. E. A. (2010). Ketosis in buffalo (Bubalus bubalis): clinical findings and the associated oxidative stress level. Tropical Animal Health and Production, 42, 1771−1777. Yu, L., Yuan, Y., Tang, J., Wang, Y. & Zhou, S. (2015). Biochar as an electron shuttle for reductive dechlorination of pentachlorophenol by Geobacter sulfurreducens. Scientific Reports, 5(1), 1−10.
Styles APA, Harvard, Vancouver, ISO, etc.
15

Thi Thu Hoai, Nguyen, Nguyen Thuy Duong, Bui Thanh Tung, Dao Thi Vui et Dang Kim Thu. « Comparing Acetylcholinesterase and Butyrylcholinesterase Inhibition Effect of Total Extract and Fractions with Alcaloid-Rich Extract of Huperzia Serrata (Thunb.) Trevis. » VNU Journal of Science : Medical and Pharmaceutical Sciences 36, no 1 (24 mars 2020). http://dx.doi.org/10.25073/2588-1132/vnumps.4214.

Texte intégral
Résumé :
Herbal extract, rich with natural compounds, has been used for medicinal purpose such as treating neurological disorders such as cognitive defection for a long period of time, often without significant adverse effects. We compared AChE and BuChE – inhibition effect of total extracts and fractions of Huperzia serrata (Thunb.) Trevis. with alcaloid-rich extract. Our samples were subjected under supersonic extraction with ethanol 50o as solvent and fractionally extracted with n-hexane, EtOAc and n-butanol, respectively; alcaloid-rich extract was collected simutaneously. Ellman’s method was used to assay AChE and BuChE inhibition activity. Results: Alcaloid-rich extraction proved to be the superior AChE inhibiting agent, its activity nearly 6 fold of the most active Huperzia serrata extraction with IC50 value of 7.93 (5.43-10.98) µg/ml. While the fractions as well as the total extract did not provide any BuChE inhibition activity, alcaloid-rich extract showed weak ability (IC50 at 76.67 (64.78 – 91.84) µg/ml). Overall, the superior enzyme inhibition effect of alcaloid-rich extract might open a new approach in preventing and treating neurological disorders such as alzheimer’s. Keywords Huperzia serrata (Thunb.) Trevis, alcaloid, Acetylcholinesrerase inhibitors (AChE); butyrylcholinesterase (BuChE), Alzheimer. References [1] Dos Santos Picanco, Leide C et al., Alzheimer's disease: A review from the pathophysiology to diagnosis, new perspectives for pharmacological treatment, Current medicinal chemistry 25(26) (2018) 3141 - 3159. https://doi.org/10.2174/0929867323666161213101126.[2] B.M. McGleenon, K.B. Dynan, A.P. Passmore, Acetylcholinesterase inhibitors in Alzheimer's disease, British journal of clinical pharmacology 48(4) (1999) 471-480. https://10.1046/j.1365-2125.1999.00026.x.[3] Agneta Nordberg, Clive Ballard, Roger Bullock, Taher Darreh-Shori, Monique Somogyi, A review of butyrylcholinesterase as a therapeutic target in the treatment of Alzheimer’s disease, The primary care companion for CNS disorders 15(2) (2013). https://10.4088/PCC.12r01412.[4] N.M. Ha, V.V. Dung et al., Report on the review of Vietnam’s wildlife trade policy, 2007.[5] D.H. Bich, et al., Medicinal plants and medicinal animals in Viet Nam. Science and Technics Publishing House 1 (2011) 896-897 (in Vietnamese).[6] Jia-Sen Liu, Yuan-Long Zhu, Chao-Mei Yu, You-Zuo Zhou, Yan-Yi Han, Feng-Wu Wu, Bao-Feng Qi, The structures of huperzine A and B, two new alkaloids exhibiting marked anticholinesterase activity. Canadian Journal of Chemistry 64(4) (1986) 837-839. https://doi.org/10.1139/v86-137.[7] Takuya Ohba, Yuta Yoshino et al., Japanese Huperzia serrata extract and the constituent, huperzine A, ameliorate the scopolamine-induced cognitive impairment in mice, Bioscience biotechnology and biochemistry 79(11) (2015) 1838-1844. https://doi.org/10.1080/09168451.2015.1052773.[8] Ju-Yeon Park, Hyuck Kim et al., Ethanol Extract of Lycopodium serratum Thunb. Attenuates Lipopolysaccharide-Induced C6 Glioma Cells Migration via Matrix Metalloproteinase-9 Expression, Chinese Journal of Integrative Medicine 24(11) (2018) 860-866. https://doi.org/10.1007/s11655-017-2923-9.[9] M. Maridass, G. Raju, Investigation of phytochemical and antimicrobial activity of Huperzia species, Pharmacologyonline 3 (2009) 688-692.[10] George.L.Ellman, K.Diane Courtney, et al., A new and rapid colorimetric determination of acetylcholinesterase activity, Biochemical Pharmacology 7(2) (1961) 88-95. https://doi.org/10.1016/0006-2952(61)90145-9.[11] Paul T Francis, et al., The cholinergic hypothesis of Alzheimer’s disease: a review of progress. Journal of Neurology, Neurosurgery & Psychiatry, 66(2) (1999) 137-147. http://dx.doi.org/10.1136/jnnp.66.2.137.[12] Prerna Upadhyaya, Vikas Seth, Mushtaq Ahmad, Therapy of Alzheimer’s disease: An update, African Journal of Pharmacy and Pharmacology 4(6) (2010) 408-421.[13] Hachiro Sugimoto, Hiroo Ogura, et al., Research and development of donepezil hydrochloride, a new type of acetylcholinesterase inhibitor, The Japanese journal of pharmacology 89(1) (2002) 7-20.[14] N.T.K. Thu, et al., Acetylcholinesterase and butyrylcholinesterase inhibition effect of fractions extract of Huperzia serrata (Thunb.) Trevis. The journal of Pharmeceutical 56(11) 49-53 (in Vietnamese).[15] Xiaoqiang Ma, Changheng Tan, et al, Is there a better source of huperzine A than Huperzia serrata? Huperzine A content of Huperziaceae species in China. J Agric Food Chem, 53(5) (2005)1393-8. https://doi.org/10.1021/jf048193n.[16] Ya-Bing Yang, Xue-Qiong Yang, et al., A New Flavone Glycoside from Huperzia serrata. Chinese Journal of Natural Medicines 6(6) (2008) 408-410.[17] G.T. Ha, R.K. Wong, Y. Zhang, Huperzine a as potential treatment of Alzheimer's disease: an assessment on chemistry, pharmacology, and clinical studies, Chemistry & biodiversity 8(7) (2011) 1189-1204. https://doi.org/10.1002/cbdv.201000269.[18] H.Y. Zhang, X.C. Tang, Neuroprotective effects of huperzine A: new therapeutic targets for neurodegenerative disease, Trends in pharmacological sciences 27(12) (2006) 619-625. https://doi.org/10.1016/j.tips.2006.10.004.[19] Y. Wang, X.C. Tang, H.Y. Zhang, Huperzine A alleviates synaptic deficits and modulates amyloidogenic and nonamyloidogenic pathways in APPswe/PS1dE9 transgenic mice, Journal of neuroscience research 90(2) (2012) 508-517. https://doi.org/10.1002/jnr.22775.[20] C.Y. Wang, et al., Huperzine A activates Wnt/β-catenin signaling and enhances the nonamyloidogenic pathway in an Alzheimer transgenic mouse model, Neuropsychopharmacology 36(5) (2011) 1073-1089. https://doi.org/10.1038/npp.2010.245.[21] R.K. Gordon, et al., The NMDA receptor ion channel: a site for binding of Huperzine A, Journal of applied toxicology 21(S1) (2001) S47-S51. https://doi.org/10.1002/jat.805.[22] M. Rafii, et al., A phase II trial of huperzine A in mild to moderate Alzheimer disease, Neurology 76(16) (2011) 1389-1394. https://doi.org/10.1212/WNL.0b013e318216eb7b.[23] N.H. Greig, et al., A new therapeutic target in Alzheimer's disease treatment: attention to butyrylcholinesterase, Current medical research and opinion 17(3) (2001)1 59-165.[24] A. Ferreira, et al., Huperzine A from Huperzia serrata: a review of its sources, chemistry, pharmacology and toxicology, Phytochemistry reviews 15(1) (2016) 51-85. https://doi.org/10.1007/s11101-014-9384-y.
Styles APA, Harvard, Vancouver, ISO, etc.
16

Thanh Tung, Bui, Phạm Hong Minh, Nguyen Nhu Son et Pham The Hai. « Screening Virtual ACE2 Enzyme Inhibitory Activity of Compounds for COVID-19 Treatment Based on Molecular Docking ». VNU Journal of Science : Medical and Pharmaceutical Sciences 36, no 4 (18 décembre 2020). http://dx.doi.org/10.25073/2588-1132/vnumps.4281.

Texte intégral
Résumé :
This study uses an in silico screening docking model to evaluate the ACE2 inhibitory activity of natural compounds and drugs. The study collected 49 compounds and evaluated the ACE2 inhibitory effect in silico. The study results show that 11 out of the 49 compounds had stronger inhibitory activity on ACE2 than MLN-4760. Lipinski’s rule of five criteria and predictive pharmacokinetic-toxicity analysis show that eight compounds including quercetin, galangin, quisinostat, fluprofylline, spirofylline, RS 504393, TNP and GNF-5 had drug-likeness. These compounds could be potential drug for the Covid-19 treatment. Keywords SARS-CoV-2S, Covid-19, ACE2, molecular docking, in silico. References [[1] C. Wang, P.W. Horby, F.G. Hayden, G.F. Gao. A novel coronavirus outbreak of global health concern. The Lancet 395(10223) (2020) 470.[2] WHO. WHO Coronavirus Disease (COVID-19) Dashboard. WHO, 2020.[3] N. Chen, M. Zhou, X. Dong, J. Qu, F. Gong, Y. Han, et al. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. The Lancet 395(10223) (2020) 507.[4] J. Yang, Y. Zheng, X. Gou, K. Pu, Z. Chen, Q. Guo, et al. Prevalence of comorbidities and its effects in patients infected with SARS-CoV-2: a systematic review and meta-analysis. International Journal of Infectious Diseases 94 (2020) 91.[5] R. Lu, X. Zhao, J. Li, P. Niu, B. Yang, H. Wu, et al. Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. The Lancet 395(10224) (2020) 565.[6] R. Hilgenfeld. From SARS to MERS: crystallographic studies on coronaviral proteases enable antiviral drug design. The FEBS journal 281(18) (2014) 4085.[7] D. Wrapp, N. Wang, K.S. Corbett, J.A. Goldsmith, C.L. Hsieh, O. Abiona, et al. Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. Science (New York, NY) 367(6483) (2020) 1260.[8] P.A. Rota, M.S. Oberste, S.S. Monroe, W.A. Nix, R. Campagnoli, J.P. Icenogle, et al. Characterization of a novel coronavirus associated with severe acute respiratory syndrome. Science (New York, NY) 300(5624) (2003) 1394.[9] M. Donoghue, F. Hsieh, E. Baronas, K. Godbout, M. Gosselin, N. Stagliano, et al. A novel angiotensin-converting enzyme-related carboxypeptidase (ACE2) converts angiotensin I to angiotensin 1-9. Circulation research 87(5) (2000) E1.[10] H. Zhang, Z. Kang, H. Gong, D. Xu, J. Wang, Z. Li, et al. The digestive system is a potential route of 2019-nCov infection: a bioinformatics analysis based on single-cell transcriptomes. bioRxiv (2020) 2020.01.30.927806.[11] Y. Zhao, Z. Zhao, Y. Wang, Y. Zhou, Y. Ma, W. Zuo. Single-cell RNA expression profiling of ACE2, the putative receptor of Wuhan 2019-nCov. bioRxiv (2020) 2020.01.26.919985.[12] E.I. Bahbah, A. Negida, M.S. Nabet. Purposing Saikosaponins for the treatment of COVID-19. Med Hypotheses 140 (2020) 109782.[13] I.W. Cheung, S. Nakayama, M.N. Hsu, A.G. Samaranayaka, E.C. Li-Chan. Angiotensin-I converting enzyme inhibitory activity of hydrolysates from oat (Avena sativa) proteins by in silico and in vitro analyses. Journal of agricultural and food chemistry 57(19) (2009) 9234.[14] T. Joshi, T. Joshi, P. Sharma, S. Mathpal, H. Pundir, V. Bhatt, et al. In silico screening of natural compounds against COVID-19 by targeting Mpro and ACE2 using molecular docking. European review for medical and pharmacological sciences 24(8) (2020) 4529.[15] S. Shahid, A. Kausar, M. Khalid, S. Tewari, T. Alghassab, T. Acar, et al. analysis of binding properties of angiotensin-converting enzyme 2 through in silico molecular docking, 2018.[16] K. Teralı, B. Baddal, H.O. Gülcan. Prioritizing potential ACE2 inhibitors in the COVID-19 pandemic: Insights from a molecular mechanics-assisted structure-based virtual screening experiment. J Mol Graph Model 100 (2020) 107697.[17] M. Muchtaridi, M. Fauzi, N.K. Khairul Ikram, A. Mohd Gazzali, H.A. Wahab. Natural Flavonoids as Potential Angiotensin-Converting Enzyme 2 Inhibitors for Anti-SARS-CoV-2. Molecules 25(17) (2020) 3980.[18] M.J. Huentelman, J. Zubcevic, J.A. Hernández Prada, X. Xiao, D.S. Dimitrov, M.K. Raizada, et al. Structure-based discovery of a novel angiotensin-converting enzyme 2 inhibitor. Hypertension (Dallas, Tex : 1979) 44(6) (2004) 903.[19] S. Choudhary, Y.S. Malik, S. Tomar. Identification of SARS-CoV-2 Cell Entry Inhibitors by Drug Repurposing Using in silico Structure-Based Virtual Screening Approach. Front Immunol 11((2020) 1664.[20] C.A. Lipinski. Lead-and drug-like compounds: the rule-of-five revolution. Drug Discovery Today: Technologies 1(4) (2004) 337.[21] B. Jayaram, T. Singh, G. Mukherjee, A. Mathur, S. Shekhar, V. Shekhar, Eds. Sanjeevini: a freely accessible web-server for target directed lead molecule discovery. Proceedings of the BMC bioinformatics; 2012. Springer (Year).[22] D.E. Pires, T.L. Blundell, D.B. Ascher. pkCSM: predicting small-molecule pharmacokinetic and toxicity properties using graph-based signatures. Journal of medicinal chemistry 58(9) (2015) 4066.[23] P. Towler, B. Staker, S.G. Prasad, S. Menon, J. Tang, T. Parsons, et al. ACE2 X-ray structures reveal a large hinge-bending motion important for inhibitor binding and catalysis. The Journal of biological chemistry 279(17) (2004) 17996.[24] N.A. Dales, A.E. Gould, J.A. Brown, E.F. Calderwood, B. Guan, C.A. Minor, et al. Substrate-based design of the first class of angiotensin-converting enzyme-related carboxypeptidase (ACE2) inhibitors. Journal of the American Chemical Society 124(40) (2002) 11852.[25] P. Pandey, J.S. Rane, A. Chatterjee, A. Kumar, R. Khan, A. Prakash, et al. Targeting SARS-CoV-2 spike protein of COVID-19 with naturally occurring phytochemicals: an in silico study for drug development. Journal of Biomolecular Structure and Dynamics (2020) 1.[26] C.A. Lipinski. Lead- and drug-like compounds: the rule-of-five revolution. Drug discovery today Technologies 1(4) (2004) 337.[27] R.O. Barros, F.L. Junior, W.S. Pereira, N.M. Oliveira, R.M. Ramos. Interaction of drug candidates with various SARS-CoV-2 receptors: An in silico study to combat COVID-19. Journal of Proteome Research (2020).
Styles APA, Harvard, Vancouver, ISO, etc.
17

B2042171018, RAFAEL BAGUS SAPTA NUGRA. « PENGARUH KONFLIK PERAN DAN AMBIGUITAS TERHADAP KINERJA MELALUI KEPUASAN KERJA PADA TENAGA FUNGSIONAL RSUD SEKADAU ». Equator Journal of Management and Entrepreneurship (EJME) 7, no 4 (6 août 2019). http://dx.doi.org/10.26418/ejme.v7i4.34572.

Texte intégral
Résumé :
Penelitian ini bertujuan untuk menguji dan menganalisa pengaruh konflik peran dan ambiguitas terhadap kinerja melalui kepuasan kerja pada tenaga fungsional RSUD Sekadau. Metode penelitian yang digunakan merupakan jenis penelitian non-eksperimental dengan pendekatan kuantitatif, deskriptif korelasi dan desain cross-sectional. Populasi dalam penelitian ini adalah seluruh tenaga fungsional RSUD Sekadau yang berjumlah 181 orang dengan sampel yang diambil adalah 123 orang tenaga fungsional RSUD Sekadau. Alat analisis yang digunakan adalah analisis jalur (path analysis) dengan metode SEM (structural equation modelling) menggunakan WarpPLS versi 6.0. Hasil penelitian menunjukkan terdapat pengaruh positif signifikan konflik peran terhadap kinerja, terdapat pengaruh negatif signifikan ambiguitas terhadap kinerja, terdapat pengaruh negatif signifikan antara konflik peran dan ambiguitas terhadap kepuasan kerja, terdapat pengaruh negatif signifikan kepuasan kerja terhadap kinerja, terdapat pengaruh positif signifikan antara konflik peran dan ambiguitas terhadap kinerja melalui kepuasan kerja. Nilai profesionalisme menjadi penting untuk variabel konflik peran, tanggung jawab menjadi faktor penting untuk variabel ambiguitas, hubungan yang baik dengan profesi lain di Rumah Sakit menjadi penting untuk variabel kepuasan kerja dan karyawan memahami harapan pekerjaan dan tetap melaksanakannya sesuai dengan tanggung jawab merupakan nilai penting untuk variabel kinerja. Kata kunci : Konflik Peran, Ambiguitas, Kepuasan Kerja, KinerjaDAFTAR PUSTAKAAhmed, S., Manaf, N.H.A., & Islam, R. (2017). Measuring quality performance between public and private hospitals in Malaysia, International Journal of Quality and Service Sciences, Vol. 9 Iss 2 pp. 218-228Beauchamp, M.R., Bray, S.R., Fielding, A., & Eys, M.A. (2005). A Multilevel Investigation of the Relationship between Role Ambiguity and Role Efficacy in Sport. Psychology of Sport and Exercise, Vol. 6, pp. 289–302.Bhanugopan, R., & Fish, A. (2006). An empirical investigation of job burnout among expatriates. Personnel Review, 35(4), 449-468.Blackford, B. (2010). The Role of CEO Statements of Aggressiveness and the Competitive Aggressiveness of Firms: What is the Impact on Performance?Burney, L & Widener, SK. (2007). Strategic Performance Measurement Systems, Job-Relevant Information, and Managerial Behavioral Responses—Role Stress and Performance. Behavioral Research in Accounting, Vol. 19, pp. 43-69.Chen, J., & Silverthorne, C. (2008). The impact of locus of control on job stress, job performance and job satisfaction in Taiwan, Leadership & Organization Development Journal, Vol. 29 Issue: 7, pp.572-582Chu, C. I., Lee, M. S., & Hsu, H. M. (2006). The impact of social support and job stress on public health nurses' organizational citizenship behaviors in rural Taiwan. Public Health Nursing, 23(6), 496-505.Crossman, A., & Zaki, B.A. (2003). Job satisfaction and employee performance of Lebanese banking staff, Journal of Managerial Psychology, Vol. 18 Issue: 4, pp.368-376.Davis, K.,& Newstorm, J.W. (2001). Perilaku dalam Organisasi. Jilid I. Terjemahan Jakarta: ErlanggaDepartemen Kesehatan. (2015). Indikator Kinerja Rumah SakitDjebarni, R. (1996). The impact of stress in site management effectiveness. Construction Management & Economics, 14(4), 281-293.Fahmi, I. (2013). Perilaku Organisasi. Teori, Aplikasi Dan Kasus. Bandung: Alfabeta.Fanani, Z. (2008). Pengaruh Struktur Audit, Konflik Peran dan Ketidakjelasan Peran Terhadap Kinerja Auditor. Jurnal Akuntansi dan Keuangan Indonesia Vol. 5 (2)Fitzgerald, L.F., Hulin, C.L., & Drasgow. F. (1994). The antecendent and consequence of sexual harrasment in organization. An integrated model. In G.P.Keita & J.J.Hurrell, Jr. (Eds). Job stress in a changing workforce (pp.55-73). American Psychological Association. Washington , DCGriffin, R.W., & Moorhead, G. (2010). Organizatonal Behavior: Managing People and Organizations. 9th ed. Singapore: Cengage LearningHersey, P., & Blanchard, K.H. (1993). Management of organizational behavior: Untilizing human resource. 6th ed.Englewood Cliffs, NJ,US : Prentice-Hall, IncHo, W., Ching, S.C., Shih, Y., & Liang, R. (2009). Effects of job rotation and role stress among nurses on job satisfaction and organizational commitment. BMC Health Services Research, Vol. 9 (8), pp. 1-10Jackson, S.E., & Schuler, R.S. (1985). A Metaanalysis and Conceptual Critique of Research on Role Ambiguity and Role Conflict in Work Settings. Organizational Behavior and Human Decision Processes, Vol. 36, pp. 16-78.Karlsson, M. L., Björklund, C., & Jensen, I. (2010). The effects of psychosocial work factors on production loss, and the mediating effect of employee health. Journal of Occupational and Environmental Medicine, 52(3), 310-317.Kreitner, R., & Kinicki, A (2014). Organizational Behavior. USA : Mc Graw Hill Education.Lin, Y.-W. (2012). The causes, consequences, and mediating effects of job burnout among hospital employees in Taiwan. Journal of Hospital Administration, 2(1), p15.Lu, J. L. (2013). Organizational role stress indices affecting burnout among nurses. Journal of International Women's studies, 9(3), 63-78.Mishra, R., & Shukla, A. (2012). Impact of creativity on role Stressors, Job Satisfaction and organisational commitment. Journal of Organisation and Human Behaviour, 1(3), 18.Moumtzoglou, A. (2010). The Greek nurses’ job satisfaction scale: development and psychometric assessment, Journal of Nursing Measurement, Vol. 18 (1), pp. 60-69.Mulki, J. P., Jaramillo, J. F., & Locander, W. B. (2009). Critical role of leadership on ethical climate and sales person behaviors. Journal of Business Ethics, 86(2), 125-141.Netemeyer, R. G., Brashear-Alejandro, T., & Boles, J. S. (2004). A cross-national model of job-related outcomes of work role and family role variables: A retail sales context. Journal of the Academy of marketing Science, 32(1), 49-60.Novriansa, A.,& Sugiyanto, B.R.L. (2016). Role conflict and role ambiguity on local government internal auditors: The determinant and impacts. Journal of Indonesian Economy and Business. Vol 31 (1), 63 – 80Nugroho, M.K. (2012). Pengaruh stress peran dan kepuasan kerja terhadap komitmen organisasi perawat Di RSPI Sulianti Saroso. (Tesis yang tidak dipublikasikan). Universitas Indonesia, Indonesia.Rizwan, M., Waseem, A., & Bukhari, S.A. (2014). Antecedents of Job Stress and its impact on Job Performance and Job Satisfaction. International Journal of Learning & Development, Vol. 4 (2)Robbins, S.P (2002). Perilaku Organisasi. Ed. 8. Jakarta: PT. PrenhallindoRobbins, S.P., & Judge, T.A. (2017). Organizational Behavior. 16th ed.,USA : PearsonRodell, J. B., & Judge, T. A. (2009). Can “good” stressors spark “bad” behaviors? The mediating role of emotions in links of challenge and hindrance stressors with citizenship and counterproductive behaviors. Journal of Applied Psychology, 94(6), 1438.Sai, M. L. (2014). An investigation on factors of work stress influence job performance: Moderating social support. Universiti Utara Malaysia.Savage, E.B. (1998). An examination of the changes in the profesional role of the Nurse ouside IrelandSolimun,. Fernandes, A.A.R., &Nurjannah. (2017). Model Statistika Multivariat: Pemodelan Persamaan Struktural (SEM) Pendekatan WarpPLS. Malang: UB PressSpector, P.E. (1997). Job Satisfaction. USA : SAGE Publication, Inc.Suwarto. (2010). Perilaku Keorganisasian. Yogyakarta: Universitas Atma JayaTang, Y.-T., & Chang, C.-H. (2010). Impact of role ambiguity and role conflict on employee Creativity. African Journal of Business Management. Vol. 4 (6), pp. 869-881.Wakefield, A., Spilsbury, K., Atkin, K., McKenna, H., Borglin, G., & Stuttard, L. (2009). Assistant or substitute: exploring the fit between national policy vision and local practice realities of assistant practitioner job descriptions. Health Policy, 90(2), 286-295.Wu, L., & Norman, I.J. (2005) An Investigation of Job Satisfaction, Organizational Commitment and Role Conflict and Ambiguity in a sample of Chinese undergraduate nursing student. Nurse Education Today, Article in Press. Retrieved from Ovid database
Styles APA, Harvard, Vancouver, ISO, etc.
18

Hong Son, Bui, Vu Van Nga, Le Thi Diem Hong et Do Thi Quynh. « Potent Natural Inhibitors of Alpha-Glucosidase and the Application of Aspergillus spp. in Diabetes type 2 Drugs : a Review ». VNU Journal of Science : Medical and Pharmaceutical Sciences 38, no 1 (24 mars 2022). http://dx.doi.org/10.25073/2588-1132/vnumps.4334.

Texte intégral
Résumé :
Diabetes Mellitus has been becoming a disease of the century, and disease incidence is still rising worldwide. It causes many serious complications, especially in the eye, heart, kidneys, brain, and vascular system, such as diabetic nephropathy, diabetic retinopathy, liver fa­ilure, etc. Moreover, the process of controlling this disease is complicated. Meanwhile, the antidiabetic drugs on the market are facing some problems with a wide range of adverse reactions. Therefore, finding new drugs to treat diabetes has always been a topic that many researchers are interested in, especially drugs derived from nature like microorganisms and medicinal plants. This review is to provide knowledge concerning the effects of α-glucosidase inhibitors, which are oral antidiabetic drugs commonly used for diabetes mellitus type 2. Besides, we show readers the variety of active ingredients originating from nature, particularly the secondary metabolites of Aspergillus spp., which have many applications in the chemical and medicinal industry. Keywords: Diabetes, α-glucosidase inhibitors, Aspergillus. References [1] W. H. Organization, Classification of Diabetes Mellitus, https://www.who.int/westernpacific/health-topics/diabetes (accessed on: May 11th, 2021).[2] J. Thrasher, Pharmacologic Management of Type 2 Diabetes Mellitus: Available Therapies, Am J Cardiol, Vol. 120, No. 1, 2017, pp. S4-S16, https://doi.org/10.1016/j.amjcard.2017.05.009.[3] W. Hakamata, M. Kurihara, H. Okuda, T. Nishio, T. Oku, Design and Screening Strategies for Alpha-glucosidase Inhibitors Based on Enzymological Information, Curr Top Med Chem, Vol. 9, No. 1, 2009, pp. 3-12, https://doi.org/10.2174/156802609787354306.[4] US, Patent Version Number: US4062950A, Amino Sugar Derivatives, https://patents.google.com/patent/US4062950A/en(accessed on: May 11th, 2021).[5] A. S. Dabhi, N. R. Bhatt, M. J. Shah, Voglibose: an Alpha- glucosidase Inhibitor, J Clin Diagn Res, Vol. 7, No. 12, 2013, pp. 3023-3027, https://doi.org/10.7860/JCDR/2013/6373.3838.[6] P. Durruty, M. Sanzana, L. Sanhueza, Pathogenesis of Type 2 Diabetes Mellitus, Type 2 Diabetes - from Pathophysiology to Modern Management, Intechopen, United Kingdom, 2019, pp. 1-18.[7] L. N. Khue, T. H. Dang, T. H. Quang, N. T. Khue et al., Guidelines for Diagnosis and Treatment of Diabetes Type 2, Ministry of Health, Vietnam, 2021 (in Vietnamese).[8] M. Okuyama, W. Saburi, H. Mori, A. Kimura, Alpha-Glucosidases and Alpha-1,4-Glucan Lyases: Structures, Functions, and Physiological Actions, Cell Mol Life Sci, Vol. 73, 2016, pp. 2727-2751, https://doi.org/10.1007/s00018-016-2247-5.[9] V. L. Yip, S. G. Withers, Nature's Many Mechanisms for The Degradation of Oligosaccharides, Org Biomol Chem, Vol. 19, No. 2, 2004, pp. 2707-2713, https://doi.org/10.1039/B408880H.[10] B. Henrissat, A. Bairoch, New Families in The Classification of Glycosyl Hydrolases Based on Amino Acid Sequence Similarities, Biochem J, Vol. 293, No. 3, 1993, pp. 781-788, https://doi.org/10.1042/bj2930781.[11] B. Henrissat, A Classification of Glycosyl Hydrolases Based on Amino Acid Sequence Similarities, Biochem J, Vol. 280, No. 2, 1991, pp. 309-316, https://doi.org/10.1042/bj2800309.[12] R. Gupta, P. Gigras, H. Mohapatra, V. K. Goswami, B. Chauhan, Microbial A-amylases: A Biotechnological Perspective, Process Biochemistry, Vol. 38, No. 11, 2003, pp. 1599-1616, https://doi.org/10.1016/s0032-9592(03)00053-0.[13] C. V. D. Maarel, B. V. D. Veen, J. C .M. Uitdehaag, H. Leemhuis, L. Dijkhuizen, Properties and Applications of Starch-Converting Enzymes of The A-Amylase Family, Journal of Biotechnology, Vol. 94, No. 2, 2002, pp. 137-155, https://doi.org/10.1016/s0168-1656(01)00407-2.[14] N. R. Kim, D. W. Jeong, D. S. Ko, J. H. Shim, Characterization of Novel Thermophilic Alpha-Glucosidase from Bifidobacterium Longum, Int J Biol Macromol, Vol. 99, 2017, pp. 594-599, https://doi.org/10.1016/j.ijbiomac.2017.03.009.[15] D. R. Rose, M. M. Chaudet, K. Jones, Structural Studies of The Intestinal Alpha-Glucosidases, Maltase-glucoamylase and Sucrase-isomaltase, J Pediatr Gastroenterol Nutr, Vol. 66, No. 3, 2018, pp. S11-S13, https://doi.org/10.1097/MPG.0000000000001953.[16] L. Ren, X. Qin, X. Cao, L. Wang, F. Bai, G. Bai, Y. Shen, Structural Insight into Substrate Specificity of Human Intestinal Maltase-Glucoamylase, Protein Cell, Vol. 2, 2011, pp. 827-836, https://doi.org/10.1007/s13238-011-1105-3.[17] L. Sim, C. Willemsma, S. Mohan, H. Y. Naim, B. M. Pinto, D. R. Rose, Structural Basis for Substrate Selectivity in Human Maltase-Glucoamylase and Sucrase-Isomaltase N-Terminal Domains, J Biol Chem, Vol. 285, No. 23, 2010, pp. 17763-17770, https://doi.org/10.1074/jbc.M109.078980.[18] K. Jones, L. Sim, S. Mohan, J. Kumarasamy,H. Liu, S. Avery, H. Y. Naim, R. Q. Calvillo, B. L. Nichols, B. M. Pinto, D. R. Rose, Mapping The Intestinal Alpha-Glucogenic Enzyme Specificities of Starch Digesting Mal se-Glucoamylase and Sucrase-Isomaltase, Bioorg Med Chem, Vol. 19, 2011, pp. 3929-3934, https://doi.org/10.1016/j.bmc.2011.05.033.[19] P. T. T. Chau, P. T. Nghia, Enzyme and Application, Education Publisher, Vietnam, 2009.[20] Researchgate, Food Protein-Derived Bioactive Peptides in Management of Type 2 Diabetes - Scientific Figure, https://www.researchgate.net/figure/Mechanism-of-action-of-alpha-glucosidase-inhibitors_fig2_279991207 (accessed on: May 10th, 2021).[21] Z. Liu, S. Ma, Recent Advances in Synthetic Alpha-Glucosidase Inhibitors, Chem Med Chem, Vol. 12, No. 11, 2017, pp. 819-829, https://doi.org/10.1002/cmdc.201700216.[22] A. Lee, P. Patrick, J. Wishart, M. Horowitz, J. E. Morley, The Effects of Miglitol on Glucagon-Like Peptide-1 Secretion And Appetite Sensations in Obese Type 2 Diabetics, Diabetes Obes Metab, Vol. 4, No. 5, 2002, pp. 329-335, https://doi.org/10.1046/j.14631326.2002.00219.x.[23] I. Takei, K. Miyamoto, O. Funae, N. Ohashi, S. Meguro, M. Tokui, T. Saruta, Secretion of GIP in Responders to Acarbose in Obese Type 2 (NIDDM) Patients, Journal of Diabetes and Its Complications, Vol. 15, No. 5, 2001, pp. 245-249, https://doi.org/10.1016/s1056-8727(01)00148-9.[24] X. Bian, X. Fan, C. Ke, Y. Luan, G. Zhao, A. Zeng, Synthesis and Alpha-Glucosidase Inhibitory Activity Evaluation of N-Substituted Aminomethyl-Beta-D-Glucopyranosides, Bioorg Med Chem, Vol. 21, No. 17, 2013, pp. 5442-5450, https://doi.org/10.1016/j.bmc.2013.06.002.[25] J. B. Yang, J. Y. Tian, Z. Dai, F. Ye, S. C. Ma, A. G. Wang, α-Glucosidase Inhibitors Extracted from The Roots of Polygonum Multiflorum Thunb, Fitoterapia, Vol. 117, 2017, pp. 65-70, https://doi.org/10.1016/j.fitote.2016.11.009.[26] Z. Yin, W. Zhang, F. Feng, Y. Zhang, W. Kang, α-Glucosidase Inhibitors Isolated from Medicinal Plants, Food Science and Human Wellness, Vol. 3, No.3-4, 2014, pp. 136-174, https://doi.org/10.1016/j.fshw.2014.11.003.[27] P. Qiu, Z. Liu, Y. Chen, R. Cai, G. Chen, Z. She, Secondary Metabolites with Alpha-Glucosidase Inhibitory Activity from The Mangrove Fungus Mycosphaerella sp. SYSU-DZG01, Mar Drugs, Vol. 17, No. 8, 2019, pp. 483-508, https://doi.org/10.3390/md17080483.[28] S. Munasaroh, S. R. Tamat, R. T. Dewi, Isolation and Identification of α-Glucosidase Inhibitor from Aspergillus Terreus F38, Indonesian Journal of Pharmacy, Vol. 29, No. 2, 2018, pp. 74-79, https://doi.org/10.14499/indonesianjpharm29iss2pp74.[29] R. T. Dewi, A. Suparman, H. Mulyani, P. D. N. Lotulung, Identification of A New Compound as α-Glucosidase Inhibitor from Aspergillus Aculeatus, Annales Bogorienses, Vol. 20, No. 1, 2016, pp. 19-23, https://doi.org/10.14203/ann. bogor .2016.v20.n1.19-23.[30] R. T. Dewi, S. Tachibana, A. Darmawan, Effect on α-Glucosidase Inhibition and Antioxidant Activities of Butyrolactone Derivatives from Aspergillus Terreus MC751, Medicinal Chemistry Research, Vol. 23, 2014, pp. 454-460, https://doi.org/10.1007/s00044-013-0659-4.[31] M. G. Kang, S. H. Yi, J. S. Lee, Production and Characterization of A New Alpha-Glucosidase Inhibitory Peptide from Aspergillus Oryzae N159-1, Mycobiology, Vol. 41, No. 3, 2013, pp. 149-154, https://doi.org/10.5941/MYCO.2013.41.3.149.[32] S. Onose, R. Ikeda, K. Nakagawa, T. Kimura, K. Yamagishi, O. Higuchi, T. Miyazawa, Production of The Alpha-Glycosidase Inhibitor 1-Deoxynojirimycin from Bacillus Species, Food Chem, Vol. 138, No. 1, 2013, pp. 516-523, https://doi.org/10.1016/j.foodchem.2012.11.012.[33] Y. P. Zhu, K. Yamaki, T. Yoshihashi, M. Ohnishi Kameyama, X. T. Li, Y. Q. Cheng, Y. Mori, L. T. Li, Purification and Identification of 1-Deoxynojirimycin (DNJ) in Okara Fermented by Bacillus Subtilis B2 from Chinese Traditional Food (Meitaoza), J Agric Food Chem, Vol. 58,No. 7, 2010, pp. 4097-4103, https://doi.org/10.1021/jf9032377.[34] A. Tabussum, N. Riaz, M. Saleem, M. Ashraf, M. Ahmad, U. Alam, B. Jabeen, A. Malik, A. Jabbar, α-Glucosidase Inhibitory Constituents from Chrozophora Plicata, Phytochemistry Letters, Vol. 6, No. 4. 2013, pp. 614-619, https://doi.org/10.1016/j.phytol.2013.08.005.[35] M. Yagi, T. Kouno, Y. Aoyagi, H. Murai, The Structure of Moranoline, A Piperidine Alkaloid from Morus Species, Journal of The Agricultural Chemical Society of Japan, Vol. 50, No. 11, 1976, pp. 571-572, https://doi.org/10.1271/nogeikagaku1924.50.11_571.[36] M. Hemker, A. Stratmann, K. Goeke, W. Schroder, J. Lenz, W. Piepersberg, H. Pape, Identification, Cloning, Expression, and Characterization of The Extracellular Acarbose-Modifying Glycosyltransferase, AcbD, from Actinoplanes Sp. Strain SE50, J Bacteriol, Vol. 183, No. 15, 2001, pp. 4484-4492, https://doi.org/10.1128/JB.183. 15.4484-4492.2001.[37] E. Truscheit, I. Hillebrand, B. Junge, L. Müller, W. Puls, D. Schmidt, Microbial α-Glucosidase Inhibitors: Chemistry, Biochemistry, and Therapeutic Potential, Presented at Drug Concentration Monitoring Microbial alpha-Glucosidase Inhibitors Plasminogen Activators, Springer-Verlag, Berlin, 1988.[38] Y. Kameda, N. Asano, M. Yoshikawa, M. Takeuchi, T. Yamaguchi, K. Matsui, S. Horii, H. Fukase, Valiolamine, A New Alpha-Glucosidase Inhibiting Aminocyclitol Produced by Streptomyces Hygroscopicus, J Antibiot (Tokyo), Vol. 37, No. 11, 1984, pp. 1301-1307, https://doi.org/10.7164/antibiotics.37.1301.[39] D. T. Tuyen, V. V. Hanh, V. T. T. Hang, D. K. Trinh, D. T. Quyen, Extraction and Purification of DNJ (1-Deoxynojirimycin) Inhibiting α-Glucosidase from B. Subtilis VN9 Strain Isolated from Vietnam, National Biotechnology Conference, 2013.[40] D. T. Tuyen, Optimization and Purification of α-Glucosidase Inhibitor from Bacillus Subtilis YT20 Isolated in Vietnam, Vietnam Journal of Science and Technology, Vol. 59, No. 2, 2021, pp. 179-188, https://doi.org/10.15625/2525-2518/ 59/2/14928.[41] S. E. Baker, J. W. Bennett, An Overview of the Genus Aspergillus, Aspergillus: Molecular Biology and Genomics, The Aspergilli, Taylor & Francis, United Kingdom, 2008, pp. 3-13.[42] H. C. Gugnani, Ecology and Taxonomy of Pathogenic Aspergilli, Front Biosci, Vol. 8, No. 6, 2003, pp. s346- s357, https://doi.org/10.2741/1002.[43] C. G. Shaw, The Genus Aspergillus, Science, Vol. 150, No. 3697, 1965, pp. 736-737, https://doi.org/10.1126/science.150.3697.736-a.[44] M. T. Hedayati, A. C. Pasqualotto, P. A. Warn, P. Bowyer, D. W. Denning, Aspergillus Flavus: Human Pathogen, Allergen and Mycotoxin Producer, Microbiology, Vol. 153, No. 6, 2007, pp. 1677-1692, https://doi.org/10.1099/mic.0.2007/007641-0.[45] T. R. Dagenais, N. P. Keller, Pathogenesis of Aspergillus Fumigatus in Invasive Aspergillosis, Clin Microbiol Rev, Vol. 22, No. 3, 2009, pp. 447-465, https://doi.org/10.1128/CMR.00055-08.[46] S. Amaike, N. P. Keller, Aspergillus Flavus, Annu Rev Phytopathol, Vol. 49, 2011, pp. 107-133, https://doi.org/10.1146/annurev-phyto-072910-095221.[47] J. Houbraken, R. P. De Vries, R. A. Samson, Modern Taxonomy of Biotechnologically Important Aspergillus and Penicillium Species, Adv Appl Microbiol, Vol. 86, 2014, pp. 199-249, https://doi.org/10.1016/B978-0-12-800262-9.00004-4.[48] E. Ichishima, Development of Enzyme Technology for Aspergillus Oryzae, A. Sojae, and A. Luchuensis, The National Microorganisms of Japan, Biosci Biotechnol Biochem, Vol. 80, No. 9, 2016, pp. 1681-1692, https://doi.org/10.1080/09168451.2016.1177445.[49] E. Schuster, N. Dunn-Coleman, J. C. Frisvad, P. W. Van Dijck, on The Safety of Aspergillus Niger-A Review, Appl Microbiol Biotechnol, Vol. 59, No. 4-5, 2002, pp. 426-435, https://doi.org/10.1007/s00253-002-1032-6.[50] J. H. Yu, N. Keller, Regulation of Secondary Metabolism in Filamentous Fungi, Annu Rev Phytopathol, Vol. 43, 2005, pp. 437-458, https://doi.org/10.1146/annurev.phyto.43.040204.140214.[51] J. F. Sanchez, A. D. Somoza, N. P. Keller, C. C. Wang, Advances in Aspergillus Secondary Metabolite Research in The Post-Genomic Era, Nat Prod Rep, Vol. 29, No. 3, 2012, pp. 351-371, https://doi.org/10.1039/c2np00084a.[52] J. W. Bennett, M. Klich, Mycotoxins, Clin Microbiol Rev, Vol. 16, 2003, pp. 497-516, https://doi.org/10.1128/cmr.16.3.497-516.2003.[53] Q. Zhou, J. K. Liao, Statins and cardiovascular Diseases: from Cholesterol Lowering to Pleiotropy, Curr Pharm Des, Vol. 15, No. 5, 2009, pp. 467-478, https://doi.org/10.2174/138161209787315684.[54] A. W. Alberts, Discovery, Biochemistry and Biology of Lovastatin, Am J Cardiol, Vol. 62, No. 15, 1988, pp. 10J-15J, https://doi.org/10.1016/0002-9149(88)90002-1.[55] H. Tomoda, Y. K. Kim, H. Nishida, R. Masuma, S. Omura, Pyripyropenes, Novel Inhibitors of Acyl-Coa: Cholesterol Acyltransferase Produced by Aspergillus Fumigatu- Production, Isolation, and Biological Properties, J Antibiot (Tokyo), Vol. 47, No. 2, 1994, pp. 148-153, https://doi.org/10.7164/antibiotics.47.148.[56] F. Pelaez, Biological Activities of Fungal Metabolites, Marcel Dekker, United Stated of America, 2004.[57] E. L. Dulaney, Penicillin Production by The Aspergillus Nidulans Group, Mycologia, Vol. 39, No. 5, 2018, pp. 582-586, https://doi.org/10.1080/00275514.1947.12017637.[58] T. T. Bladt, J. C. Frisvad, P. B. Knudsen, T. O. Larsen, Anticancer and Antifungal Compounds from Aspergillus, Penicillium and Other Filamentous Fungi, Molecules, Vol. 18, No. 9, 2013, pp. 11338-11376, https://doi.org/10.3390/molecules180911338.[59] Y. Wu, Y. Chen, X. Huang, Y. Pan, Z. Liu, T. Yan, W. Cao, Z. She, alpha-Glucosidase Inhibitors: Diphenyl Ethers and Phenolic Bisabolane Sesquiterpenoids from The Mangrove Endophytic Fungus Aspergillus Flavus QQSG-3, Mar Drugs, Vol. 16, No. 9, 2018, pp. 307-316, https://doi.org/10.3390/md16090307.
Styles APA, Harvard, Vancouver, ISO, etc.
19

Minh, Phan Hong, Vu Khanh Linh, Nguyen Thanh Hai et Bui Thanh Tung. « A Comprehensive Review of Vaccines against Covid-19 ». VNU Journal of Science : Medical and Pharmaceutical Sciences 37, no 3 (14 septembre 2021). http://dx.doi.org/10.25073/2588-1132/vnumps.4365.

Texte intégral
Résumé :
The globe is engulfed by one of the most extensive public health crises as COVID-19 has become a leading cause of death worldwide. COVID-19 was first detected in Wuhan, China, in December 2019, causing the severe acute respiratory syndrome. This review discusses issues related to Covid-19 vaccines, such as vaccine development targets, vaccine types, efficacy, limitations and development prospects. Keywords: Covid-19, SARS-CoV-2, vaccine, spike protein. References [1] C. Wang, P. W. Horby, F. G. Hayden, G. F. Gao, A Novel Coronavirus Outbreak of Global Health Concern, The Lancet, Vol. 395, No. 10223, 2020, pp. 470-473, https://doi.org/10.1016/S0140-6736(20)30185-9.[2] T. Singhal, A Review of Coronavirus Disease-2019 (COVID-19), The Indian Journal of Pediatrics, Vol. 87, 2020, pp. 281-286, https://doi.org/10.1007/s12098-020-03263-6.[3] World Health Organization, WHO Coronavirus (COVID-19) Dashboard, https://covid19.who.int/, (accessed on: August 21st, 2021).[4] A. Alimolaie, A Review of Coronavirus Disease-2019 (COVID-19), Biological Science Promotion Vol. 3, No. 6, 2020, pp. 152-157.[5] J. Yang, Y. Zheng, X. Gou, K. Pu, Z. Chen, Q. Guo et al., Prevalence of Comorbidities and Its Effects in Patients Infected with SARS-Cov-2: A Systematic Review and Meta-Analysis, International Journal of Infectious Diseases, Vol. 94, 2020, pp. 91-95, https://doi.org/10.1016/j.ijid.2020.03.017.[6] H. E. Randolph, L. B. Barreiro, Herd Immunity: Understanding COVID-19, Immunity, Vol. 52, No. 5, 2020, pp. 737-741, https://doi.org/10.1016/j.immuni.2020.04.012.[7] F. Jung, V. Krieger, F. Hufert, J. H. Küpper, Herd Immunity or Suppression Strategy to Combat COVID-19, Clinical Hemorheology and Microcirculation, Vol. 75, No. 1, 2020, pp. 13-17, https://doi.org/10.3233/CH-209006.[8] O. Sharma, A. A. Sultan, H. Ding, C. R. Triggle, A Review of the Progress and Challenges of Developing a Vaccine for COVID-19, Frontiers in Immunology, Vol. 11, No. 2413, 2020, pp. 1-17, https://doi.org/10.3389/fimmu.2020.585354.[9] G. D. Sempowski, K. O. Saunders, P. Acharya, K. J. Wiehe, B. F. Haynes, Pandemic preparedness: Developing Vaccines and Therapeutic Antibodies for COVID-19, Cell, Vol. 181, No. 7, 2020, pp. 1458-1463, https://doi.org/10.1016/j.cell.2020.05. 041.[10] A. J. R. Morales, J. A. C. Ospina, E. G. Ocampo, R. V. Peña, Y. H. Rivera, J. P. E. Antezana et al., Clinical, Laboratory and Imaging Features of COVID-19: A Systematic Review and Meta-Analysis. Travel Medicine and Infectious Disease, Vol. 34, 2020, pp. 101-623, https://doi.org/10.1016/j.tmaid.2020.101623.[11] C. Huang, Y. Wang, X. Li, L. Ren, J. Zhao, Y. Hu et al., Clinical Features of Patients Infected with 2019 Novel Coronavirus in Wuhan, China, The Lancet, Vol. 395, No. 10223, 2020, pp. 497-506, https://doi.org/10.1016/S0140-6736(20)30183-5.[12] R. Lu, X. Zhao, J. Li, P. Niu, B. Yang, H. Wu et al., Genomic Characterisation and Epidemiology of 2019 Novel Coronavirus: Implications for Virus Origins and Receptor Binding, The Lancet, Vol. 395, No. 10224, 2020, pp. 565-574, https://doi.org/10.1016/S0140-6736(20)30251-8.[13] L. Chen, W. Liu, Q. Zhang, K. Xu, G. Ye, W. Wu et al., RNA Based mNGS Approach Identifies a Novel Human Coronavirus From Two Individual Pneumonia Cases in 2019 Wuhan Outbreak, Emerging Microbes & Infections, Vol. 9, No. 1, 2020, pp. 313-319, https://doi.org/10.1080/22221751.2020.1725399.[14] Y. Chen, Q. Liu, D. Guo, Emerging Coronaviruses: Genome Structure, Replication, and Pathogenesis, Journal of Medical Virology, Vol. 92, No. 4, 2020, pp. 418-423, https://doi.org/10.1002/jmv.25681.[15] D. R. Beniac, A. Andonov, E. Grudeski, T. F. Booth, Architecture of The SARS Coronavirus Prefusion Spike, Nature Structural & Molecular Biology, Vol. 13, No. 8, 2006, pp. 751-752, https://doi.org/10.1038/nsmb1123.[16] B. W. Neuman, G. Kiss, A. H. Kunding, D. Bhella, M. F. Baksh, S. Connelly et al., A Structural Analysis of M Protein in Coronavirus Assembly and Morphology, Journal of Structural Biology, Vol. 174, No. 1, 2011, pp. 11-22, https://doi.org/10.1016/j.jsb.2010.11.021.[17] J. L. N. Torres, M. L. DeDiego, C. V. Báguena, J. M. J. Guardeño, J. A. R. Nava, R. F. Delgado et al., Severe Acute Respiratory Syndrome Coronavirus Envelope Protein Ion Channel Activity Promotes Virus Fitness and Pathogenesis, Plos Pathogens Vol. 10, No. 5, 2014, https://doi.org/10.1371/journal.ppat.1004077.[18] A. R. Fehr, S. Perlman. Coronaviruses: An Overview of Their Replication and Pathogenesis. Coronaviruses, New York, 2015, pp. 1-23.[19] M. Letko, A. Marzi, V. Munster, Functional Assessment of Cell Entry and Receptor Usage for SARS-CoV-2 and Other Lineage B Betacoronaviruses,. Nature Microbiology, Vol. 5, No. 4, 2020, pp. 562-569, https://doi.org/10.1038/s41564-020-0688-y.[20] A. Grifoni, D. Weiskopf, S. I. Ramirez, J. Mateus, J. M. Dan, C. R. Moderbacher et al., Targets of T Cell Responses to SARS-Cov-2 Coronavirus in Humans With COVID-19 Disease and Unexposed Individuals, Cell, Vol. 181, No. 7, 2020, pp. 1489-1501, https://doi.org/10.1016/j.cell.2020.05.015.[21] M. Leslie, T Cells Found in Coronavirus Patients Bode Well for Long-Term Immunity, American Association for the Advancement of Science, Vol. 368, No. 6493, 2020, pp. 809-810, https://doi.org/10.1126/science.368.6493.809.[22] N. L. Bert, A. T. Tan, K. Kunasegaran, C. Y. Tham, M. Hafezi, A. Chia et al., SARS-CoV-2-specific T Cell Immunity in Cases of COVID-19 and SARS, and Uninfected Controls, Nature, Vol. 584, No. 7821, 2020, pp. 457-462, https://doi.org/10.1038/s41586-020-2550-z .[23] E. R. Adams, M. Ainsworth, R. Anand, M. I. Andersson, K. Auckland, J. K. Baillie et al., Antibody Testing for COVID-19: A Report from the National COVID Scientific Advisory Panel, Wellcome Open Research, Vol. 5, 2020, pp. 139-156, https://doi.org/10.12688/wellcomeopenres.15927.1.[24] N. Vabret, G. J. Britton, C. Gruber, S. Hegde, J. Kim, M. Kuksin et al., Immunology of COVID-19: current state of the science, Immunity. Vol. 52, No. 6, 2020, pp. 910-941, https://doi.org/10.1016/j.immuni.2020.05.002[25] W. Liu, A. Fontanet, P. H. Zhang, L. Zhan, Z. T. Xin, L. Baril et al., Two-Year Prospective Study of The Humoral Immune Response of Patients with Severe Acute Respiratory Syndrome, The Journal of Infectious Diseases, Vol. 193, No. 6, 2006, pp. 792-795, https://doi.org/10.1086/500469.[26] E. Callaway, Coronavirus Vaccines Leap Through Safety Trials-But Which Will Work is Anybody's Guess, Nature, Vol. 583, No. 7818, 2020, pp. 669-671, https://doi.org/10.1038/d41586-020-02174-y.[27] Y. Dong, T. Dai, Y. Wei, L. Zhang, M. Zheng, F. Zhou. A Systematic Review of SARS-Cov-2 Vaccine Candidates, Signal Transduction and Targeted Therapy, Vol. 5, No. 1, 2020, pp. 1-14, https://doi.org/10.1038/s41392-020-00352-y. [28] E. P. Regalado, Vaccines for SARS-CoV-2: Lessons from Other Coronavirus Strains. Infectious Diseases and Therapy, Vol. 9, No. 2, 2020, pp. 255-274, https://doi.org/10.1007/s40121-020-00300-x.[29] Y. Cai, J. Zhang, T. Xiao, H. Peng, S. M. Sterling, R. M. Walsh et al., Distinct Conformational States of SARS-CoV-2 Spike Protein, Science, Vol. 369, No. 6511, 2020, pp. 1586-1592, https://doi.org/10.1126/science.abd4251.[30] M. S. Suthar, M. G. Zimmerman, R. C. Kauffman, G. Mantus, S. L. Linderman, W. H. Hudson et al., Rapid Generation of Neutralizing Antibody Responses in COVID-19 Patients, Cell Reports Medicine, Vol. 1, No. 3, 2020, pp. 100040-100047, https://doi.org/10.1016/j.xcrm.2020.100040.[31] Q. Gao, L. Bao, H. Mao, L. Wang, K. Xu, M. Yang et al., Development of an Inactivated Vaccine Candidate for SARS-CoV-2, Science, Vol. 36, No. 6499, 2020, pp. 77-81, https://doi.org/10.1126/science.abc1932.[32] L. Ni, F. Ye, M. L. Cheng, Y. Feng, Y. Q. Deng, H. Zhao et al., Detection of SARS-CoV-2-specific Humoral and Cellular Immunity in COVID-19 Convalescent Individuals, Immunity, Vol. 52, No. 6, 2020, pp. 971-977, https://doi.org/10.1016/j.immuni.2020.04.023.[33] B. D. Quinlan, H. Mou, L. Zhang, Y. Guo, W. He, A. Ojha et al., The SARS-CoV-2 Receptor-binding Domain Elicits a Potent Neutralizing Response Without Antibody-dependent Enhancement, Available at SSRN, Vol. 3575134, 2020, pp. 1-24, http://dx.doi.org/10.2139/ssrn.3575134.[34] D. B. Melo, B. E. N. Payant, W. C. Liu, S. Uhl, D. Hoagland, R. Moller et al., Imbalanced Host Responseto SARS-Cov-2 Drives Development of COVID-19, Cell, Vol. 181, No. 5, 2020, pp. 1036-1045, https://doi.org/10.1016/j.cell.2020.04.026.[35] J. Hadjadj, N. Yatim, L. Barnabei, A. Corneau, J. Boussier, N. Smith et al., Impaired Type I Interferon Activity and Inflammatory Responses in Severe COVID-19 Patients, Science, Vol. 36, No. 6504, 2020, pp. 718-724, https://doi.org/10.1126/science.abc6027.[36] H. Pang, Y. Liu, X. Han, Y. Xu, F. Jiang, D. Wu et al., Protective Humoral Responses to Severe Acute Respiratory Syndrome-associated Coronavirus: Implications for the Design of an Effective Protein-based Vaccine, Journal of General Virology, Vol. 85, No. 10, 2004, pp. 3109-3113, https://doi.org/10.1099/vir.0.80111-0.[37] Y. Li, R. Tenchov, J. Smoot, C. Liu, S. Watkins, Q. Zhou, A Comprehensive Review of The Global Efforts on COVID-19 Vaccine Development, ACS Central Science , Vol. 7, No. 4, 2021, pp. 512-533, https://doi.org/10.1021/acscentsci.1c00120.[38] J. A. Wolff, R. W. Malone, P. Williams, W. Chong, G. Acsadi, A. Jani et al., Direct Gene Transfer Into Mouse Muscle in Vivo, Science, Vol. 247, No. 4949, 1990, pp. 1465-1468,. https://doi.org/10.1126/science.1690918.[39] M. Ingolotti, O. Kawalekar, D. J. Shedlock, K. Muthumani, D. B. Weiner, DNA Vaccines for Targeting Bacterial Infections, Expert Review of Vaccines, Vol. 9, No. 7, 2010, pp. 747-763, https://doi.org/10.1586/erv.10.57.[40] S. Jones, K. Evans, H. M. Johnn, M. Sharpe, J. Oxford, R. L. Williams et al., DNA Vaccination Protects Against an Influenza Challenge in A Double-Blind Randomised Placebo-Controlled Phase 1b Clinical Trial, Vaccine, Vol. 27, No. 18, 2009, pp. 2506-2512, https://doi.org/10.1016/j.vaccine.2009.02.061.[41] J. Kim, INOVIO Doses First Subject in Phase 2 Segment of its INNOVATE Phase 2/3 Clinical Trial for INO-4800, its DNA Medicine to Prevent COVID-19, Cision PR Newswire: News Distribution, Targeting and Monitoring Home, https://www.prnewswire.com/newsreleases/inovio-doses-first-subject-in-phase-2-segment-of-its-innovate-phase-23-clinical-trial-for-ino-4800-its-dna-medicine-to-prevent-covid-19-301187002.html/, 2020, (accessed on: December 7th, 2020).[42] P. Tebas, S. Yang, J. D. Boyer, E. L. Reuschel, A. Patel, A. C. Quick et al., Safety and Immunogenicity of INO-4800 DNA Vaccine Against SARS-Cov-2: A Preliminary Report of an Open-Label, Phase 1 Clinical Trial, EClinical Medicine, Vol. 31, No. 1000689, 2021, https://doi.org/10.1016/j.eclinm.2020.100689.[43] T. Schlake, A. Thess, M. F. Mleczek, K. J. Kallen. Developing mRNA-vaccine Technologies, RNA Biology, Vol. 9, No. 11, 2012, pp. 1319-1330, https://doi.org/10.4161/rna.22269.[44] K. J. Hassett, K. E. Benenato, E. Jacquinet, A. Lee, A. Woods, O. Yuzhakov et al., Optimization of lipid Nanoparticles for Intramuscular Administration of mRNA Vaccines, Molecular Therapy-Nucleic Acids, Vol. 15, 2019, pp. 1-11, https://doi.org/10.1016/j.omtn.2019.01.013.[45] A. Bashirullah, R. L. Cooperstock, H. D. Lipshitz, Spatial and Temporal Control of RNA Stability, Proceedings of the National Academy of Sciences, Vol. 98, No. 13, 2001, pp. 7025-7028. [46] K. Kariko, H. Muramatsu, J. Ludwig, D. Weissman, Generating the Optimal mRNA for Therapy: HPLC Purification Eliminates Immune Activation and Improves Translation of Nucleoside-Modified, Protein-Encoding mRNA, Nucleic Acids Research, Vol. 39, No. 21, 2011, pp. 142-152, https://doi.org/10.1093/nar/gkr695.[47] N. Pardi, M. J. Hogan, M. S. Naradikian, K. Parkhouse, D. W. Cain, L. Jones et al., Nucleoside-Modified mRNA Vaccines Induce Potent T Follicular Helper and Germinal Center B Cell Responses, Journal of Experimental Medicine, Vol. 215, No. 6, 2018, pp. 1571-1588, https://doi.org/10.1084/jem.20171450.[48] L. A. Jackson, E. J. Anderson, N. G. Rouphael, P. C. Roberts, M. Makhene, R. N. Coler et al., An mRNA Vaccine Against SARS-CoV-2-Preliminary Report, New England Journal of Medicine, Vol. 383, No. 20, 2020, pp. 1920-1931, https://doi.org/10.1056/NEJMoa2022483.[49] K. S. Corbett, D. K. Edwards, S. R. Leist, O. M. Abiona, S. B. Barnum, R. A. Gillespie et al., SARS-CoV-2 mRNA Vaccine Design Enabled by Prototype Pathogen Preparedness, Nature, Vol. 586, No. 7830, 2020, pp. 567-571, https://doi.org/10.1038/s41586-020-2622-0.[50] K. S. Corbett, B. Flynn, K. E. Foulds, J. R. Francica, S. B. Barnum, A. P. Werner et al., Evaluation of the mRNA-1273 Vaccine Against SARS-CoV-2 in Nonhuman Primates, New England Journal of Medicine, Vol. 383, No. 16, 2020, pp. 1544-1555, https://doi.org/10.1056/NEJMoa2024671.[51] E. E. Walsh, R. Frenck, A. R. Falsey, N. Kitchin, J. Absalon, A. Gurtman et al., RNA-Based COVID-19 Vaccine BNT162b2 Selected for a Pivotal Efficacy Study, Medrxiv, Vol. 2, 2020, https://doi.org/10.1101/2020.08.17.20176651.[52] M. J. Mulligan, K. E. Lyke, N. Kitchin, J. Absalon, A. Gurtman, S. Lockhart et al., Phase 1/2 Study to Describe the Safety and Immunogenicity of a COVID-19 RNA Vaccine Candidate (BNT162b1) in Adults 18 to 55 Years of Age: Interim Report, Medrxiv, Vol. 586, 2020, pp. 589-593, https://doi.org/10.1056/NEJMoa2028436.[53] E. J. Anderson, N. G. Rouphael, A. T. Widge, L. A. Jackson, P. C. Roberts, M. Makhene et al., Safety and Immunogenicity of SARS-CoV-2 mRNA-1273 Vaccine in Older Adults, New England Journal of Medicine, Vol. 383, No. 25, 2020, pp. 2427-2438, https://doi.org/10.1038/s41586-020-2639-4.[54] P. F. McKay, K. Hu, A. K. Blakney, K. Samnuan, J. C. Brown, R. Penn et al., Self-amplifying RNA SARS-CoV-2 Lipid Nanoparticle Vaccine Candidate Induces High Neutralizing Antibody Titers in Mice, Nature Communications, Vol. 11, No. 1, 2020, pp. 1-7, https://doi.org/10.1038/s41467-020-17409-9.[55] J. H. Erasmus, A. P. Khandhar, A. C. Walls, E. A. Hemann, M. A. O’Connor, P. Murapa et al., Single-dose Replicating RNA vaccine Induces Neutralizing Antibodies Against SARS-CoV-2 in Nonhuman Primates, BioRxiv, 2020, https://doi.org/10.1101/2020.05.28.121640.[56] R. D. Alwis, E. S. Gan, S. Chen, Y. S. Leong, H. C. Tan, S. L. Zhang et al., A Single Dose of Self-Transcribing and Replicating RNA-based SARS-CoV-2 Vaccine Produces Protective Adaptive Immunity in Mice, Molecular Therapy, Vol. 29, No. 6, 2021, pp. 1970-1983, https://doi.org/10.1016/j.ymthe.2021.04.001.[57] M. R. Guroff, Replicating and Non-Replicating Viral Vectors for Vaccine Development, Current Opinion in Biotechnology, Vol. 18, No. 6, 2007, pp. 546-556, https://doi.org/10.1016/j.copbio.2007.10.010.[58] K. Benihoud, P. Yeh, M. Perricaudet, Adenovirus Vectors for Gene Delivery, Current Opinion in Biotechnology, Vol. 10, No. 5,1999, pp. 440-447, https://doi.org/10.1016/s0958-1669(99)00007-5.[59] Z. Xiang, G. Gao, A. R. Sandoval, C. J. Cohen, Y. Li, J. M. Bergelson et al., Novel, Chimpanzee Serotype 68-Based Adenoviral Vaccine Carrier for Induction of Antibodies to A Transgene Product, Journal of Virology, Vol. 76, No. 6, 2002, pp. 2667-2675, https://doi.org/10.1128/JVI.76.6.2667-2675.2002.[60] F. C. Zhu, X. H. Guan, Y. H. Li, J. Y. Huang, T. Jiang, L. H. Hou et al., Immunogenicity and Safety Of A Recombinant Adenovirus Type-5-Vectored COVID-19 Vaccine in Healthy Adults Aged 18 Years or Older: A Randomised, Double-Blind, Placebo-Controlled, Phase 2 Trial, The Lancet, Vol. 396, No. 10249, 2020, pp. 479-488, https://doi.org/10.1016/S0140-6736(20)31605-6.[61] F. C. Zhu, Y. H. Li, X. H. Guan, L. H. Hou, W. J. Wang, J. X. Li et al., Safety, Tolerability, and Immunogenicity of A Recombinant Adenovirus Type-5 Vectored COVID-19 Vaccine: A Dose-Escalation, Open-Label, Non-Randomised, First-in-Human Trial, The Lancet. Vol. 395, No. 10240, 2020, pp. 1845-1854.[62] S. Wu, G. Zhong, J. Zhang, L. Shuai, Z. Zhang, Z. Wen, et al. A Single Dose of An Adenovirus-Vectored Vaccine Provides Protection Against SARS-Cov-2 Challenge, Nature Communications Vol. 1, No. 11, 2020, pp. 1-7, https://doi.org/10.1016/s41467-020-17972-1.[63] P. M. Folegatti, K. J. Ewer, P. K. Aley, B. Angus, S. Becker, S. B. Rammerstorfer et al., Safety and Immunogenicity of The Chadox1 Ncov-19 Vaccine Against SARS-Cov-2: A Preliminary Report of A Phase 1/2, Single-Blind, Randomised Controlled Trial, The Lancet, Vol. 396, No. 10249, 2020, pp. 467-478, https://doi.org/10.1016/S0140-6736(20)31604-4.[64] N. V. Doremalen, T. Lambe, A. Spencer, S. B. Rammerstorfer, J. N. Purushotham, J. R. Port et al., ChAdOx1 nCoV-19 Vaccine Prevents SARS-Cov-2 Pneumonia in Rhesus Macaques, Nature, Vol. 586, No. 7830, 2020, pp. 578-582, https://doi.org/10.1016/s41586-020-2608-y.[65] D. Y. Logunov, I. V. Dolzhikova, O. V. Zubkova, A. I. Tukhvatullin, D. V. Shcheblyakov, A. S. Dzharullaeva et al., Safety and Immunogenicity of an Rad26 And Rad5 Vector-Based Heterologous Prime-Boost COVID-19 Vaccine in Two Formulations: Two Open, Non-Randomised Phase 1/2 Studies From Russia, The Lancet, Vol. 396, No. 10255, 2020, pp. 887-897, https://doi.org/10.1016/S0140-6736(20)31866-3.[66] S. Y. Jung, K. W. Kang, E. Y. Lee, D. W. Seo, H. L. Kim, H. Kim et al., Heterologous Prime-Boost Vaccination with Adenoviral Vector and Protein Nanoparticles Induces Both Th1 and Th2 Responses Against Middle East Respiratory Syndrome Coronavirus, Vaccine, Vol. 36, No. 24, 2018, pp. 3468-3476, https://doi.org/10.1016/j.vaccine.2018.04.082.[67] S. Lu, Heterologous Prime-Boost Vaccination. Current Opinion in Immunology, Vol. 21, No. 3, 2009, pp. 346-351, https://doi.org/10.1016/j.coi.2009.05.016.[68] D. Y. Logunov, I. V. Dolzhikova, D. V. Shcheblyakov, A. I. Tukhvatulin, O. V. Zubkova, A. S. Dzharullaeva et al., Safety and Efficacy of an Rad26 and Rad5 Vector-Based Heterologous Prime-Boost COVID-19 Vaccine: an Interim Analysis of A Randomised Controlled Phase 3 Trial in Russia, The Lancet, Vol. 397, No. 10275, 2021, pp. 671-681, https://doi.org/10.1016/S0140-6736(21)00234-8.[69] T. Ura, K. Okuda, M. Shimada. Developments in Viral Vector-Based Vaccines, Vaccines, Vol. 2, No. 3, 2014, pp. 624-641, https://doi.org/10.3390/vaccines2030624.[70] B. E. Bache, M. P. Grobusch, S. T. Agnandji. Safety, Immunogenicity and Risk-Benefit Analysis of Rvsv-ΔG-ZEBOV-GP (V920) Ebola Vaccine in Phase I-III Clinical Trials Across Regions. Future Microbiology, Vol. 15, No. 2, 2020, pp. 85-106, https://doi.org/10.2217/fmb-2019-0237.[71] Ebola Vaccines, NIH: National Institute of Allergy and Infectious Diseases Logo, 2020, https://www.niaid.nih.gov/diseases-conditions/ebola-vaccines/, (accessed on: January 9th, 2020).[72] F. Krammer, SARS-CoV-2 Vaccines in Development, Nature, Vol. 586, No. 7830, 2020, pp. 516-527, https://doi.org/10.1038/s41586-020-2798-3.[73] Y. Zhang, G. Zeng, H. Pan, C. Li, Y. Hu, K. Chu et al., Safety, Tolerability, and Immunogenicity of an Inactivated SARS-CoV-2 Vaccine in Healthy Adults Aged 18-59 Years: A Randomised, Double-Blind, Placebo-Controlled, Phase 1/2 Clinical Trial, The Lancet Infectious Diseases, Vol. 21, No. 2, 2021, pp. 181-192, https://doi.org/10.1016/S1473-3099(20)30843-4.[74] Sinovac Announces Phase III Results of Its COVID-19 Vaccine, Sinovac, 2021. https://www.businessswwire.com/news/home/20210205005496/en/Sinovac-Announces-Phase-III-Results-of-Its-COVID-19-Vaccine/, 2021, (accessed on: February 5th,2021).[75] Sinovac Receives Conditional Marketing Authorization in China for its COVID-19 Vaccine. Sinovac, https://www.businessswwire.com/news/ home/20210208005305/en/Sinovac-Receives-Conditional-Marketing-Authorization-in-China-for-its-COVID-19-Vaccin/, 2021, (accessed on: February 8th, 2021).[76] L. M. Rossen, A. M. Branum, F. B. Ahmad, P. Sutton, R. N. Anderson, Excess Deaths Associated with COVID-19, by Age and Race and Ethnicity-United States, January 26-October 3, 2020, Morbidity and Mortality Weekly Report, Vol. 69, No. 42, 2020, pp. 1522-1527.[77] China Grants Conditional Market Approval for Sinopharm CNBG’s COVID-19 Vaccine. Sinopharm, http://www.sinopharm.com/en/s/1395-4173-38862.html/, 2021, (accessed on: January 2nd, 2021).[78] V. A. Fulginiti, J. J. Eller, A. W. Downie, C. H. Kempe, Altered Reactivity to Measles Virus: Atypical Measles in Children Previously Immunized with Inactivated Measles Virus Vaccines, Jama, Vol. 202, No. 12, 1967, pp. 1075-1080, https://doi.org/10.1001/jama.1967.03130250057008.[79] H. W. Kim, J. G. Canchola, C. D. Brandt, G. Pyles, R. M. Chanock, K. Jensen et al., Respiratory Syncytial Virus Disease in Infants Despite Prior Administration of Antigenic Inactivated Vaccine. American Journal of Epidemiology, Vol. 89, No. 4, 1969, pp. 422-434, https://doi.org/10.1093/oxfordjournals.aje.a120955.[80] Novavax Confirms High Levels of Efficacy Against Original and Variant COVID-19 Strains in United Kingdom and South Africa Trials, Novavax 2021, https://www.prnewswire.com/news-releases/novavax-confirms-high-levels-of-efficacy-against-original-and-variant-covid-19-strains-in-united-kingdom-and-south-africa-trials-301246019.html/, (accessed on: March 11th, 2021).[81] Our Vaccine, Covaxx, 2020, https://www.gavi.org/covax-vaccine-roll-out/, (accessed on: August 14th, 2021).[82] M. O. Mohsen, G. Augusto, M. F. Bachmann, The 3Ds in Virus‐like Particle Based‐vaccines: Design, Delivery and Dynamics, Immunological Reviews Vol. 296, No. 1, 2020, pp. 155-168, https://doi.org/10.1111/imr.12863.
Styles APA, Harvard, Vancouver, ISO, etc.
20

Thanh Binh, Nguyen Thi, Nguyen Thi Hai Yen, Dang Kim Thu, Nguyen Thanh Hai et Bui Thanh Tung. « The Potential of Medicinal Plants and Bioactive Compounds in the Fight Against COVID-19 ». VNU Journal of Science : Medical and Pharmaceutical Sciences 37, no 3 (14 septembre 2021). http://dx.doi.org/10.25073/2588-1132/vnumps.4372.

Texte intégral
Résumé :
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), a novel coronavirus , is causing a serious worldwide COVID-19 pandemic. The emergence of strains with rapid spread and unpredictable changes is the cause of the increase in morbidity and mortality rates. A number of drugs as well as vaccines are currently being used to relieve symptoms, prevent and treat the disease caused by this virus. However, the number of approved drugs is still very limited due to their effectiveness and side effects. In such a situation, medicinal plants and bioactive compounds are considered a highly valuable source in the development of new antiviral drugs against SARS-CoV-2. This review summarizes medicinal plants and bioactive compounds that have been shown to act on molecular targets involved in the infection and replication of SARS-CoV-2. Keywords: Medicinal plants, bioactive compounds, antivirus, SARS-CoV-2, COVID-19 References [1] R. Lu, X. Zhao, J. Li, P. Niu, B. Yang, H. Wu et al., Genomic Characterisation and Epidemiology of 2019, Novel Coronavirus: Implications for Virus Origins and Receptor Binding, The Lancet, Vol. 395, 2020, pp. 565-574, https://doi.org/10.1016/S0140-6736(20)30251-8.[2] World Health Organization, WHO Coronavirus (COVID-19) Dashboard, https://covid19.who.int, 2021 (accessed on: August 27, 2021).[3] H. Wang, P. Yang, K. Liu, F. Guo, Y. Zhang et al., SARS Coronavirus Entry into Host Cells Through a Novel Clathrin- and Caveolae-Independent Endocytic Pathway, Cell Research, Vol. 18, No. 2, 2008, pp. 290-301, https://doi.org/10.1038/cr.2008.15.[4] A. Zumla, J. F. W. Chan, E. I. Azhar, D. S. C. Hui, K. Y. Yuen., Coronaviruses-Drug Discovery and Therapeutic Options, Nature Reviews Drug Discovery, Vol. 15, 2016, pp. 327-347, https://doi.org/10.1038/nrd.2015.37.[5] A. Prasansuklab, A. Theerasri, P. Rangsinth, C. Sillapachaiyaporn, S. Chuchawankul, T. Tencomnao, Anti-COVID-19 Drug Candidates: A Review on Potential Biological Activities of Natural Products in the Management of New Coronavirus Infection, Journal of Traditional and Complementary Medicine, Vol. 11, 2021, pp. 144-157, https://doi.org/10.1016/j.jtcme.2020.12.001.[6] R. E. Ferner, J. K. Aronson, Chloroquine and Hydroxychloroquine in Covid-19, BMJ, Vol. 369, 2020, https://doi.org/10.1136/bmj.m1432[7] J. Remali, W. M. Aizat, A Review on Plant Bioactive Compounds and Their Modes of Action Against Coronavirus Infection, Frontiers in Pharmacology, Vol. 11, 2021, https://doi.org/10.3389/fphar.2020.589044.[8] Y. Chen, Q. Liu, D. Guo, Emerging Coronaviruses: Genome Structure, Replication, and Pathogenesis, Medical Virology, Vol. 92, 2020, pp. 418‐423. https://doi.org/10.1002/jmv.25681.[9] B. Benarba, A. Pandiella, Medicinal Plants as Sources of Active Molecules Against COVID-19, Frontiers in Pharmacology, Vol. 11, 2020, https://doi.org/10.3389/fphar.2020.01189.[10] N. T. Chien, P. V. Trung, N. N. Hanh, Isolation Tribulosin, a Spirostanol Saponin from Tribulus terrestris L, Can Tho University Journal of Science, Vol. 10, 2008, pp. 67-71 (in Vietnamese).[11] V. Q. Thang Study on Extracting Active Ingredient Protodioscin from Tribulus terrestris L.: Doctoral dissertation, VNU University of Science, 2018 (in Vietnamese).[12] Y. H. Song, D. W. Kim, M. J. C. Long, H. J. Yuk, Y. Wang, N. Zhuang et al., Papain-Like Protease (Plpro) Inhibitory Effects of Cinnamic Amides from Tribulus terrestris Fruits, Biological and Pharmaceutical Bulletin, Vol. 37, No. 6, 2014, pp. 1021-1028, https://doi.org/10.1248/bpb.b14-00026.[13] D. Dermawan, B. A. Prabowo, C. A. Rakhmadina, In Silico Study of Medicinal Plants with Cyclodextrin Inclusion Complex as The Potential Inhibitors Against SARS-Cov-2 Main Protease (Mpro) and Spike (S) Receptor, Informatics in Medicine Unlocked, Vol. 25, 2021, pp. 1-18, https://doi.org/10.1016/j.imu.2021.100645.[14] R. Dang, S. Gezici, Immunomodulatory Effects of Medicinal Plants and Natural Phytochemicals in Combating Covid-19, The 6th International Mediterranean Symposium on Medicinal and Aromatic Plants (MESMAP-6), Izmir, Selcuk (Ephesus), Turkey, 2020, pp. 12-13.[15] G. Jiangning, W. Xinchu, W. Hou, L. Qinghua, B. Kaishun, Antioxidants from a Chinese Medicinal Herb–Psoralea corylifolia L., Food Chemistry, Vol. 9, No. 2, 2005, pp. 287-292, https://doi.org/10.1016/j.foodchem.2004.04.029.[16] B. Ruan, L. Y. Kong, Y. Takaya, M. Niwa, Studies on The Chemical Constituents of Psoralea corylifolia L., Journal of Asian Natural Products Research, Vol. 9, No. 1, 2007, pp. 41-44, https://doi.org/10.1080/10286020500289618.[17] D. T. Loi, Vietnamese Medicinal Plants and Herbs, Medical Publishing House, Hanoi, 2013 (in Vietnamese).[18] S. Mazraedoost, G. Behbudi, S. M. Mousavi, S. A. Hashemi, Covid-19 Treatment by Plant Compounds, Advances in Applied NanoBio-Technologies, Vol. 2, No. 1, 2021, pp. 23-33, https://doi.org/10.47277/AANBT/2(1)33.[19] B. A. Origbemisoye, S. O. Bamidele, Immunomodulatory Foods and Functional Plants for COVID-19 Prevention: A Review, Asian Journal of Medical Principles and Clinical Practice, 2020, pp. 15-26, https://journalajmpcp.com/index.php/AJMPCP/article/view/30124[20] A. Mandal, A. K. Jha, B. Hazra, Plant Products as Inhibitors of Coronavirus 3CL Protease, Frontiers in Pharmacology, Vol. 12, 2021, pp. 1-16, https://doi.org/10.3389/fphar.2021.583387[21] N. H. Tung, V. D. Loi, B. T. Tung, L.Q. Hung, H. B. Tien et al., Triterpenen Ursan Frame Isolated from the Roots of Salvia Miltiorrhiza Bunge Growing in Vietnam, VNU Journal of Science: Medical and Pharmaceutical Sciences, Vol. 32, No. 2, 2016, pp. 58-62, https://js.vnu.edu.vn/MPS/article/view/3583 (in Vietnamese).[22] J. Y. Park, J. H. Kim, Y. M. Kim, H. J. Jeong, D. W. Kim, K. H. Park et al., Tanshinones as Selective and Slow-Binding Inhibitors for SARS-CoV Cysteine Proteases. Bioorganic and Medicinal Chemistry, Vol. 20, No. 19, 2012, pp. 5928-5935, https://doi.org/10.1016/j.bmc.2012.07.038.[23] F. Hamdani, N. Houari, Phytotherapy of Covid-19. A Study Based on a Survey in North Algeria, Phytotherapy, Vol. 18, No. 5, 2020, pp. 248-254, https://doi.org/10.3166/phyto-2020-0241.[24] P. T. L. Huong, N. T. Dinh, Chemical Composition And Antibacterial Activity of The Essential Oil From The Leaves of Regrowth Eucalyptus Collected from Viet Tri City, Phu Tho Province, Vietnam Journal of Science, Technology and Engineering, Vol. 18, No. 1, 2020, pp. 54-61 (in Vietnamese).[25] M. Asif, M. Saleem, M. Saadullah, H. S. Yaseen, R. Al Zarzour, COVID-19 and Therapy with Essential Oils Having Antiviral, Anti-Inflammatory, and Immunomodulatory Properties, Inflammopharmacology, Vol. 28, 2020, pp. 1153-1161, https://doi.org/10.1007/s10787-020-00744-0.[26] I. Jahan, O. Ahmet, Potentials of Plant-Based Substance to Inhabit and Probable Cure for The COVID-19, Turkish Journal of Biology, Vol. 44, No. SI-1, 2020, pp. 228-241, https://doi.org/10.3906/biy-2005-114.[27] A. D. Sharma, I. Kaur, Eucalyptus Essential Oil Bioactive Molecules from Against SARS-Cov-2 Spike Protein: Insights from Computational Studies, Res Sq., 2021, pp. 1-6, https://doi.org/10.21203/ rs.3.rs-140069/v1. [28] K. Rajagopal, P. Varakumar, A. Baliwada, G. Byran, Activity of Phytochemical Constituents of Curcuma Longa (Turmeric) and Andrographis Paniculata Against Coronavirus (COVID-19): An in Silico Approach, Future Journal of Pharmaceutical Sciences, Vol. 6, No. 1, 2020, pp. 1-10, https://doi.org/10.1186/s43094-020-00126-x[29] J. Lan, J. Ge, J. Yu, S. Shan, H. Zhou, S. Fan et al., Structure of The SARS-CoV-2 Spike Receptor-Binding Domain Bound to The ACE2 Receptor, Nature, Vol. 581, No. 7807, 2020, pp. 215-220, https://doi.org/10.1038/s41586-020-2180-5.[30] M. Letko, A. Marzi, V. Munster, Functional Assessment of Cell Entry and Receptor Usage for SARS-Cov-2 and Other Lineage B Betacoronaviruses, Nature Microbiology, Vol. 5, No. 4, 2020, pp. 562-569, https://doi.org/10.1038/s41564-020-0688-y.[31] C. Yi, X. Sun, J. Ye, L. Ding, M. Liu, Z. Yang et al., Key Residues of The Receptor Binding Motif in The Spike Protein of SARS-Cov-2 That Interact with ACE2 and Neutralizing Antibodies, Cellular and Molecular Immunology, Vol. 17, No. 6, 2020, pp. 621-630, https://doi.org/10.1038/s41423-020-0458-z.[32] N. T. Thom, Study on The Composition and Biological Activities of Flavonoids from The Roots of Scutellaria baicalensis: Doctoral Dissertation, Hanoi University of Science and Technology, 2018 (in Vietnamese).[33] Y. J. Tang, F. W. Zhou, Z. Q. Luo, X. Z. Li, H. M. Yan, M. J. Wang et al., Multiple Therapeutic Effects of Adjunctive Baicalin Therapy in Experimental Bacterial Meningitis, Inflammation, Vol. 33, No. 3, 2010, pp. 180-188, https://doi.org/10.1007/s10753-009-9172-9.[34] H. Liu, F. Ye, Q. Sun, H. Liang, C. Li, S. Li et al., Scutellaria Baicalensis Extract and Baicalein Inhibit Replication of SARS-Cov-2 and Its 3C-Like Protease in Vitro, Journal of Enzyme Inhibition and Medicinal Chemistry, Vol. 36, No. 1, 2021, pp. 497-503, https://doi.org/10.1080/14756366.2021.1873977.[35] Z. Iqbal, H. Nasir, S. Hiradate, Y. Fujii, Plant Growth Inhibitory Activity of Lycoris Radiata Herb. and The Possible Involvement of Lycorine as an Allelochemical, Weed Biology and Management, Vol. 6, No. 4, 2006, pp. 221-227, https://doi.org/10.1111/j.1445-6664.2006.00217.x.[36] S. Y. Li, C. Chen, H. Q. Zhang, H. Y. Guo, H. Wang, L. Wang et al., Identification of Natural Compounds with Antiviral Activities Against SARS-Associated Coronavirus, Antiviral Research, Vol. 67, No. 1, 2005, pp. 18-23, https://doi.org/10.1016/j.antiviral.2005.02.007.[37] S. Kretzing, G. Abraham, B. Seiwert, F. R. Ungemach, U. Krügel, R. Regenthal, Dose-dependent Emetic Effects of The Amaryllidaceous Alkaloid Lycorine in Beagle Dogs, Toxicon, Vol. 57, No. 1, 2011, pp. 117-124, https://doi.org/10.1016/j.toxicon.2010.10.012.[38] Y. N. Zhang, Q. Y. Zhang, X. D. Li, J. Xiong, S. Q. Xiao, Z. Wang, et al., Gemcitabine, Lycorine and Oxysophoridine Inhibit Novel Coronavirus (SARS-Cov-2) in Cell Culture, Emerging Microbes & Infections, Vol. 9, No. 1, 2020, pp. 1170-1173, https://doi.org/10.1080/22221751.2020.1772676.[39] Y. H. Jin, J. S. Min, S. Jeon, J. Lee, S. Kim, T. Park et al., Lycorine, a Non-Nucleoside RNA Dependent RNA Polymerase Inhibitor, as Potential Treatment for Emerging Coronavirus Infections, Phytomedicine, Vol. 86, 2021, pp. 1-8, https://doi.org/10.1016/j.phymed.2020.153440.[40] H. V. Hoa, P. V. Trung, N. N. Hanh, Isolation Andrographolid and Neoandrographolid from Andrographis Paniculata Nees, Can Tho University Journal of Science, Vol. 10, 2008, pp. 25-30 (in Vietnamese)[41] S. K. Enmozhi, K. Raja, I. Sebastine, J. Joseph, Andrographolide as a Potential Inhibitor Of SARS-Cov-2 Main Protease: An in Silico Approach, Journal of Biomolecular Structure and Dynamics, Vol. 39, No. 9, 2021, pp. 3092-3098, https://doi.org/10.1080/07391102.2020.1760136.[42] S. A. Lakshmi, R. M. B. Shafreen, A. Priya, K. P. Shunmugiah, Ethnomedicines of Indian Origin for Combating COVID-19 Infection by Hampering The Viral Replication: Using Structure-Based Drug Discovery Approach, Journal of Biomolecular Structure and Dynamics, Vol. 39, No. 13, 2020, pp. 4594-4609, https://doi.org/10.1080/07391102.2020.1778537.[43] N. P. L. Laksmiani, L. P. F. Larasanty, A. A. G. J. Santika, P. A. A. Prayoga, A. A. I. K. Dewi, N. P. A. K. Dewi, Active Compounds Activity from The Medicinal Plants Against SARS-Cov-2 Using in Silico Assay, Biomedical and Pharmacology Journal, Vol. 13, No. 2, 2020, pp. 873-881, https://dx.doi.org/10.13005/bpj/1953.[44] N. A. Murugan, C. J. Pandian, J. Jeyakanthan, Computational Investigation on Andrographis Paniculata Phytochemicals to Evaluate Their Potency Against SARS-Cov-2 in Comparison to Known Antiviral Compounds in Drug Trials, Journal of Biomolecular Structure and Dynamics, Vol. 39, No. 12, 2020, pp. 4415-4426, https://doi.org/10.1080/07391102.2020.1777901.[45] S. Hiremath, H. V. Kumar, M. Nandan, M. Mantesh, K. Shankarappa,V. Venkataravanappa et al., In Silico Docking Analysis Revealed The Potential of Phytochemicals Present in Phyllanthus Amarus and Andrographis Paniculata, Used in Ayurveda Medicine in Inhibiting SARS-Cov-2, 3 Biotech, Vol. 11, No. 2, 2021, pp. 1-18, https://doi.org/10.1007/s13205-020-02578-7.[46] K. S. Ngiamsuntorn, A. Suksatu, Y. Pewkliang, P. Thongsri, P. Kanjanasirirat, S. Manopwisedjaroen, et al., Anti-SARS-Cov-2 Activity of Andrographis Paniculata Extract and Its Major Component Andrographolide in Human Lung Epithelial Cells and Cytotoxicity Evaluation in Major Organ Cell Representatives, Journal of Natural Products, Vol. 84, No. 4, 2021, pp. 1261-1270, https://doi.org/10.1021/acs.jnatprod.0c01324.[47] D. X. Em, N. T. T. Dai, N. T. T. Tram, D. X. Chu, Four Compounds Isolated from Azadirachta Indica Jus leaves. F., Meliaceae, Pharmaceutical Journal, Vol. 59, No. 7, 2019, pp. 33-36 (in Vietnamese).[48] V. V Do, N. T. Thang, N. T. Minh, N. N. Hanh, Isolation, Purification and Investigation on Antimicrobial Activity of Salanin from Neem Seed Kernel (Azadirachta Indica A. Juss) of The Neem Tree Planted in Ninh Thuan Province, Vietnam, Journal of Science and Technology, Vol. 44, No. 2, 2006, pp. 24-31 (in Vietnamese).[49] P. I. Manzano Santana, J. P. P. Tivillin, I. A. Choez Guaranda, A. D. B. Lucas, A. Katherine, Potential Bioactive Compounds of Medicinal Plants Against New Coronavirus (SARS-Cov-2): A Review, Bionatura, Vol. 6, No. 1, 2021, pp. 1653-1658, https://doi.org/10.21931/RB/2021.06.01.30[50] S. Borkotoky, M. Banerjee, A Computational Prediction of SARS-Cov-2 Structural Protein Inhibitors from Azadirachta Indica (Neem), Journal of Biomolecular Structure and Dynamics, Vol. 39, No. 11, 2021, pp. 4111-4121, https://doi.org/10.1080/07391102.2020.1774419.[51] R. Jager, R. P. Lowery, A. V. Calvanese, J. M. Joy, M. Purpura, J. M. Wilson, Comparative Absorption of Curcumin Formulations, Nutrition Journal, Vol. 13, No. 11, 2014, https://doi.org/10.1186/1475-2891-13-11.[52] D. Praditya, L. Kirchhoff, J. Bruning, H. Rachmawati, J. Steinmann, E. Steinmann, Anti-infective Properties of the Golden Spice Curcumin, Front Microbiol, Vol. 10, No. 912, 2019, https://doi.org/10.3389/fmicb.2019.00912.[53] C. C. Wen, Y. H. Kuo, J. T. Jan, P. H. Liang, S. Y. Wang, H. G. Liu et al., Specific Plant Terpenoids and Lignoids Possess Potent Antiviral Activities Against Severe Acute Respiratory Syndrome Coronavirus, Journal of Medicinal Chemistry, Vol. 50, No. 17, 2007, pp. 4087-4095, https://doi.org/10.1021/jm070295s.[54] R. Lu, X. Zhao, J. Li, P. Niu, B. Yang, H. Wu et al., Genomic Characterisation and Epidemiology of 2019 Novel Coronavirus: Implications for Virus Origins and Receptor Binding, The Lancet, Vol. 395, No. 10224, 2020, pp. 565-574, https://doi.org/10.1016/S0140-6736(20)30251-8.[55] M. Kandeel, M. Al Nazawi, Virtual Screening and Repurposing of FDA Approved Drugs Against COVID-19 Main Protease, Life Sciences, Vol. 251, No. 117627, 2020, pp. 1-5, https://doi.org/10.1016/j.lfs.2020.117627.[56] V. K. Maurya, S. Kumar, A. K. Prasad, M. L. B. Bhatt, S. K. Saxena, Structure-Based Drug Designing for Potential Antiviral Activity of Selected Natural Products from Ayurveda Against SARS-CoV-2 Spike Glycoprotein and Its Cellular Receptor, Virusdisease, Vol. 31, No. 2, 2020, pp. 179-193, https://doi.org/10.1007/s13337-020-00598-8.[57] M. Hoffmann, H. Kleine Weber, S. Schroeder, N. Kruger, T. Herrler, S. Erichsen et al., SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor, Cell, Vol. 181, No. 2, 2020, pp. 271-280, https://doi.org/10.1016/j.cell.2020.02.052.[58] S. Katta, A. Srivastava, R. L. Thangapazham, I. L. Rosner, J. Cullen, H. Li et al., Curcumin-Gene Expression Response in Hormone Dependent and Independent Metastatic Prostate Cancer Cells, International Journal of Molecular Sciences, Vol. 20, No. 19, 2019, pp. 4891-4907, https://doi.org/10.3390/ijms20194891.[59] D. Ting, N. Dong, L. Fang, J. Lu, J. Bi, S. Xiao et al., Multisite Inhibitors for Enteric Coronavirus: Antiviral Cationic Carbon Dots Based on Curcumin, ACS Applied Nano Materials, Vol. 1, No. 10, 2018, pp. 5451-5459, https://doi.org/10.1021/acsanm.8b00779.[60] T. Huynh, H. Wang, B. Luan, In Silico Exploration of the Molecular Mechanism of Clinically Oriented Drugs for Possibly Inhibiting SARS-CoV-2's Main Protease, the Journal of Physical Chemistry Letters, Vol. 11, No. 11, 2020, pp. 4413-4420, https://doi.org/10.1021/acs.jpclett.0c00994.[61] D. D'Ardes, A. Boccatonda, I. Rossi, M. T. Guagnano, COVID-19 and RAS: Unravelling an Unclear Relationship, International Journal of Molecular Sciences, Vol. 21, No. 8, 2020, pp. 3003-3011, https://doi.org/10.3390/ijms21083003. [62] X. F. Pang, L. H. Zhang, F. Bai, N. P. Wang, R. E. Garner, R. J. McKallip et al., Attenuation of Myocardial Fibrosis with Curcumin is Mediated by Modulating Expression of Angiotensin II AT1/AT2 Receptors and ACE2 in Rats, Drug Design Development Therapy, Vol. 9, 2015, pp. 6043-6054, https://doi.org/10.2147/DDDT.S95333.[63] Y. Yao, W. Wang, M. Li, H. Ren, C. Chen, J. Wang et al., Curcumin Exerts its Anti-Hypertensive Effect by Down-Regulating the AT1 Receptor in Vascular Smooth Muscle Cells, Scientific Reports, Vol. 6, No. 25579, 2016, pp. 1-6, https://doi.org/10.1038/srep25579.[64] V. J. Costela Ruiz, R. Illescas Montes, J. M. Puerta Puerta, C. Ruiz, L. Melguizo Rodríguez, SARS-CoV-2 Infection: The Role of Cytokines in COVID-19 Disease, Cytokine Growth Factor Reviews, Vol. 54, 2020, pp. 62-75, https://doi.org/10.1016/j.cytogfr.2020.06.001.[65] H. Valizadeh, S. Abdolmohammadi Vahid, S. Danshina, M. Ziya Gencer, A. Ammari, A. Sadeghi et al., Nano-Curcumin Therapy, a Promising Method in Modulating Inflammatory Cytokines in COVID-19 Patients, International Immunopharmacology, Vol. 89 (PtB), No. 107088, 2020, pp. 1-12, https://doi.org/10.1016/j.intimp.2020.107088.[66] Y. H. Lo, R. D. Lin, Y. P. Lin, Y. L. Liu, M. H. Lee, Active Constituents from Sophora Japonica Exhibiting Cellular Tyrosinase Inhibition in Human Epidermal Melanocytes, Journal of Ethnopharmacology, Vol. 124, No. 3, 2009, pp. 625-629, https://doi.org/10.1016/j.jep.2009.04.053.[67] A. Robaszkiewicz, A. Balcerczyk, G. Bartosz, Antioxidative and Prooxidative Effects of Quercetin on A549 Cells, Cell Biology International, Vol. 31, No. 10, 2007, pp. 1245-1250, https://doi.org/10.1016/j.cellbi.2007.04.009[68] N. Uchide, H. Toyoda, Antioxidant Therapy as a Potential Approach to Severe Influenza-associated Complications, Molecules (Basel, Switzerland), Vol. 16, No. 3, 2011, pp. 2032-2052, https://doi.org/10.3390/molecules16032032.[69] M. P. Nair, C. Kandaswami, S. Mahajan, K. C. Chadha, R. Chawda, H. Nair et al., The Flavonoid, Quercetin, Differentially Regulates Th-1 (IFNgamma) and Th-2 (IL4) Cytokine Gene Expression by Normal Peripheral Blood Mononuclear Cells, Biochimica et Biophysica Acta - Molecular Cell Research, Vol. 1593, No. 1, 2002, pp. 29-36, https://doi.org/10.1016/s0167-4889(02)00328-2.[70] X. Chen, Z. Wang, Z. Yang, J. Wang, Y. Xu, R. X. Tan et al., Houttuynia Cordata Blocks HSV Infection Through Inhibition of NF-κB Activation, Antiviral Research, Vol. 92, No. 2, 2011, pp. 341-345, https://doi.org/10.1016/j.antiviral.2011.09.005.[71] T. N. Kaul, E. J. Middleton, P. L. Ogra, Antiviral Effect of Flavonoids on Human Viruses, Journal of Medical Virology, Vol. 15. No. 1, 1985, pp. 71-79, https://doi.org/10.1002/jmv.1890150110.[72] K. Zandi, B. T. Teoh, S. S. Sam, P. F. Wong, M. R. Mustafa, S. AbuBakar, Antiviral Activity of Four Types of Bioflavonoid Against Dengue Virus Type-2, Virology Journal, Vol. 8, No. 1, 2011, pp. 560-571, https://doi.org/10.1186/1743-422X-8-560.[73] J. Y. Park, H. J. Yuk, H. W. Ryu, S. H. Lim, K. S. Kim, K. H. Park et al., Evaluation of Polyphenols from Broussonetia Papyrifera as Coronavirus Protease Inhibitors, Journal of Enzyme Inhibition and Medicinal Chemistry, Vol. 32, No. 1, 2017, pp. 504-515, https://doi.org/10.1080/14756366.2016.1265519.[74] S. C. Cheng, W. C. Huang, J. H. S. Pang, Y. H. Wu, C. Y. Cheng, Quercetin Inhibits the Production of IL-1β-Induced Inflammatory Cytokines and Chemokines in ARPE-19 Cells via the MAPK and NF-κB Signaling Pathways, International Journal of Molecular Sciences, Vol. 20, No. 12, 2019, pp. 2957-2981, https://doi.org/10.3390/ijms20122957. [75] O. J. Lara Guzman, J. H. Tabares Guevara, Y. M. Leon Varela, R. M. Álvarez, M. Roldan, J. A. Sierra et al., Proatherogenic Macrophage Activities Are Targeted by The Flavonoid Quercetin, The Journal of Pharmacology and Experimental Therapeutics, Vol. 343, No. 2, 2012, pp. 296-303, https://doi.org/10.1124/jpet.112.196147.[76] A. Saeedi Boroujeni, M. R. Mahmoudian Sani, Anti-inflammatory Potential of Quercetin in COVID-19 Treatment, Journal of Inflammation, Vol. 18, No. 1, 2021, pp. 3-12, https://doi.org/10.1186/s12950-021-00268-6.[77] M. Smith, J. C. Smith, Repurposing Therapeutics for COVID-19: Supercomputer-based Docking to the SARS-CoV-2 Viral Spike Protein and Viral Spike Protein-human ACE2 Interface, ChemRxiv, 2020, pp. 1-28, https://doi.org/10.26434/chemrxiv.11871402.v4.[78] S. Khaerunnisa, H. Kurniawan, R. Awaluddin, S. Suhartati, S. Soetjipto, Potential Inhibitor of COVID-19 Main Protease (Mpro) from Several Medicinal Plant Compounds by Molecular Docking Study, Preprints, 2020, pp. 1-14, https://doi.org/10.20944/preprints202003.0226.v1.[79] J. M. Calderón Montaño, E. B. Morón, C. P. Guerrero, M. L. Lázaro, A Review on the Dietary Flavonoid Kaempferol, Mini Reviews in Medicinal Chemistry, Vol. 11, No. 4, 2011, pp. 298-344, https://doi.org/10.2174/138955711795305335.[80] A. Y. Chen, Y. C. Chen, A Review of the Dietary Flavonoid, Kaempferol on Human Health and Cancer Chemoprevention, Food Chem, Vol. 138, No. 4, 2013, pp. 2099-2107, https://doi.org/10.1016/j.foodchem.2012.11.139.[81] S. Schwarz, D. Sauter, W. Lu, K. Wang, B. Sun, T. Efferth et al., Coronaviral Ion Channels as Target for Chinese Herbal Medicine, Forum on Immunopathological Diseases and Therapeutics, Vol. 3, No. 1, 2012, pp. 1-13, https://doi.org/10.1615/ForumImmunDisTher.2012004378.[82] R. Zhang, X. Ai, Y. Duan, M. Xue, W. He, C. Wang et al., Kaempferol Ameliorates H9N2 Swine Influenza Virus-induced Acute Lung Injury by Inactivation of TLR4/MyD88-mediated NF-κB and MAPK Signaling Pathways, Biomedicine & Pharmacotherapy = Biomedecine & Pharmacotherapie, Vol. 89, 2017, pp. 660-672, https://doi.org/10.1016/j.biopha.2017.02.081.[83] K. W. Chan, V. T. Wong, S. C. W. Tang, COVID-19: An Update on the Epidemiological, Clinical, Preventive and Therapeutic Evidence and Guidelines of Integrative Chinese-Western Medicine for the Management of 2019 Novel Coronavirus Disease, The American Journal of Chinese medicine, Vol. 48, No. 3, 2020, pp. 737-762, https://doi.org/10.1142/S0192415X20500378.[84] Y. F. Huang, C. Bai, F. He, Y. Xie, H. Zhou, Review on the Potential Action Mechanisms of Chinese Medicines in Treating Coronavirus Disease 2019 (COVID-19), Pharmacological Research, Vol. 158, No. 104939, 2020, pp. 1-10, https://doi.org/10.1016/j.phrs.2020.104939.[85] L. Xu, X. Zheng, Y. Wang, Q. Fan, M. Zhang, R. Li et al., Berberine Protects Acute Liver Failure in Mice Through Inhibiting Inflammation and Mitochondria-dependent Apoptosis, European Journal of Pharmacology, Vol. 819, 2018, pp. 161-168, https://doi.org/10.1016/j.ejphar.2017.11.013.[86] X. Chen, H. Guo, Q. Li, Y. Zhang, H. Liu, X. Zhang et al., Protective Effect of Berberine on Aconite‑induced Myocardial Injury and the Associated Mechanisms, Molecular Medicine Reports, Vol. 18, No. 5, 2018, pp. 4468-4476, https://doi.org/10.3892/mmr.2018.9476.[87] K. Hayashi, K. Minoda, Y. Nagaoka, T. Hayashi, S. Uesato, Antiviral Activity of Berberine and Related Compounds Against Human Cytomegalovirus, Bioorganic & Medicinal Chemistry Letters, Vol. 17, No. 6, 2007, pp. 1562-1564, https://doi.org/10.1016/j.bmcl.2006.12.085.[88] A. Warowicka, R. Nawrot, A. Gozdzicka Jozefiak, Antiviral Activity of Berberine, Archives of Virology, Vol. 165, No. 9, 2020, pp. 1935-1945, https://doi.org/10.1007/s00705-020-04706-3.[89] Z. Z. Wang, K. Li, A. R. Maskey, W. Huang, A. A. Toutov, N. Yang et al., A Small Molecule Compound Berberine as an Orally Active Therapeutic Candidate Against COVID-19 and SARS: A Computational and Mechanistic Study, FASEB Journal : Official Publication of the Federation of American Societies for Experimental Biology, Vol. 35, No. 4, 2021, pp. e21360-21379, https://doi.org/10.1096/fj.202001792R.[90] A. Pizzorno, B. Padey, J. Dubois, T. Julien, A. Traversier, V. Dulière et al., In Vitro Evaluation of Antiviral Activity of Single and Combined Repurposable Drugs Against SARS-CoV-2, Antiviral Research, Vol. 181, No. 104878, 2020, https://doi.org/10.1016/j.antiviral.2020.104878.[91] B. Y. Zhang, M. Chen, X. C. Chen, K. Cao, Y. You, Y. J. Qian et al., Berberine Reduces Circulating Inflammatory Mediators in Patients with Severe COVID-19, The British Journal of Surgery, Vol. 108, No. 1, 2021, pp. e9-e11, https://doi.org/10.1093/bjs/znaa021.[92] K. P. Latté, K. E. Appel, A. Lampen, Health Benefits and Possible Risks of Broccoli - an Overview, Food and Chemical Toxicology : an International Journal Published for the British Industrial Biological Research Association, Vol. 49, No. 12, 2011, pp. 3287-3309, https://doi.org/10.1016/j.fct.2011.08.019.[93] C. Sturm, A. E. Wagner, Brassica-Derived Plant Bioactives as Modulators of Chemopreventive and Inflammatory Signaling Pathways, International Journal of Molecular Sciences, Vol. 18, No. 9, 2017, pp. 1890-1911, https://doi.org/10.3390/ijms18091890.[94] R. T. Ruhee, S. Ma, K. Suzuki, Sulforaphane Protects Cells against Lipopolysaccharide-Stimulated Inflammation in Murine Macrophages, Antioxidants (Basel, Switzerland), Vol. 8, No. 12, 2019, pp. 577-589, https://doi.org/10.3390/antiox8120577.[95] S. M. Ahmed, L. Luo, A. Namani, X. J. Wang, X. Tang, Nrf2 Signaling Pathway: Pivotal Roles in Inflammation, Biochimica et Biophysica Acta Molecular Basis of Disease, Vol. 1863, No. 2, 2017, pp. 585-597, https://doi.org/10.1016/j.bbadis.2016.11.005.[96] Z. Sun, Z. Niu, S. Wu, S. Shan, Protective Mechanism of Sulforaphane in Nrf2 and Anti-Lung Injury in ARDS Rabbits, Experimental Therapeutic Medicine, Vol. 15, No. 6, 2018, pp. 4911-4951, https://doi.org/10.3892/etm.2018.6036.[97] H. Y. Cho, F. Imani, L. Miller DeGraff, D. Walters, G. A. Melendi, M. Yamamoto et al., Antiviral Activity of Nrf2 in a Murine Model of Respiratory Syncytial Virus Disease, American Journal of Respiratory and Critical Care Medicine, Vol. 179, No. 2, 2009, pp. 138-150, https://doi.org/10.1164/rccm.200804-535OC.[98] M. J. Kesic, S. O. Simmons, R. Bauer, I. Jaspers, Nrf2 Expression Modifies Influenza A Entry and Replication in Nasal Epithelial Cells, Free Radical Biology & Medicine, Vol. 51, No. 2, 2011, pp. 444-453, https://doi.org/10.1016/j.freeradbiomed.2011.04.027.[99] A. Cuadrado, M. Pajares, C. Benito, J. J. Villegas, M. Escoll, R. F. Ginés et al., Can Activation of NRF2 Be a Strategy Against COVID-19?, Trends in Pharmacological Sciences, Vol. 41, No. 9, 2020, pp. 598-610, https://doi.org/10.1016/j.tips.2020.07.003.[100] J. Gasparello, E. D'Aversa, C. Papi, L. Gambari, B. Grigolo, M. Borgatti et al., Sulforaphane Inhibits the Expression of Interleukin-6 and Interleukin-8 Induced in Bronchial Epithelial IB3-1 Cells by Exposure to the SARS-CoV-2 Spike Protein, Phytomedicine : International Journal of Phytotherapy and Phytopharmacology, Vol. 87, No. 53583, 2021, https://doi.org/10.1016/j.phymed.2021.153583.
Styles APA, Harvard, Vancouver, ISO, etc.
21

Anh, Hoang Quoc, Shin Takahashi, Duong Thi Thao, Nguyen Hung Thai, Pham Thanh Khiet, Nguyen Thi Quynh Hoa, Le Thi Phuong Quynh, Le Nhu Da, Tu Binh Minh et Tran Manh Tri. « Analysis and Evaluation of Contamination Status of Polycyclic Aromatic Hydrocarbons (PAHs) in Settled House and Road Dust Samples from Hanoi ». VNU Journal of Science : Natural Sciences and Technology 35, no 4 (23 décembre 2019). http://dx.doi.org/10.25073/2588-1140/vnunst.4943.

Texte intégral
Résumé :
Concentrations of 16 polycyclic aromatic hydrocarbons (PAHs) were determined in settled house dust and road dust samples collected from a core urban area of Hanoi. Levels of PAHs ranged from 830 to 3500 (median 2000) ng/g in house dust, and from 1400 to 4700 (median 1700) ng/g in road dust. Concentrations of PAHs in dust samples of this study were within the moderate range as compared with those from other countries in the world. Toxic equivalents to benzo[a]pyrene (BaP-EQs) in our samples ranged from 81 to 850 (median 330) ng BaP-EQ/g with principal contributors as BaP and dibenz[a,h]anthracene, which accounted for 69% to 93% of BaP-EQs. In almost all the samples, proportions of high-molecular-weight PAHs (HMW-PAHs with 4–6 rings) were higher than those of low-molecular-weight PAHs (LMW-PAHs with 2–3 rings), suggesting emission sources from combustion processes rather than direct contamination by petrogenic sources. Traffic activities were estimated as important sources of PAHs in the studied areas, for example, vehicular exhaust and tire debris. Keywords: PAHs, house dust, road dust, traffic emission, urbanization. References [1] K. Srogi, Monitoring of environmental exposure to polycyclic aromatic hydrocarbons: a review, Environ. Chem. Let. 5 (2007) 169-195. https://doi. org/10.1007/s10311-007-0095-0.[2] K.H. Kim, S.A. Jahan, E. Kabir, R.J.C. Brown, A review of airborne polycyclic aromatic hydrocarbons (PAHs) and their human health effects. Environ. Int. 60 (2013) 71–80. https://doi. org/10.1016/j.envint.2013.07.019.[3] E. Stogiannidis, R. Laane, Source characterization of polycyclic aromatic hydrocarbons by using their molecular indices: an overview of possibilities. Rev. Environ. Contam. Toxicol. 234 (2015) 49–133. https://doi.org/10.1007/978-3-319-10638-0_2.[4] H.I. Abdel-Shafy, M.S.M. Mansour, A review on polycyclic aromatic hydrocarbons: source, environmental impacts, effect on human health and remediation. Egypt. J. Pet. 25 (2016) 107–123. https://doi.org/10.1016/j.ejpe.2015.03.011.[5] ATSDR, 1995. Toxicological profile for polycyclic aromatic hydrocarbons. https://www.atsdr.cdc. gov/toxprofiles/tp69.pdf.[6] M.T. Anh, L.M. Triet, J.J. Sauvain, J. Tarradellas, PAH contamination levels in air particles and sediments of Ho Chi Minh City, Vietnam. Bull. Environ. Contam. Toxicol. 63 (1999) 728–735. https://doi.org/10.1007/s00128 9901040.[7] T.T. Hien, L.T. Thanh, T. Kameda, N. Takenaka, H. Bandow, Distribution characteristics of polycyclic aromatic hydrocarbons with particle size in urban aerosols at the roadside in Ho Chi Minh City, Vietnam. Atmos. Environ. 41 (2007) 1575–1586. https://doi.org/10.1016/j.atmosenv. 2006.10.045.[8] M. Kishida, K. Imamura, N. Takenaka, Y. Maeda, P.H. Viet, H. Bandow, Concentrations of atmospheric polycyclic aromatic hydrocarbons in particulate matter and the gaseous phase at roadside sites in Hanoi, Vietnam. Bull. Environ. Contam. Toxicol. 81 (2008) 174–179. https://doi. org/10.1007/s00128-008-9450-5. [9] H.Q. Anh, K. Tomioka, N.M. Tue, L.H. Tuyen, N.K. Chi, T.B. Minh, P.H. Viet, S. Takahashi, A preliminary investigation of 942 organic micro-pollutants in the atmosphere in waste processing and urban areas, northern Vietnam: levels, potential sources, and risk assessment. Ecotoxicol. Environ. Saf. 167 (2019) 354–364. https://doi.org/10.1016/j.ecoenv.2018.10.026.[10] C.V. Hung, B.D. Cam, P.T.N Mai, B.Q. Dzung, Heavy metals and polycyclic aromatic hydrocarbons in municipal sewage sludge from a river in highly urbanized metropolitan area in Hanoi, Vietnam: levels, accumulation pattern and assessment of land application. Environ. Geochem. Health 37 (2015) 133–146. https:// doi.org/10.1007/s10653-014-9635-2.[11] C.T. Pham, N. Tang, A. Toriba, K. Hayakawa, Polycyclic aromatic hydrocarbons and nitropolycyclic aromatic hydrocarbons in atmospheric particles and soil at a traffic site in Hanoi, Vietnam. Polycycl. Aromat. Comp. 35 (2015) 355–371. https://doi.org/10.1080/10406 638.2014.903284.[12] H.Q. Anh, K. Tomioka, N.M. Tue, G. Suzuki, T.B. Minh, P.H. Viet, S. Takahashi, Comprehensive analysis of 942 organic micro-pollutants in settled dusts from northern Vietnam: pollution status and implications for human exposure. J. Mater. Cycles Waste Manag. 21 (2019) 57–66. https://doi.org/10.1007/s101 63-018-0745-2.[13] L.H. Tuyen, N.M. Tue, G. Suzuki, K. Misaki, P.H. Viet, S. Takahashi, S. Tanabe, Aryl hydrocarbon receptor mediated activities in road dust from a metropolitan area, Hanoi-Vietnam: contribution of polycyclic aromatic hydrocarbons (PAHs) and human risk assessment. Sci. Total Environ. 491-492 (2014) 246–254. https://doi.org/10.1016/j.scitotenv.2014. 01.086.[14] L.H. Tuyen, N.M. Tue, S. Takahashi, G. Suzuki, P.H. Viet, A. Subramanian, K.A. Bulbule, P. Parthasarathy, A. Ramanathan, S. Tanabe, Methylated and unsubstituted polycyclic aromatic hydrocarbons in street dust from Vietnam and India: occurrence, distribution and in vitro toxicity evaluation. Environ. Pollut. 194 (2014) 272–280. https://doi.org/10.1016/j.envpol. 2014.07.029.[15] H.Q. Anh, T.M. Tran, N.T.T. Thuy, T.B. Minh, S. Takahashi, Screening analysis of organic micro-pollutants in road dusts from some areas in northern Vietnam: a preliminary investigation on contamination status, potential sources, human exposures, and ecological risk. Chemosphere 224 (2019) 428–436. https://doi.org/10.1016/j. chemosphere.2019.02.177.[16] H.T.T. Thuy, T.T.C. Loan, T.H. Phuong, The potential accumulation of polycyclic aromatic hydrocarbons in phytoplankton and bivalves in Can Gio coastal wetland, Vietnam. Environ. Sci. Pollut. Res. 25 (2018) 17240–17249. https://doi. org/10.1007/s11356-018-2249-y.[17] P.C. Van Metre, B.J. Mahler, J.T. Wilson, PAHs underfoot: contaminated dust from coal-tar sealcoated pavement is widespread in the United States. Environ. Sci. Technol. 43 (2009) 20–25. https://doi.org/10.1021/es802119h.[18] L. Liu, A. Liu, Y. Li, L. Zhang, G. Zhang, Y. Guan, Polycyclic aromatic hydrocarbons associated with road deposited solid and their ecological risk: Implications for road stormwater reuse. Sci. Total Environ. 563–564 (2016) 190–198. https://doi.org/10.1016/j.scitotenv.2016.04.114.[19] X. Zheng, Y. Yang, M. Liu, Y. Yu, J.L. Zhou, D. Li, PAH determination based on a rapid and novel gas purge-microsyringe extraction (GP-MSE) technique in road dust of Shanghai, China: Characterization, source apportionment, and health risk assessment. Sci. Total Environ. 557–558 (2016) 688–696. https://doi.org/10.1016/j. scitotenv.2016.03.124.[20] T.T. Dong, B.K. Lee, Characteristics, toxicity, and source apportionment of polycyclic aromatic hydrocarbons (PAHs) in road dust of Ulsan, Korea. Chemosphere 74 (2009) 1245–1253. https: //doi.org/10.1016/j.chemosphere.2008.11.035.[21] R. Khanal, H. Furumai, F. Nakajima, C. Yoshimura, Carcinogenic profile, toxicity and source apportionment of polycyclic aromatic hydrocarbons accumulated from urban road dust in Tokyo, Japan. Ecotoxicol. Environ. Saf. 165 (2018) 440–449. https://doi.org/10.1016/j. ecoenv.2018.08.095.[22] N. Soltani, B. Keshavarzi, F. Moore, T. Tavakol, A.R. Lahijanzadeh, N. Jaafarzadeh, M. Kermani, Ecological and human health hazards of heavy metals and polycyclic aromatic hydrocarbons (PAHs) in road dust of Isfahan metropolis, Iran. Sci. Total Environ. 505 (2015) 712–723. https://doi.org/10.1016/j.scitotenv.2014.09.097.[23] B.A.M. Bandowe, M.A. Nkansah, Occurrence, distribution and health risk from polycyclic aromatic compounds (PAHs, oxygenated-PAHs and azaarenes) in street dust from a major West African Metropolis. Sci. Total Environ. 553 (2016) 439-449. https://doi.org/10.1016/j. scitotenv.2016.02.142.[24] T.C. Nguyen, P. Loganathan, T.V. Nguyen, S. Vigneswaran, J. Kandasamy, D. Slee, G. Stevenson, R. Naidu, Polycyclic aromatic hydrocarbons in road-deposited sediments, water sediments, and soils in Sydney, Australia: Comparisons of concentration distribution, sources and potential toxicity. Ecotoxicol. Environ. Saf. 104 (2014) 339–348. https://doi.org/10.1016/j.ecoenv.2014.03.010. [25] C. Y. Kuo, H.C. Chen, F.C. Cheng, L.R. Huang, P.S. Chien, J.Y. Wang, Polycyclic aromatic hydrocarbons in household dust near diesel transport routes. Environ. Geochem. Health 34 (2012) 77–87. https://doi.org/10.1007/s10653-011-9392-4.[26] W. Wang, F.Y. Wu, J.S. Zheng, M.H. Wong, Risk assessments of PAHs and Hg exposure via settled house dust and street dust, linking with their correlations in human hair. J. Hazard. Mater. 263 (2013) 627–637. https://doi.org/10.1016/j.jhazmat. 2013.10.023.[27] N. Ali, I.M.I. Ismail, M. Khoder, M. Shamy, M. Alghamdi, M. Costa, L.N. Ali, W. Wang, S.A.M.A.S. Eqani, Polycyclic aromatic hydrocarbons (PAHs) in indoor dust samples from cities of Jeddah and Kuwait: levels, sources and non-dietary human exposure. Sci. Total Environ. 573 (2016) 1607–1614. https://doi.org/10.1016/j. scitotenv.2016.09.134.[28] M.Y. Civan, U.M. Kara, Risk assessment of PBDEs and PAHs in house dust in Kocaeli, Turkey: levels and sources. Environ. Sci. Pollut. Res. 23 (2016) 23369–23384. https://doi.org/10. 1007/s11356-016-7512-5.[29] A. Maragkidou, S. Arar, A. Al-Hunaiti, Y. Ma, S. Harrad, O. Jaghbeir, D. Faouri, K. Hämeri, T. Hussein, Occupational health risk assessment and exposure to floor dust PAHs inside an educational building. Sci. Total Environ. 579 (2017) 1050–1056. https://doi.org/10.1016/j.scitotenv.2016. 11.055. [30] I.C. Yadav, N.L. Devi, J. Li, G. Zhang, Polycyclic aromatic hydrocarbons in house dust and surface soil in major urban regions of Nepal: implication on source apportionment and toxicological effect. Sci. Total Environ. 616–617 (2018) 223–235. https://doi.org/10.1016/j.scitotenv.2017.10.313.[31] R. Boonyatumanond, M. Murakami, G. Wattayakorn, A. Togo, H. Takada, Sources of polycyclic aromatic hydrocarbons (PAHs) in street dust in a tropical Asian mega-city, Bangkok, Thailand. Sci. Total Environ. 384 (2007) 420−432. https://doi.org/10.1016/j.scitotenv. 2007.06.046.[32] I. Sadiktsis, C. Bergvall, C. Johansson, R. Westerholm, Automobile tire–a potential source of highly carcinogenic dibenzopyrenes to the environment. Environ. Sci. Technol. 46 (2012) 3326−3334. https://doi.org/10.1021/es204257d.[33] M. Howsam, K.C. Jones, Sources of PAHs in the environment. In: Neilson, A.H. (Ed.), The Handbook of Environmental Chemistry Vol. 3 Part I PAHs and Related Compounds. Springer-Verlag, Berlin, Heidelberg (1998) 137–174. https://doi.org/10.1007/978-3-540-49697-7_4.[34] I.C.T. Nisbet, P.K. Lagoy, Toxic equivalency factors (TEFs) for polycyclic aromatic hydrocarbons (PAHs). Regul. Toxicol. Pharmacol. 16 (1992) 290–300. https://doi.org/10. 1016/0273-2300(92)90009-X.[35] B. Pieterse, E. Felzel, R. Winter, B. van der Burg, A. Brouwer, PAH-CALUX, an optimized bioassay for AhR-mediated hazard identification of polycyclic aromatic hydrocarbons (PAHs) as individual compounds and in complex mixtures. Environ. Sci. Technol 47 (2013) 11651–11659. https://doi.org/10.1021/es403810w.[36] M.B. Yunker, R.W. Macdonald, R. Vingarzan, R. H. Mitchell, D. Goyette, S. Sylvestre, PAHs in the Fraser River basin: a critical appraisal of PAH ratios as indicators of PAH source and composition. Org. Geochem. 33 (2002) 489–515. https://doi.org/10.1016/S0146-6380(02)00002-5.[37] M. Saha, A. Togo, K. Mizukawa, M. Murakami, H. Takada, M.P. Zakaria, N.H. Chiem, B.C. Tuyen, M. Prudente, R. Boonyatumanond, S.K. Sarkar, B. Bhattacharya, P. Mishra, T.S. Tana, Sources of sedimentary PAHs in tropical Asian waters: differentiation between pyrogenic and petrogenic sources by alkyl homolog abundance. Mar. Pollut. Bull. 58 (2009) 189–200. https://doi.org/10.1016/j.marpolbul.2008.04.049.
Styles APA, Harvard, Vancouver, ISO, etc.
22

Molnar, Tamas. « Spectre of the Past, Vision of the Future – Ritual, Reflexivity and the Hope for Renewal in Yann Arthus-Bertrand’s Climate Change Communication Film "Home" ». M/C Journal 15, no 3 (3 mai 2012). http://dx.doi.org/10.5204/mcj.496.

Texte intégral
Résumé :
About half way through Yann Arthus-Bertrand’s film Home (2009) the narrator describes the fall of the Rapa Nui, the indigenous people of the Easter Islands. The narrator posits that the Rapa Nui culture collapsed due to extensive environmental degradation brought about by large-scale deforestation. The Rapa Nui cut down their massive native forests to clear spaces for agriculture, to heat their dwellings, to build canoes and, most importantly, to move their enormous rock sculptures—the Moai. The disappearance of their forests led to island-wide soil erosion and the gradual disappearance of arable land. Caught in the vice of overpopulation but with rapidly dwindling basic resources and no trees to build canoes, they were trapped on the island and watched helplessly as their society fell into disarray. The sequence ends with the narrator’s biting remark: “The real mystery of the Easter Islands is not how its strange statues got there, we know now; it's why the Rapa Nui didn't react in time.” In their unrelenting desire for development, the Rapa Nui appear to have overlooked the role the environment plays in maintaining a society. The island’s Moai accompanying the sequence appear as memento mori, a lesson in the mortality of human cultures brought about by their own misguided and short-sighted practices. Arthus-Bertrand’s Home, a film composed almost entirely of aerial photographs, bears witness to present-day environmental degradation and climate change, constructing society as a fragile structure built upon and sustained by the environment. Home is a call to recognise how contemporary practices of post-industrial societies have come to shape the environment and how they may impact the habitability of Earth in the near future. Through reflexivity and a ritualised structure the text invites spectators to look at themselves in a new light and remake their self-image in the wake of global environmental risk by embracing new, alternative core practices based on balance and interconnectedness. Arthus-Bertrand frames climate change not as a burden, but as a moment of profound realisation of the potential for change and humans ability to create a desirable future through hope and our innate capacity for renewal. This article examines how Arthus-Bertrand’s ritualised construction of climate change aims to remake viewers’ perception of present-day environmental degradation and investigates Home’s place in contemporary climate change communication discourse. Climate change, in its capacity to affect us globally, is considered a world risk. The most recent peer-reviewed Synthesis Report of the Intergovernmental Panel on Climate Change suggests that the concentration of atmospheric greenhouse gases has increased markedly since human industrialisation in the 18th century. Moreover, human activities, such as fossil fuel burning and agricultural practices, are “very likely” responsible for the resulting increase in temperature rise (IPPC 37). The increased global temperatures and the subsequent changing weather patterns have a direct and profound impact on the physical and biological systems of our planet, including shrinking glaciers, melting permafrost, coastal erosion, and changes in species distribution and reproduction patterns (Rosenzweig et al. 353). Studies of global security assert that these physiological changes are expected to increase the likelihood of humanitarian disasters, food and water supply shortages, and competition for resources thus resulting in a destabilisation of global safety (Boston et al. 1–2). Human behaviour and dominant practices of modernity are now on a path to materially impact the future habitability of our home, Earth. In contemporary post-industrial societies, however, climate change remains an elusive, intangible threat. Here, the Arctic-bound species forced to adapt to milder climates or the inhabitants of low-lying Pacific islands seeking refuge in mainland cities are removed from the everyday experience of the controlled and regulated environments of homes, offices, and shopping malls. Diverse research into the mediated and mediatised nature of the environment suggests that rather than from first-hand experiences and observations, the majority of our knowledge concerning the environment now comes from its representation in the mass media (Hamilton 4; Stamm et al. 220; Cox 2). Consequently the threat of climate change is communicated and constructed through the news media, entertainment and lifestyle programming, and various documentaries and fiction films. It is therefore the construction (the representation of the risk in various discourses) that shapes people’s perception and experience of the phenomenon, and ultimately influences behaviour and instigates social response (Beck 213). By drawing on and negotiating society’s dominant discourses, environmental mediation defines spectators’ perceptions of the human-nature relationship and subsequently their roles and responsibilities in the face of environmental risks. Maxwell Boykoff asserts that contemporary modern society’s mediatised representations of environmental degradation and climate change depict the phenomena as external to society’s primary social and economic concerns (449). Julia Corbett argues that this is partly because environmental protection and sustainable behaviour are often at odds with the dominant social paradigms of consumerism, economic growth, and materialism (175). Similarly, Rowan Howard-Williams suggests that most media texts, especially news, do not emphasise the link between social practices, such as consumerist behaviour, and their environmental consequences because they contradict dominant social paradigms (41). The demands contemporary post-industrial societies make on the environment to sustain economic growth, consumer culture, and citizens’ comfortable lives in air-conditioned homes and offices are often left unarticulated. While the media coverage of environmental risks may indeed have contributed to “critical misperceptions, misleading debates, and divergent understandings” (Boykoff 450) climate change possesses innate characteristics that amplify its perception in present-day post-industrial societies as a distant and impersonal threat. Climate change is characterised by temporal and spatial de-localisation. The gradual increase in global temperature and its physical and biological consequences are much less prominent than seasonal changes and hence difficult to observe on human time-scales. Moreover, while research points to the increased probability of extreme climatic events such as droughts, wild fires, and changes in weather patterns (IPCC 48), they take place over a wide range of geographical locations and no single event can be ultimately said to be the result of climate change (Maibach and Roser-Renouf 145). In addition to these observational obstacles, political partisanship, vested interests in the current status quo, and general resistance to profound change all play a part in keeping us one step removed from the phenomenon of climate change. The distant and impersonal nature of climate change coupled with the “uncertainty over consequences, diverse and multiple engaged interests, conflicting knowledge claims, and high stakes” (Lorenzoni et al. 65) often result in repression, rejection, and denial, removing the individual’s responsibility to act. Research suggests that, due to its unique observational obstacles in contemporary post-industrial societies, climate change is considered a psychologically distant event (Pawlik 559), one that is not personally salient due to the “perceived distance and remoteness [...] from one’s everyday experience” (O’Neill and Nicholson-Cole 370). In an examination of the barriers to behaviour change in the face of psychologically distant events, Robert Gifford argues that changing individuals’ perceptions of the issue-domain is one of the challenges of countering environmental inertia—the lack of initiative for environmentally sustainable social action (5). To challenge the status quo a radically different construction of the environment and the human-nature relationship is required to transform our perception of global environmental risks and ultimately result in environmentally consequential social action. Yann Arthus-Bertrand’s Home is a ritualised construction of contemporary environmental degradation and climate change which takes spectators on a rite of passage to a newfound understanding of the human-nature relationship. Transformation through re-imagining individuals’ roles, responsibilities, and practices is an intrinsic quality of rituals. A ritual charts a subjects path from one state of consciousness to the next, resulting in a meaningful change of attitudes (Deflem 8). Through a lifelong study of African rituals British cultural ethnographer Victor Turner refined his concept of rituals in a modern social context. Turner observed that rituals conform to a three-phased processural form (The Ritual Process 13–14). First, in the separation stage, the subjects are selected and removed from their fixed position in the social structure. Second, they enter an in-between and ambiguous liminal stage, characterised by a “partial or complete separation of the subject from everyday existence” (Deflem 8). Finally, imbued with a new perspective of the outside world borne out of the experience of reflexivity, liminality, and a cathartic cleansing, subjects are reintegrated into the social reality in a new, stable state. The three distinct stages make the ritual an emotionally charged, highly personal experience that “demarcates the passage from one phase to another in the individual’s life-cycle” (Turner, “Symbols” 488) and actively shapes human attitudes and behaviour. Adhering to the three-staged processural form of the ritual, Arthus-Bertrand guides spectators towards a newfound understanding of their roles and responsibilities in creating a desirable future. In the first stage—the separation—aerial photography of Home alienates viewers from their anthropocentric perspectives of the outside world. This establishes Earth as a body, and unearths spectators’ guilt and shame in relation to contemporary world risks. Aerial photography strips landscapes of their conventional qualities of horizon, scale, and human reference. As fine art photographer Emmet Gowin observes, “when one really sees an awesome, vast place, our sense of wholeness is reorganised [...] and the body seems always to diminish” (qtd. in Reynolds 4). Confronted with a seemingly infinite sublime landscape from above, the spectator’s “body diminishes” as they witness Earth’s body gradually taking shape. Home’s rushing rivers of Indonesia are akin to blood flowing through the veins and the Siberian permafrost seems like the texture of skin in extreme close-up. Arthus-Bertrand establishes a geocentric embodiment to force spectators to perceive and experience the environmental degradation brought about by the dominant social practices of contemporary post-industrial modernity. The film-maker visualises the maltreatment of the environment through suggested abuse of the Earth’s body. Images of industrial agricultural practices in the United States appear to leave scratches and scars on the landscape, and as a ship crosses the Arctic ice sheets of the Northwest Passage the boat glides like the surgeon’s knife cutting through the uppermost layer of the skin. But the deep blue water that’s revealed in the wake of the craft suggests a flesh and body now devoid of life, a suffering Earth in the wake of global climatic change. Arthus-Bertrand’s images become the sublime evidence of human intervention in the environment and the reflection of present-day industrialisation materially altering the face of Earth. The film-maker exploits spectators’ geocentric perspective and sensibility to prompt reflexivity, provide revelations about the self, and unearth the forgotten shame and guilt in having inadvertently caused excessive environmental degradation. Following the sequences establishing Earth as the body of the text Arthus-Bertrand returns spectators to their everyday “natural” environment—the city. Having witnessed and endured the pain and suffering of Earth, spectators now gaze at the skyscrapers standing bold and tall in the cityscape with disillusionment. The pinnacles of modern urban development become symbols of arrogance and exploitation: structures forced upon the landscape. Moreover, the images of contemporary cityscapes in Home serve as triggers for ritual reflexivity, allowing the spectator to “perceive the self [...] as a distanced ‘other’ and hence achieve a partial ‘self-transcendence’” (Beck, Comments 491). Arthus-Bertrand’s aerial photographs of Los Angeles, New York, and Tokyo fold these distinct urban environments into one uniform fusion of glass, metal, and concrete devoid of life. The uniformity of these cultural landscapes prompts spectators to add the missing element: the human. Suddenly, the homes and offices of desolate cityscapes are populated by none other than us, looking at ourselves from a unique vantage point. The geocentric sensibility the film-maker invoked with the images of the suffering Earth now prompt a revelation about the self as spectators see their everyday urban environments in a new light. Their homes and offices become blemishes on the face of the Earth: its inhabitants, including the spectators themselves, complicit in the excessive mistreatment of the planet. The second stage of the ritual allows Arthus-Bertrand to challenge dominant social paradigms of present day post-industrial societies and introduce new, alternative moral directives to govern our habits and attitudes. Following the separation, ritual subjects enter an in-between, threshold stage, one unencumbered by the spatial, temporal, and social boundaries of everyday existence. Turner posits that a subjects passage through this liminal stage is necessary to attain psychic maturation and successful transition to a new, stable state at the end of the ritual (The Ritual Process 97). While this “betwixt and between” (Turner, The Ritual Process 95) state may be a fleeting moment of transition, it makes for a “lived experience [that] transforms human beings cognitively, emotionally, and morally.” (Horvath et al. 3) Through a change of perceptions liminality paves the way toward meaningful social action. Home places spectators in a state of liminality to contrast geocentric and anthropocentric views. Arthus-Bertrand contrasts natural and human-made environments in terms of diversity. The narrator’s description of the “miracle of life” is followed by images of trees seemingly defying gravity, snow-covered summits among mountain ranges, and a whale in the ocean. Grandeur and variety appear to be inherent qualities of biodiversity on Earth, qualities contrasted with images of the endless, uniform rectangular greenhouses of Almeria, Spain. This contrast emphasises the loss of variety in human achievements and the monotony mass-production brings to the landscape. With the image of a fire burning atop a factory chimney, Arthus-Bertrand critiques the change of pace and distortion of time inherent in anthropocentric views, and specifically in contemporary modernity. Here, the flames appear to instantly eat away at resources that have taken millions of years to form, bringing anthropocentric and geocentric temporality into sharp contrast. A sequence showing a night time metropolis underscores this distinction. The glittering cityscape is lit by hundreds of lights in skyscrapers in an effort, it appears, to mimic and surpass daylight and thus upturn the natural rhythm of life. As the narrator remarks, in our present-day environments, “days are now the pale reflections of nights.” Arthus-Bertrand also uses ritual liminality to mark the present as a transitory, threshold moment in human civilisation. The film-maker contrasts the spectre of our past with possible visions of the future to mark the moment of now as a time when humanity is on the threshold of two distinct states of mind. The narrator’s descriptions of contemporary post-industrial society’s reliance on non-renewable resources and lack of environmentally sustainable agricultural practices condemn the past and warn viewers of the consequences of continuing such practices into the future. Exploring the liminal present Arthus-Bertrand proposes distinctive futurescapes for humankind. On the one hand, the narrator’s description of California’s “concentration camp style cattle farming” suggests that humankind will live in a future that feeds from the past, falling back on frames of horrors and past mistakes. On the other hand, the example of Costa Rica, a nation that abolished its military and dedicated the budget to environmental conservation, is recognition of our ability to re-imagine our future in the face of global risk. Home introduces myths to imbue liminality with the alternative dominant social paradigm of ecology. By calling upon deep-seated structures myths “touch the heart of society’s emotional, spiritual and intellectual consciousness” (Killingsworth and Palmer 176) and help us understand and come to terms with complex social, economic, and scientific phenomena. With the capacity to “pattern thought, beliefs and practices,” (Maier 166) myths are ideal tools in communicating ritual liminality and challenging contemporary post-industrial society’s dominant social paradigms. The opening sequence of Home, where the crescent Earth is slowly revealed in the darkness of space, is an allusion to creation: the genesis myth. Accompanied only by a gentle hum our home emerges in brilliant blue, white, and green-brown encompassing most of the screen. It is as if darkness and chaos disintegrated and order, life, and the elements were created right before our eyes. Akin to the Earthrise image taken by the astronauts of Apollo 8, Home’s opening sequence underscores the notion that our home is a unique spot in the blackness of space and is defined and circumscribed by the elements. With the opening sequence Arthus-Bertrand wishes to impart the message of interdependence and reliance on elements—core concepts of ecology. Balance, another key theme in ecology, is introduced with an allusion to the Icarus myth in a sequence depicting Dubai. The story of Icarus’s fall from the sky after flying too close to the sun is a symbolic retelling of hubris—a violent pride and arrogance punishable by nemesis—destruction, which ultimately restores balance by forcing the individual back within the limits transgressed (Littleton 712). In Arthus-Bertrand’s portrayal of Dubai, the camera slowly tilts upwards on the Burj Khalifa tower, the tallest human-made structure ever built. The construction works on the tower explicitly frame humans against the bright blue sky in their attempt to reach ever further, transgressing their limitations much like the ill-fated Icarus. Arthus-Bertrand warns that contemporary modernity does not strive for balance or moderation, and with climate change we may have brought our nemesis upon ourselves. By suggesting new dominant paradigms and providing a critique of current maxims, Home’s retelling of myths ultimately sees spectators through to the final stage of the ritual. The last phase in the rite of passage “celebrates and commemorates transcendent powers,” (Deflem 8) marking subjects’ rebirth to a new status and distinctive perception of the outside world. It is at this stage that Arthus-Bertrand resolves the emotional distress uncovered in the separation phase. The film-maker uses humanity’s innate capacity for creation and renewal as a cathartic cleansing aimed at reconciling spectators’ guilt and shame in having inadvertently exacerbated global environmental degradation. Arthus-Bertrand identifies renewable resources as the key to redeeming technology, human intervention in the landscape, and finally humanity itself. Until now, the film-maker pictured modernity and technology, evidenced in his portrayal of Dubai, as synonymous with excess and disrespect for the interconnectedness and balance of elements on Earth. The final sequence shows a very different face of technology. Here, we see a mechanical sea-snake generating electricity by riding the waves off the coast of Scotland and solar panels turning towards the sun in the Sahara desert. Technology’s redemption is evidenced in its ability to imitate nature—a move towards geocentric consciousness (a lesson learned from the ritual’s liminal stage). Moreover, these human-made structures, unlike the skyscrapers earlier in the film, appear a lot less invasive in the landscape and speak of moderation and union with nature. With the above examples Arthus-Bertrand suggests that humanity can shed the greed that drove it to dig deeper and deeper into the Earth to acquire non-renewable resources such as oil and coal, what the narrator describes as “treasures buried deep.” The incorporation of principles of ecology, such as balance and interconnectedness, into humanity’s behaviour ushers in reconciliation and ritual cleansing in Home. Following the description of the move toward renewable resources, the narrator reveals that “worldwide four children out of five attend school, never has learning been given to so many human beings” marking education, innovation, and creativity as the true inexhaustible resources on Earth. Lastly, the description of Antarctica in Home is the essence of Arthus-Bertrand’s argument for our innate capacity to create, not simply exploit and destroy. Here, the narrator describes the continent as possessing “immense natural resources that no country can claim for itself, a natural reserve devoted to peace and science, a treaty signed by 49 nations has made it a treasure shared by all humanity.” Innovation appears to fuel humankind’s transcendence to a state where it is capable of compassion, unification, sharing, and finally creating treasures. With these examples Arthus-Bertrand suggests that humanity has an innate capacity for creative energy that awaits authentic expression and can turn humankind from destroyer to creator. In recent years various risk communication texts have explicitly addressed climate change, endeavouring to instigate environmentally consequential social action. Home breaks discursive ground among them through its ritualistic construction which seeks to transform spectators’ perception, and in turn roles and responsibilities, in the face of global environmental risks. Unlike recent climate change media texts such as An Inconvenient Truth (2006), The 11th Hour (2007), The Age of Stupid (2009), Carbon Nation (2010) and Earth: The Operator’s Manual (2011), Home eludes simple genre classification. On the threshold of photography and film, documentary and fiction, Arthus-Bertrand’s work is best classified as an advocacy film promoting public debate and engagement with a universal concern—the state of the environment. The film’s website, available in multiple languages, contains educational material, resources to organise public screenings, and a link to GoodPlanet.info: a website dedicated to environmentalism, including legal tools and initiatives to take action. The film-maker’s approach to using Home as a basis for education and raising awareness corresponds to Antonio Lopez’s critique of contemporary mass-media communications of global risks. Lopez rebukes traditional forms of mediatised communication that place emphasis on the imparting of knowledge and instead calls for a participatory, discussion-driven, organic media approach, akin to a communion or a ritual (106). Moreover, while texts often place a great emphasis on the messenger, for instance Al Gore in An Inconvenient Truth, Leonardo DiCaprio in The 11th Hour, or geologist Dr. Richard Alley in Earth: The Operator’s Manual, Home’s messenger remains unseen—the narrator is only identified at the very end of the film among the credits. The film-maker’s decision to forego a central human character helps dissociate the message from the personality of the messenger which aids in establishing and maintaining the geocentric sensibility of the text. Finally, the ritual’s invocation and cathartic cleansing of emotional distress enables Home to at once acknowledge our environmentally destructive past habits and point to a hopeful, environmentally sustainable future. While The Age of Stupid mostly focuses on humanity’s present and past failures to respond to an imminent environmental catastrophe, Carbon Nation, with the tagline “A climate change solutions movie that doesn’t even care if you believe in climate change,” only explores the potential future business opportunities in turning towards renewable resources and environmentally sustainable practices. The three-phased processural form of the ritual allows for a balance of backward and forward-looking, establishing the possibility of change and renewal in the face of world risk. The ritual is a transformative experience. As Turner states, rituals “interrupt the flow of social life and force a group to take cognizance of its behaviour in relation to its own values, and even question at times the value of those values” (“Dramatic Ritual” 82). Home, a ritualised media text, is an invitation to look at our world, its dominant social paradigms, and the key element within that world—ourselves—with new eyes. It makes explicit contemporary post-industrial society’s dependence on the environment, highlights our impact on Earth, and reveals our complicity in bringing about a contemporary world risk. The ritual structure and the self-reflexivity allow Arthus-Bertrand to transform climate change into a personally salient issue. This bestows upon the spectator the responsibility to act and to reconcile the spectre of the past with the vision of the future.Acknowledgments The author would like to thank Dr. Angi Buettner whose support, guidance, and supervision has been invaluable in preparing this article. References Beck, Brenda E. “Comments on the Distancing of Emotion in Ritual by Thomas J. Scheff.” Current Anthropology 18.3 (1977): 490. Beck, Ulrich. “Risk Society Revisited: Theory, Politics and Research Programmes.” The Risk Society and Beyond: Critical Issues for Social Theory. Ed. Barbara Adam, Ulrich Beck, and Joost Van Loon. London: Sage, 2005. 211–28. Boston, Jonathan., Philip Nel, and Marjolein Righarts. “Introduction.” Climate Change and Security: Planning for the Future. Wellington: Victoria U of Wellington Institute of Policy Studies, 2009. Boykoff, Maxwell T. “We Speak for the Trees: Media Reporting on the Environment.” Annual Review of Environment and Resources 34 (2009): 431–57. Corbett, Julia B. Communicating Nature: How we Create and Understand Environmental Messages. Washington, DC: Island P, 2006. Cox, Robert. Environmental Communication and the Public Sphere. London: Sage, 2010. Deflem, Mathieu. “Ritual, Anti-Structure and Religion: A Discussion of Victor Turner’s Processural Symbolic Analysis.” Journal for the Scientific Study of Religion 30.1 (1991): 1–25. Gifford, Robert. “Psychology’s Essential Role in Alleviating the Impacts of Climate Change.” Canadian Psychology 49.4 (2008): 273–80. Hamilton, Maxwell John. “Introduction.” Media and the Environment. Eds. Craig L. LaMay, Everette E. Dennis. Washington: Island P, 1991. 3–16. Horvath, Agnes., Bjørn Thomassen, and Harald Wydra. “Introduction: Liminality and Cultures of Change.” International Political Anthropology 2.1 (2009): 3–4. Howard-Williams, Rowan. “Consumers, Crazies and Killer Whales: The Environment on New Zealand Television.” International Communications Gazette 73.1–2 (2011): 27–43. Intergovernmental Panel on Climate Change. Climate Change Synthesis Report. (2007). 23 March 2012 ‹http://www.ipcc.ch/pdf/assessment-report/ar4/syr/ar4_syr.pdf› Killingsworth, M. J., and Jacqueliene S. Palmer. “Silent Spring and Science Fiction: An Essay in the History and Rhetoric of Narrative.” And No Birds Sing: Rhetorical Analyses of Rachel Carson’s Silent Spring. Ed. Craig Waddell. Carbondale, IL: Southern Illinois UP, 2000. 174–204. Littleton, C. Scott. Gods, Goddesses and Mythology. New York: Marshall Cavendish, 2005. Lorenzoni, Irene, Mavis Jones, and John R. Turnpenny. “Climate Change, Human Genetics, and Post-normality in the UK.” Futures 39.1 (2007): 65–82. Lopez, Antonio. “Defusing the Cannon/Canon: An Organic Media Approach to Environmental Communication.” Environmental Communication 4.1 (2010): 99–108. Maier, Daniela Carmen. “Communicating Business Greening and Greenwashing in Global Media: A Multimodal Discourse Analysis of CNN's Greenwashing Video.” International Communications Gazette 73.1–2 (2011): 165–77. Milfront, Taciano L. “Global Warming, Climate Change and Human Psychology.” Psychological Approaches to Sustainability: Current Trends in Theory, Research and Practice. Eds. Victor Corral-Verdugo, Cirilo H. Garcia-Cadena and Martha Frias-Armenta. New York: Nova Science Publishers, 2010. 20–42. O’Neill, Saffron, and Sophie Nicholson-Cole. “Fear Won’t Do It: Promoting Positive Engagement with Climate Change through Visual and Iconic Representations.” Science Communication 30.3 (2009): 355–79. Pawlik, Kurt. “The Psychology of Global Environmental Change: Some Basic Data and an Agenda for Cooperative International Research.” International Journal of Psychology 26.5 (1991): 547–63. Reynolds, Jock., ed. Emmet Gowin: Changing the Earth: Aerial Photographs. New Haven, CT: Yale UP, 2002. Rosenzweig, Cynthia, David Karoly, Marta Vicarelli, Peter Neofotis, Qigang Wu, Gino Casassa, Annette Menzel, Terry L. Root, Nicole Estrella, Bernard Seguin, Piotr Tryjanowski, Chunzhen Liu, Samuel Rawlins, and Anton Imeson. “Attributing Physical and Biological Impacts to Anthropogenic Climate Change.” Nature 453.7193 (2008): 353–58. Roser-Renouf, Connie, and Edward W. Maibach. “Communicating Climate Change.” Encyclopaedia of Science and Technology Communication. Ed. Susanna Hornig Priest. Thousand Oaks, California: Sage. 2010. 141–47. Stamm, Keith R., Fiona Clark, and Paula R. Eblacas. “Mass Communication and the Public Understanding of Environmental Problems: The Case of Global Warming.” Public Understanding of Science 9 (2000): 219–37. Turner, Victor. “Dramatic Ritual – Ritual Drama: Performative and Reflexive Anthropology.” The Kenyon Review, New Series 1.3 (1979): 80–93. —-. “Symbols in African Ritual.” Perspectives in Cultural Anthropology. Ed. Herbert A. Applebaum. Albany: State U of New York P, 1987. 488–501. —-. The Ritual Process: Structure and Anti-Structure. New Jersey: Transaction Publishers, 2008.
Styles APA, Harvard, Vancouver, ISO, etc.
Nous offrons des réductions sur tous les plans premium pour les auteurs dont les œuvres sont incluses dans des sélections littéraires thématiques. Contactez-nous pour obtenir un code promo unique!

Vers la bibliographie