Littérature scientifique sur le sujet « Workcells »
Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres
Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « Workcells ».
À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.
Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.
Articles de revues sur le sujet "Workcells"
Beju, Livia Dana. « Algorithm for workcells design ». MATEC Web of Conferences 343 (2021) : 03002. http://dx.doi.org/10.1051/matecconf/202134303002.
Texte intégralBORCHELT, R. D., et S. ALPTEKIN. « Error recovery in intelligent robotic workcells ». International Journal of Production Research 32, no 1 (janvier 1994) : 65–73. http://dx.doi.org/10.1080/00207549408956916.
Texte intégralAntonelli, Dario, Qingfei Zeng, Khurshid Aliev et Xuemei Liu. « Robust assembly sequence generation in a Human-Robot Collaborative workcell by reinforcement learning ». FME Transactions 49, no 4 (2021) : 851–58. http://dx.doi.org/10.5937/fme2104851a.
Texte intégralHight, Terry H. « Implementation of Robotics Workcells in the Laboratory ». Journal of Liquid Chromatography 9, no 14 (octobre 1986) : 3191–96. http://dx.doi.org/10.1080/01483918608074176.
Texte intégralFelder, Robin A. « Modular workcells : modern methods for laboratory automation ». Clinica Chimica Acta 278, no 2 (décembre 1998) : 257–67. http://dx.doi.org/10.1016/s0009-8981(98)00151-x.
Texte intégralErdős, Gábor, Imre Paniti et Bence Tipary. « Transformation of robotic workcells to digital twins ». CIRP Annals 69, no 1 (2020) : 149–52. http://dx.doi.org/10.1016/j.cirp.2020.03.003.
Texte intégralChan, Timothy, Kedar Godbole et Edwin Hou. « Optimal Input Shaper Design For High-Speed Robotic Workcells ». Journal of Vibration and Control 9, no 12 (décembre 2003) : 1359–76. http://dx.doi.org/10.1177/1077546304031165.
Texte intégralHock Soon, Tan, et Robert de Souza School. « Intelligent simulation‐based scheduling of workcells : an approach ». Integrated Manufacturing Systems 8, no 1 (février 1997) : 6–23. http://dx.doi.org/10.1108/09576069710158754.
Texte intégralSeo, Yoonho, Dongmok Sheen, Chiung Moon et Taioun Kim. « Integrated design of workcells and unidirectional flowpath layout ». Computers & ; Industrial Engineering 51, no 1 (septembre 2006) : 142–53. http://dx.doi.org/10.1016/j.cie.2006.07.006.
Texte intégralLueth, T. C. « Automated Computer-Aided Layout Planning for Robot Workcells ». IFAC Proceedings Volumes 25, no 7 (mai 1992) : 473–78. http://dx.doi.org/10.1016/s1474-6670(17)52412-x.
Texte intégralThèses sur le sujet "Workcells"
Kahloun, Faycal. « A graphic simulator for robotic workcells / ». Thesis, McGill University, 1987. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=63816.
Texte intégralAdam, George K. « Modelling robot tasks in interactive workcells ». Thesis, University of Strathclyde, 1993. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.306981.
Texte intégralGerbasio, Diego. « An approach to task coordination for hyperflexible robotic workcells ». Doctoral thesis, Universita degli studi di Salerno, 2016. http://hdl.handle.net/10556/2471.
Texte intégralThe manufacturing industry is very diverse and covers a wide range of specific processes ranging from extracting minerals to assembly of very complex products such as planes or computers, with all intermediate processing steps in a long chain of industrial suppliers and customers. It is well know that the introduction of robots in manufacturing industries has many advantages. Basically, in relation to human labor, robots work to a constant level of quality. For example, waste, scrap and rework are minimized. Furthermore they can work in areas that are hazardous or unpleasant to humans. Robots are advantageous where strength is required, and in many applications they are also faster than humans. Also, in relation to special-purpose dedicated equipment, robots are more easily reprogrammed to cope with new products or changes in the design of existing ones. In the last 30-40 years, large enterprises in high-volume markets have managed to remain competitive and maintain qualified jobs by increasing their productivity with the incremental adoption and use of advanced ICT and robotics technologies. In the 70s, robots have been introduced for the automation of a wide spectrum of tasks such as: assembly of cars, white goods, electronic devices, machining of metal and plastic parts, and handling of workpieces and objects of all kinds. Robotics has thus soon become a synonym for competitive manufacturing and a key contributing technology for strengthening the economic base of Europe . So far, the automotive and electronics industries and their supply chains are the main users of robot systems and are accounting for more than 60% of the total annual robot sales. Robotic technologies have thus mainly been driven by the needs of these high-volume market industries. The degree of automation in the automotive industries is expected to increase in the future as robots will push the limits towards flexibility regarding faster change-over-times of different product types (through rapid programming generation schemes), capabilities to deal with tolerances (through an extensive use of sensors) and costs (by reducing customized work-cell installations and reuse of manufacturing equipment). There are numerous new fields of applications in which robot technology is not widespread today due to its lack of flexibility and high costs involved when dealing with varying lot sizes and variable product geometries. In such cases, hyper-flexible robotic work cells can help in providing flexibility to the system and making it adaptable to the different dynamic production requirements. Hyper-flexible robotic work cells, in fact, can be composed of sets of industrial robotic manipulators that cooperate to achieve the production step that characterize the work cell; they can be programmed and re-programmed to achieve a wide class of operations and they may result versatile to perform different kind of tasks Related key technology challenges for pursuing successful long-term industrial robot automation are introduced at three levels: basic technologies, robot components and systems integration. On a systems integration level, the main challenges lie in the development of methods and tools for instructing and synchronising the operation of a group of cooperative robots at the shop-floor. Furthermore, the development of the concept of hyper flexible manufacturing systems implies soon the availability of: consistent middleware for automation modules to seamlessly connect robots, peripheral devices and industrial IT systems without reprogramming everything (”plug-and-play”) . In this thesis both innovative and traditional industrial robot applications will be analyzed from the point of view of task coordination. In the modeling environment, contribution of this dissertation consists in presenting a new methodology to obtain a model oriented to the control the sequencing of the activities of a robotic hyperflexible cell. First a formal model using the Colored Modified Hybrid Petri Nets (CMHPN) is presented. An algorithm is provided to obtain an automatic synthesis of the CMHPN of a robotic cell with detail attention to aircraft industry. It is important to notice that the CMHPN is used to model the cell behaviour at a high level of abstraction. It models the activities of each cell component and its coordination by a supervisory system. As more, an object oriented approach and supervisory control are proposed to implement industrial automation control systems (based on Programmable Logic Controllers) to meet the new challenges of this field capability to implement applications involving widely distributed devices and high reuse of software components. Hence a method is proposed to implement both controllers and supervisors designed by Petri Nets on Programmable Logic Controllers (PLCs) using Object Oriented Programming (OOP). Finally preliminary results about a novel cyber-physical approach to the design of automated warehouse systems is presented. [edited by author]
XIV n.s.
Grant, Edward. « The knowledge-based control of robot workcells and dynamic systems ». Thesis, University of Strathclyde, 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.367042.
Texte intégralCampione, Ivo <1992>. « Vision-Based Solutions for Human-Robot Collaboration in Industrial Workcells ». Doctoral thesis, Alma Mater Studiorum - Università di Bologna, 2022. http://amsdottorato.unibo.it/10364/1/campione_ivo_tesi.pdf.
Texte intégralSallinen, Mikko. « Modelling and estimation of spatial relationships in sensor-based robot workcells / ». Espoo [Finland] : VTT Technical Research Centre of Finland, 2003. http://www.vtt.fi/inf/pdf/publications/2003/P509.pdf.
Texte intégralRamirez-Serrano, Alejandro. « Extended Moore automata for the supervisory part-flow control of virtual manufacturing workcells ». Thesis, National Library of Canada = Bibliothèque nationale du Canada, 2000. http://www.collectionscanada.ca/obj/s4/f2/dsk1/tape4/PQDD_0018/NQ53794.pdf.
Texte intégralAyyadevara, Venkateswara Rao. « Development of an automated robotic deburring workcell ». Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1996. http://www.collectionscanada.ca/obj/s4/f2/dsk3/ftp04/MQ47729.pdf.
Texte intégralDubois, Vincent. « Design of a multiple robot test workcell ». Thesis, McGill University, 1994. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=69791.
Texte intégralSong, Xuekai. « Control of an autonomous robotic assembly workcell ». Thesis, University of Hull, 1990. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.333762.
Texte intégralLivres sur le sujet "Workcells"
Sanford, Ressler, et National Institute of Standards and Technology (U.S.), dir. Translating IGRIP workcells into VRML2. Gaithersburg, MD : U.S. Dept. of Commerce, Technology Administration, National Institute of Standards and Technology, 1997.
Trouver le texte intégralSanford, Ressler, et National Institute of Standards and Technology (U.S.), dir. Translating IGRIP workcells into VRML2. Gaithersburg, MD : U.S. Dept. of Commerce, Technology Administration, National Institute of Standards and Technology, 1997.
Trouver le texte intégralSanford, Ressler, et National Institute of Standards and Technology (U.S.), dir. Translating IGRIP workcells into VRML2. Gaithersburg, MD : U.S. Dept. of Commerce, Technology Administration, National Institute of Standards and Technology, 1997.
Trouver le texte intégralWilliams, Robert Alexander. A hybrid supervisory control system for flexible manufacturing workcells. Ottawa : National Library of Canada, 1993.
Trouver le texte intégralLauzon, Stephane C. An implementation methodology for the supervisory control of flexible-manufacturing workcells. Ottawa : National Library of Canada, 1995.
Trouver le texte intégralSallinen, Mikko. Modelling and estimation of spatial relationships in sensor-based robot workcells. Espoo [Finland] : VTT Technical Research Centre of Finland, 2003.
Trouver le texte intégralGresty, Chris. A man/machine interface and framework for the control of integrated manufacturing workcells. Sheffield : University of Sheffield, Dept. of Automatic Control and Systems Engineering, 1994.
Trouver le texte intégralFicocelli, Maurizio. A PLC-based implementation methodology for the supervisory control of manufacturing workcells using extended moore automata. Ottawa : National Library of Canada, 2002.
Trouver le texte intégralCao, Tiehua. Task sequence planning in a robot workcell using and/or nets. Troy, N.Y : Center for Intelligent Robotic Systems for Space Exploration, Rensselaer Polytechnic Institute, 1991.
Trouver le texte intégralGolmakani, Hamid Reza. Automata-based scheduling and control of flexible manufacturing workcells. 2004.
Trouver le texte intégralChapitres de livres sur le sujet "Workcells"
Woodcock, Rollie. « Robotic Automated-Test Workcells ». Dans The Electronics Assembly Handbook, 440–47. Berlin, Heidelberg : Springer Berlin Heidelberg, 1988. http://dx.doi.org/10.1007/978-3-662-13161-9_70.
Texte intégralNicholas, John. « Workcells and Cellular Manufacturing ». Dans Lean Production for Competitive Advantage, 283–318. 2nd edition. | Boca Raton : Taylor & Francis, CRC Press, 2018. : Productivity Press, 2018. http://dx.doi.org/10.4324/9781351139083-12.
Texte intégralCarayannis, G., et A. Malowany. « Improving the Programmability of Robotic Workcells ». Dans New Trends in Computer Graphics, 653–62. Berlin, Heidelberg : Springer Berlin Heidelberg, 1988. http://dx.doi.org/10.1007/978-3-642-83492-9_60.
Texte intégralMeans, Kenneth H., et Jie Jiang. « Discrete Optimum Assembly Methods for Automated Workcells ». Dans CAD/CAM Robotics and Factories of the Future ’90, 382–87. Berlin, Heidelberg : Springer Berlin Heidelberg, 1991. http://dx.doi.org/10.1007/978-3-642-84338-9_54.
Texte intégralKamnik, R., T. Bjad et A. Kralj. « CAD for Robot Workcells in Battery Manufacturing ». Dans Schriftenreihe der Wissenschaftlichen Landesakademie für Niederösterreich, 163–67. Vienna : Springer Vienna, 1994. http://dx.doi.org/10.1007/978-3-7091-9346-4_32.
Texte intégralLiu, Peiya, Ming-Yee Chiu, Cheoung N. Lee et Steven J. Clark. « Diagnosis of Robotic Workcells by Behavioral Models ». Dans Robotics and Factories of the Future ’87, 595–602. Berlin, Heidelberg : Springer Berlin Heidelberg, 1988. http://dx.doi.org/10.1007/978-3-642-73890-6_72.
Texte intégralMeans, Kenneth H., et Jie Jiang. « Discrete Optimum Assembly Methods for Automated Workcells ». Dans CAD/CAM Robotics and Factories of the Future ’90, 382–87. Berlin, Heidelberg : Springer Berlin Heidelberg, 1991. http://dx.doi.org/10.1007/978-3-642-85838-3_54.
Texte intégralMaisano, Domenico A., Dario Antonelli et Fiorenzo Franceschini. « Assessment of Failures in Collaborative Human-Robot Assembly Workcells ». Dans Collaborative Networks and Digital Transformation, 562–71. Cham : Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-28464-0_49.
Texte intégralAdler, A. « TDL, a task description language for programming automated robotic workcells ». Dans Proceedings of the 5th International Conference on Flexible Manufacturing Systems, 247–53. Berlin, Heidelberg : Springer Berlin Heidelberg, 1986. http://dx.doi.org/10.1007/978-3-662-38009-3_24.
Texte intégralDel Valle, Carmelo, Miguel Toro, Rafael Ceballos et Jesús S. Aguilar-Ruiz. « A Pomset-Based Model for Estimating Workcells’ Setups in Assembly Sequence Planning ». Dans Advances in Artificial Intelligence — IBERAMIA 2002, 835–44. Berlin, Heidelberg : Springer Berlin Heidelberg, 2002. http://dx.doi.org/10.1007/3-540-36131-6_85.
Texte intégralActes de conférences sur le sujet "Workcells"
Refaat, Tarek K., Ramez M. Daoud, Hassanein H. Amer et Magdi s. ElSoudani. « Cascading wireless industrial workcells ». Dans 2011 IEEE International Conference on Mechatronics (ICM). IEEE, 2011. http://dx.doi.org/10.1109/icmech.2011.5971184.
Texte intégralNeogy, C., S. Mohan et A. H. Soni. « Computer Aided Design of Robot Work Cell ». Dans ASME 1992 Design Technical Conferences. American Society of Mechanical Engineers, 1992. http://dx.doi.org/10.1115/detc1992-0234.
Texte intégralNicholson, Philip, et Jim Devaprasad. « Virtual Commissioning of Robotic Workcells ». Dans Robotics and Applications. Calgary,AB,Canada : ACTAPRESS, 2011. http://dx.doi.org/10.2316/p.2011.743-028.
Texte intégralSoman, N. A., et Joseph K. Davidson. « Design of Planar 3-R Robotic Workcells in Two-Space With Rotation at the Third Joint Limited to Exactly One Turn ». Dans ASME 1993 Design Technical Conferences. American Society of Mechanical Engineers, 1993. http://dx.doi.org/10.1115/detc1993-0351.
Texte intégralWright, Jeffrey S. « A Generic Controller For Manufacturing Workcells ». Dans Applications of Artificial Intelligence V, sous la direction de John F. Gilmore. SPIE, 1987. http://dx.doi.org/10.1117/12.940661.
Texte intégralSim, Siang-Kok, Meng-Leong Tay et Ahmad Khairyanto. « Optimisation of a Robotic Workcell Layout Using Genetic Algorithms ». Dans ASME 2005 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2005. http://dx.doi.org/10.1115/detc2005-85518.
Texte intégralJiao, Ting, Yongmei Gan et Guochun Xiao. « On the reconfiguration of flexible manufacturing workcells ». Dans TENCON 2013 - 2013 IEEE Region 10 Conference. IEEE, 2013. http://dx.doi.org/10.1109/tencon.2013.6718470.
Texte intégralHaule et Malowany. « Teleprogramming control paradigm for remote robotic workcells ». Dans Proceedings of Canadian Conference on Electrical and Computer Engineering CCECE-94. IEEE, 1994. http://dx.doi.org/10.1109/ccece.1994.405873.
Texte intégralWeiss, Brian A., et Jared Kaplan. « Verification of a Novel Position Verification Sensor to Identify and Isolate Robot Workcell Health Degradation ». Dans ASME 2020 15th International Manufacturing Science and Engineering Conference. American Society of Mechanical Engineers, 2020. http://dx.doi.org/10.1115/msec2020-8484.
Texte intégralChang, Guanghsu A., et J. Paul Sims. « A Case-Based Reasoning Approach to Robot Selection ». Dans ASME 2005 International Mechanical Engineering Congress and Exposition. ASMEDC, 2005. http://dx.doi.org/10.1115/imece2005-82066.
Texte intégralRapports d'organisations sur le sujet "Workcells"
Wang, Qiming, et Sandy Ressler. Translating IGRIP Workcells into VRML2. Gaithersburg, MD : National Institute of Standards and Technology, 1997. http://dx.doi.org/10.6028/nist.ir.6076.
Texte intégralWilliams, Joshua M. Automated conceptual design of manufacturing workcells in radioactive environments. Office of Scientific and Technical Information (OSTI), juillet 2013. http://dx.doi.org/10.2172/1088345.
Texte intégralWilliams, Joshua M. Automated Conceptual Design of Manufacturing Workcells in Radioactive Environments. Office of Scientific and Technical Information (OSTI), août 2013. http://dx.doi.org/10.2172/1089471.
Texte intégralStrip, D., et C. Phillips. Fixture and layout planning for reconfigurable workcells. LDRD final report. Office of Scientific and Technical Information (OSTI), juin 1994. http://dx.doi.org/10.2172/10169841.
Texte intégralTucker, S. D., et L. P. Ray. Artificial awareness for robots using artificial neural nets to monitor robotic workcells. Office of Scientific and Technical Information (OSTI), avril 1997. http://dx.doi.org/10.2172/469142.
Texte intégralMarvel, Jeremy A., Elena R. Messina, Brian Antonishek, Karl Van Wyk et Lisa J. Fronczek. Tools for Robotics in SME Workcells : Challenges and Approaches for Calibration and Registration. National Institute of Standards and Technology, décembre 2015. http://dx.doi.org/10.6028/nist.ir.8093.
Texte intégralWilliams, Joshua M. Automated design synthesis of robotic/human workcells for improved manufacturing system design in hazardous environments. Office of Scientific and Technical Information (OSTI), juin 2012. http://dx.doi.org/10.2172/1043512.
Texte intégralWilliams, Joshua M. Automated design synthesis of robotic/human workcells for improved manufacturing system design in hazardous environments. Office of Scientific and Technical Information (OSTI), novembre 2012. http://dx.doi.org/10.2172/1056506.
Texte intégralHorst, John, Elena Messina et Jeremy Marvel. Best Practices for the Integration of Collaborative Robots into Workcells Within Small and Medium-Sized Manufacturing Operations. National Institute of standards and Technology, mai 2021. http://dx.doi.org/10.6028/nist.ams.100-41.
Texte intégralMontgomery, Karl, Richard Candell, Yongkang Liu et Mohamed Hany. Wireless user requirements for the factory workcell. Gaithersburg, MD : National Institute of Standards and Technology, juin 2020. http://dx.doi.org/10.6028/nist.ams.300-8.
Texte intégral