Littérature scientifique sur le sujet « WIRELESS POWER SYSTEM »

Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres

Choisissez une source :

Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « WIRELESS POWER SYSTEM ».

À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.

Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.

Articles de revues sur le sujet "WIRELESS POWER SYSTEM"

1

خديجة الشاعري, محمد منصور الفارسي, سليم مصطفى سليم et عبد الحفيظ اللبار. « Design of Wireless Power Transfer SystemDesign of Wireless Power Transfer System ». Journal of Pure & ; Applied Sciences 21, no 4 (3 octobre 2022) : 329–33. http://dx.doi.org/10.51984/jopas.v21i4.2482.

Texte intégral
Résumé :
In the recent years of the twenty first century, the world has witnessed a noticed evolvement in wireless techniques, such that wireless phones, wireless electronic devices, wireless communication and wireless power transfer. Wireless power transfer is a modern technique used to transfer an electric energy from a source to a destination that is consumed to the load. Wireless power transfer is an important for many applications like, wirelessly powered home appliances that received the power from a transmitting device wirelessly. For example lighting of bulbs, operating of electric equipment and wireless charging for electric tooth brush and charging mobiles. In the developed countries there is wireless charging of electric vehicles is based on magnetic resonance field as in Japan. Based on this concept , the idea of this paper has been chosen. This paper aims to design a wireless power transfer system. This design has accomplished three tasks: one is to build a Tesla Tower design circuit and measuring the possible efficiency can be obtained. It's got satisfied results to about 70%. The second task is to build a magnetic coupled circuit that is based on the idea of wireless mobile charging technique. During our work, it's studied the power efficiency and its related to the distance between transmitter and receiver, the diameter of the coils and number of turns. To enhance our results, it's suggested to connect and design of these circuits by simulation using Multisim software and get the desired goal.
Styles APA, Harvard, Vancouver, ISO, etc.
2

Mishra, Rakesh Kumar. « Space based Solar Power : Feasibility Microwave based wireless power system ». Journal of Marine Science and Research 2, no 1 (27 février 2023) : 01–05. http://dx.doi.org/10.58489/2836-5933/005.

Texte intégral
Résumé :
Electricity is Part of Life. Electricity is extremely essential to all need it is flexible form of energy, and has been adapt to huge, and growing number of uses. The concentration on the use of fossil fuel for energy supply is the main threat for stability of the global Climate system. To converse our Globe, the Scientific Community gave evidence that mankind has decreases the green House gas emission.
Styles APA, Harvard, Vancouver, ISO, etc.
3

Manohar, B. S. P. S., Veera Venkata Sai Kumar Gandham et P. K. Dhal. « An Overview of Wireless Power Transmission System and Analysis of Different Methods ». International Journal for Research in Applied Science and Engineering Technology 10, no 3 (31 mars 2022) : 1818–27. http://dx.doi.org/10.22214/ijraset.2022.40987.

Texte intégral
Résumé :
Abstract: The overall concept of wireless power transmission and its strategy for finding an efficient means to distribute power without stringing wires that could wirelessly transport electricity are demonstrated in this paper. This study examines the latest trends and technological advancements in the field of wireless power transfer. Wireless power transfer has become commonplace in future societies with advanced technology. Keywords: latest trends, technological advancements, wireless power transmission, stringing wires, ubiquitous
Styles APA, Harvard, Vancouver, ISO, etc.
4

Sutar, Mr Anurag A. « Wireless Power Transmission System ». International Journal for Research in Applied Science and Engineering Technology 9, no 4 (30 avril 2021) : 1370–74. http://dx.doi.org/10.22214/ijraset.2021.33941.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Arai, Hiroyuki. « Wireless Power Transfer System ». Journal of electromagnetic engineering and science 11, no 3 (30 septembre 2011) : 143–51. http://dx.doi.org/10.5515/jkiees.2011.11.3.143.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Leach, Mark, Zhao Wang, Chenyue Wang, Ka Lok Man, Jong Hyuk Park et Eng Gee Lim. « Wireless Power Supply System ». Advanced Science Letters 21, no 3 (1 mars 2015) : 458–60. http://dx.doi.org/10.1166/asl.2015.5866.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Chen, Xiyou, Zhe Wang, Zhengying Lang, Tao Li et Chen Qi. « Research on Desktop Wide Range Wireless Power Transfer Based on High Frequency Electric Field ». World Electric Vehicle Journal 12, no 3 (2 septembre 2021) : 141. http://dx.doi.org/10.3390/wevj12030141.

Texte intégral
Résumé :
This paper proposes a desktop wireless power transfer system that can wirelessly supply power to electrical equipment in a certain space above the aluminum foil using only a high-frequency electric field. Compared with other wireless power supply systems, this system has a smaller power receiving device and a wider power supply range, which is convenient for wireless power supply of portable electrical equipment and low-power electric vehicles. The power receiving device of the system is only the size of a mobile phone, and the power supply range can reach 1.2 m2. This article introduces the system design, electromagnetic field simulation and experiment of the desktop wireless power transfer system. The experimental results show that by using a mobile phone-sized receiving device to connect a light bulb and a fan, multiple loads can simultaneously receive power in a specific space above the desktop power supply. In addition, people can hold the power receiving device for wireless charging.
Styles APA, Harvard, Vancouver, ISO, etc.
8

Sathe, Minal Dilip, Priyanka Sandesh Nikam et Gajanan Khapre. « Wireless Charging Control for Electric Vehicles ». International Journal for Research in Applied Science and Engineering Technology 11, no 5 (31 mai 2023) : 4317–21. http://dx.doi.org/10.22214/ijraset.2023.52478.

Texte intégral
Résumé :
Abstract: Wireless power transmission is a way to transmit power without a wire. Wireless power transmission helps connect areas where people do not have access to an adequate power source. Anyone can get clean and green wireless power. From now on, all devices will be connected to the power source wirelessly. Wireless charging for electric vehicles has been in development for several years before the widespread use of these vehicles. Today, wireless charging systems offer an efficient and flexible way to charge electric vehicles of several categories and different capacities from a common base source. Standardization work is well underway to ensure system compatibility between vehicles and locations. In this paper, we presented successful experimental experiments for wireless power transmission and the future scope of wireless power transmission in electric vehicles
Styles APA, Harvard, Vancouver, ISO, etc.
9

Shirokov, I. B., I. V. Serdyuk, A. A. Azarov et E. I. Shirokova. « System for wireless power transfer ». Ural Radio Engineering Journal 5, no 1 (2021) : 7–20. http://dx.doi.org/10.15826/urej.2021.5.1.001.

Texte intégral
Résumé :
The issues of wireless power transfer over short distances are considered. The approach may be used for wireless charging of batteries in unmanned vehicles. It is proposed to use the technique of microstrip structures for power transfer. The microstrip structures form a directional coupler on symmetrical strip lines when approaching by front parts. The length of the interaction lines is chosen several times longer than a quarter of the wavelength. Ballast resistors are excluded from the circuit. This approach leads to small losses of power transfer when the distance between microstrip structures changes over a wide range. Modeling of the operation of the power transfer system has been carried out, an experimental sample has been made and experimental studies have been carried out. The simulation and experiment are well accorded.
Styles APA, Harvard, Vancouver, ISO, etc.
10

Supriya, Sai, Priyamvadaa R et Savita SangappaMulimani. « WIRELESS POWER THEFT MONITORING SYSTEM ». International Journal of Research -GRANTHAALAYAH 5, no 4RACEEE (30 avril 2017) : 118–23. http://dx.doi.org/10.29121/granthaalayah.v5.i4raceee.2017.3333.

Texte intégral
Résumé :
Now-a-days in Public Service Sectors, their Automation is the updated trend, which transforms the manpower dependent services to semi-automatic or full-automatic Sectors. Since, because the country is enlightened to globalization, income of people is rising. This “Busy” word has now become vital part of everybody’s life. So, governments prefer not only to give quality service but also the corrupt & error free services to its citizens. So as an upshot, the project proposed which is an advanced system, helps Electricity-Corporations or Electricity-Boards to switch to advancement towards “anti-Power theft” smoothly. This project helps inorder to give quality service to its customer without any kind of problems, along with an aim of reducing recurring theft of energy to a considerable extent.
Styles APA, Harvard, Vancouver, ISO, etc.

Thèses sur le sujet "WIRELESS POWER SYSTEM"

1

Jenkinson, Ashley. « Long range wireless power monitoring system ». Thesis, Jenkinson, Ashley (2012) Long range wireless power monitoring system. Other thesis, Murdoch University, 2012. https://researchrepository.murdoch.edu.au/id/eprint/13121/.

Texte intégral
Résumé :
This thesis examines the design, construction and implementation of a microcontroller-based long range wireless power monitoring system, suitable for both domestic and industrial use. At its core, the system is based on a number of PICAXE 20X2 microcontrollers and a pair of XBee Pro wireless modules, which are capable of wireless communication to distances exceeding 1.5km. The Long Range Wireless Power Monitoring system is capable of galvanically isolated single and three-phase current and voltage measurements and is able to calculate real power, apparent power and power factor. The results can be displayed numerically or graphically on a Graphical Liquid Crystal Display. In addition to this, the system has the ability to log usage to an external USB Flash device, allowing for later analysis and for the building of a usage history library. The Long Range Wireless Power Monitor is equally proficient at measuring power consumption of devices, or power generation from sources such as photovoltaic cells or wind turbines. In the example of power consumption, usage costs are calculated from user-defined tariffs. Conversely, for generation, the income from power generated is calculated. At the completion of this project, the Wireless Power Monitor is capable of being deployed for use as a fully working prototype. In addition to this, the system provides a solid basis for future adaptation or expansion and due to its open source software can be easily modified for use in specific applications.
Styles APA, Harvard, Vancouver, ISO, etc.
2

Heffernan, Travis Jade. « Metamaterial Enhanced Wireless Power Transmission System ». DigitalCommons@CalPoly, 2013. https://digitalcommons.calpoly.edu/theses/1069.

Texte intégral
Résumé :
Nikolai Tesla's revolutionary experiments demonstrated the possible benefits of transmitting power wirelessly as early as 1891. Applications for the military, consumers, emergency personnel, remote sensors, and others use Tesla’s discovery of wireless power. Wireless power transmission (WPT) has the potential to be a common source of consumable energy, but it will only receive serious consideration if the transmit and receive systems are extremely efficient and capable of delivering usable amounts of power. Research has been conducted to improve the efficiency and performance of nearly every aspect of WPT systems, but the relatively new field of metamaterials (MTMs) has yet to play a dominate role in improving system performance. A gradient index (GRIN) MTM lens was designed using Ansoft’s High Frequency Structure Simulator (HFSS) to improve antenna gain and thereby increase WPT system performance. A simple WPT demonstration system using microstrip patch antennas (MPAs) confirmed the benefits of the GRIN MTM lens. The WPT demonstration system, MPAs, and GRIN MTM lens were constructed and experimentally tested near 2.45 GHz. The theoretical and experimental gain improvement of the MPA due to the GRIN MTM lens is 5.91 dB and 7.06 dB, respectively.
Styles APA, Harvard, Vancouver, ISO, etc.
3

Wang, Yan. « Low power design for wireless communication system / ». View Abstract or Full-Text, 2003. http://library.ust.hk/cgi/db/thesis.pl?ELEC%202003%20WANG.

Texte intégral
Résumé :
Thesis (Ph. D.)--Hong Kong University of Science and Technology, 2003.
Includes bibliographical references (leaves 171-179). Also available in electronic version. Access restricted to campus users.
Styles APA, Harvard, Vancouver, ISO, etc.
4

Miura, Takeshi. « Study of Microwave Power Receiving System for Wireless Power Transmission ». 京都大学 (Kyoto University), 2000. http://hdl.handle.net/2433/180901.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Liu, Feng. « Lifetime maximization through adaptive power allocation in reconfigurable system design for wireless systems / ». View abstract or full-text, 2009. http://library.ust.hk/cgi/db/thesis.pl?ECED%202009%20LIU.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Lee, Hyung-Min. « A power-efficient wireless neural stimulating system with inductive power transmission ». Diss., Georgia Institute of Technology, 2014. http://hdl.handle.net/1853/53449.

Texte intégral
Résumé :
The objective of the proposed research is to advance the power efficiency of wireless neural stimulating systems in inductively powered implantable medical devices (IMD). Several innovative system- and circuit-level techniques are proposed towards the development of power-management circuits and wireless neural stimulating systems with inductive power transmission to improve the overall stimulation power efficiency. Neural stimulating IMDs have been proven as effective therapies to alleviate neurological diseases, while requiring high power and performance for more efficacious treatments. Therefore, power-management circuits and neural stimulators in IMDs should have high power efficiencies to operate with smaller received power from a larger distance. Neural stimulating systems are also required to have high stimulation efficacy for activating the target tissue with a minimum amount of energy, while ensuring charge-balanced stimulation. These features provide several advantages such as a long battery life in an external power transmitter, extended-range inductive power transfer, efficacious and safe stimulation, and less tissue damage from overheating. The proposed research presents several approaches to design and implement the power-efficient wireless neural stimulating IMDs: 1) optimized power-management circuits for inductively powered biomedical microsystems, 2) a power-efficient neural stimulating system with adaptive supply control, and 3) a wireless switched-capacitor stimulation (SCS) system, which is a combination structure of the power-management circuits and neural stimulator, to maximize both stimulator efficiency (before electrodes) and stimulus efficacy (after electrodes).
Styles APA, Harvard, Vancouver, ISO, etc.
7

Yang, Bo. « High Power Microwave Wireless Power Transmission System with Phase-Controlled Magnetrons ». Kyoto University, 2020. http://hdl.handle.net/2433/259739.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Yeh, David Alexander. « Multi-gigabit low-power wireless CMOS demodulator ». Diss., Georgia Institute of Technology, 2010. http://hdl.handle.net/1853/41168.

Texte intégral
Résumé :
This dissertation presents system and circuit development of the low-power multi-gigabit CMOS demodulator using analog and mixed demodulation techniques. In addition, critical building blocks of the low-power analog quadrature front-ends are designed and implemented using 90 nm CMOS with a targeted compatibility to the traditional demodulator architecture. It exhibits an IF-to-baseband conversion gain of 25 dB with 1.8 GHz of baseband bandwidth and a dynamic range of 23 dB while consuming only 46 mW from a 1 V supply voltage. Several different demodulators using analog signal processor (ASP) are implemented: (1) an ultra-low power non-coherent ASK demodulator is measured to demodulate a maximum speed of 3 Gbps while consuming 32 mW from 1.8 V supply; (2) a mere addition of 7.5 mW to the aforementioned analog quadrature front-end enables a maximum speed of 2.5 Gbps non-coherent ASK demodulation with an improved minimum sensitivity of -38 dBm; (3) a robust coherent BPSK demodulator is shown to achieve a maximum speed of 3.5 Gbps based on the same analog quadrature front-end with only additional 7 mW. Furthermore, an innovative seamless handover mechanism between ASP and PLL is designed and implemented to improve the frequency acquisition time of the coherent BPSK demodulator. These demodulator designs have been proven to be feasible and are integrated in a 60 GHz wireless receiver. The system has been realized in a product prototype and used to stream HD video as well as transfer large multi-media files at multi-gigabit speed.
Styles APA, Harvard, Vancouver, ISO, etc.
9

Patel, Ketan B. (Ketan Kumar Balubhai) 1975. « Ultra low-power wireless sensor demonstration system : design of a wireless base station ». Thesis, Massachusetts Institute of Technology, 2000. http://hdl.handle.net/1721.1/86434.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Lu, Shili. « Stochastic power control for wireless networks : Probabilistic QoS measures ». Thesis, University of Ottawa (Canada), 2005. http://hdl.handle.net/10393/26964.

Texte intégral
Résumé :
For wireless network systems, iterative power control algorithms have been proposed to minimize the transmission power, while maintaining reliable communication and base stations. However, since the measurements are random, the channel characteristics always are described by Stochastic Differential Equations (SDE). Based on the stochastic approximation methods, and using time-varying step size sequences, we can get an approximation algorithm to reach an optimal power allocation. After the study of optimal power allocation, the probabilistic Quality of Service (QoS) measures are introduced to evaluate the performance of any control strategy. It provides tight bounds that relate to the probability of failure in achieving the desired QoS requirements. This thesis addresses mobile systems consisting of M transmitters and M receivers, which are subject to motion, and their power is described by SDE. The optimal power control problem is formulated, and the outage probability corresponding to a desired QoS requirements is computed using Moment Generating Function (MGF). Numerical results show that each user needs only to know its own channel gain and its own output assigned by the base station to update the transmitter power in order to maintain a desired Signal to Interference Ratio (SIR) and QoS requirement at the receiver.
Styles APA, Harvard, Vancouver, ISO, etc.

Livres sur le sujet "WIRELESS POWER SYSTEM"

1

Karri, Ramesh, et David Goodman, dir. System-Level Power Optimization for Wireless Multimedia Communication. Boston : Kluwer Academic Publishers, 2002. http://dx.doi.org/10.1007/b117504.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Ramesh, Karri, et Goodman David J. 1939-, dir. System-level power optimization for wireless multimedia communication : Power aware computing. Boston : Kluwer Academic, 2002.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Sheng, Samuel. Low-Power CMOS Wireless Communications : A Wideband CDMA System Design. Boston, MA : Springer US, 1998.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Poon, Alan Siu Kei. A 5.8GHz CMOS power amplifier for short-range wireless system. Ottawa : National Library of Canada, 2003.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

1945-, Brodersen Robert W., dir. Low-power CMOS wireless communications : A wideband CDMA system design. Boston : Kluwer Academic Publishers, 1998.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Vitale, Robert L. Design and prototype development of a wireless power transmission system for a micro air vehicle (MAV). Monterey, Calif : Naval Postgraduate School, 1999.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Otte, Rob. Low-Power Wireless Infrared Communications. Boston, MA : Springer US, 1999.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Chiang, Mung. Power control in wireless cellular networks. Hanover, MA : Now Publishers, 2007.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Otte, Rob. Low-power wireless infrared communications. Boston, MA : Kluwer Academic Publishers, 1999.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Sun, Tianjia. Wireless Power Transfer for Medical Microsystems. New York, NY : Springer New York, 2013.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.

Chapitres de livres sur le sujet "WIRELESS POWER SYSTEM"

1

Sowmya, T. Sai, Subhojit Dawn, Ch Sunil Kumar, Sk Mounib Baig et R. Varaprasad. « Wireless Solar Power Transmission System ». Dans Renewable Resources and Energy Management, 451–59. London : CRC Press, 2023. http://dx.doi.org/10.1201/9781003361312-50.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Pérez-Nicoli, Pablo, Fernando Silveira et Maysam Ghovanloo. « System Design Examples ». Dans Inductive Links for Wireless Power Transfer, 189–216. Cham : Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-65477-1_8.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Kuznetsov, Roman, et Valeri Chipulis. « Wireless Data Collection in Power System ». Dans Lecture Notes in Electrical Engineering, 21–26. Berlin, Heidelberg : Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-642-41671-2_4.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Sheng, Samuel, et Robert Brodersen. « System Overview : The Broadband CDMA Downlink ». Dans Low-Power CMOS Wireless Communications, 37–58. Boston, MA : Springer US, 1998. http://dx.doi.org/10.1007/978-1-4615-5457-8_3.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Zhang, Xi, Chong Zhu et Haitao Song. « Communication System ». Dans Wireless Power Transfer Technologies for Electric Vehicles, 197–205. Singapore : Springer Singapore, 2022. http://dx.doi.org/10.1007/978-981-16-8348-0_8.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Oh, Jin-Seok, Soo-Young Bae, Ji-Young Lee, Jun-Ho Kwak, Jae-Min Kim et Cameron Johnstone. « Wireless Monitoring System for Hybrid Power Generation System ». Dans Springer Proceedings in Physics, 91–98. Berlin, Heidelberg : Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-13624-5_10.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Narayan, Jay Prakash, Anamika Das et Ananyo Bhattacharya. « Class-E Power Amplifier-Based Wireless Power Transfer System ». Dans Recent Advances in Power Electronics and Drives, 387–94. Singapore : Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-16-9239-0_29.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Li, Suet-Fei, Roy Sutton et Jan Rabaey. « Low Power Operating System for Heterogeneous Wireless Communication System ». Dans Compilers and Operating Systems for Low Power, 1–16. Boston, MA : Springer US, 2003. http://dx.doi.org/10.1007/978-1-4419-9292-5_1.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Zhang, Chenxi, Zetao Li, Yingzhao Zhang et Zhongbin Zhao. « Solar Power Based Wireless Charging System Design ». Dans Lecture Notes in Electrical Engineering, 621–35. Singapore : Springer Singapore, 2017. http://dx.doi.org/10.1007/978-981-10-6496-8_57.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Jung, Gu Ho. « Optimum Design of Wireless Power Transfer System ». Dans The On-line Electric Vehicle, 139–48. Cham : Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-51183-2_9.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.

Actes de conférences sur le sujet "WIRELESS POWER SYSTEM"

1

Eekshita, Patakula, Nallabothula Sangeeth Venkata Narayana et Ramesh Jayaraman. « Wireless Power Transmission System ». Dans 2021 International Conference on Computer Communication and Informatics (ICCCI). IEEE, 2021. http://dx.doi.org/10.1109/iccci50826.2021.9402575.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Jian, Hau-Shian, Jia-Jing Kao et Chun-Liang Lin. « Adaptive wireless power charging system ». Dans 2018 13th IEEE Conference on Industrial Electronics and Applications (ICIEA). IEEE, 2018. http://dx.doi.org/10.1109/iciea.2018.8397791.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Ahn, Seungyoung, et Dong-Ho Cho. « Future wireless power transportation system ». Dans 2013 Asia Pacific Microwave Conference - (APMC 2013). IEEE, 2013. http://dx.doi.org/10.1109/apmc.2013.6694833.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Meetoo, Chris, Sanjay Bahadoorsingh, Neil Ramsamooj et Chandrabhan Sharma. « Wireless residential power monitoring system ». Dans 2017 IEEE Manchester PowerTech. IEEE, 2017. http://dx.doi.org/10.1109/ptc.2017.7981122.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Yabuta, Teruki, Satoshi Yoshida et Kenjiro Nishikawa. « Dual-band Wireless Power Transfer System for Simultaneous Wireless Information and Power Transfer System ». Dans 2022 Wireless Power Week (WPW). IEEE, 2022. http://dx.doi.org/10.1109/wpw54272.2022.9901355.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Torres, Ricardo, Diogo Matos, Ricardo Correia et Nuno B. Carvalho. « Distributed Ambient SWIPT System ». Dans 2022 Wireless Power Week (WPW). IEEE, 2022. http://dx.doi.org/10.1109/wpw54272.2022.9854003.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Besnoff, Jordan, David S. Ricketts, Yohay Buchbut, Gergory Castillo, Moshe Laifendfeld et Kobi Scheim. « Smart wireless power : A wireless power and bi-directional LIN communication system ». Dans 2017 IEEE International Conference on Microwaves, Antennas, Communications and Electronic Systems (COMCAS). IEEE, 2017. http://dx.doi.org/10.1109/comcas.2017.8244813.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Kini, Vinayak, Chinmay Patil, Siddhesh Bahadkar, Sharvil Panandikar, Akhilesh Sreedharan et Abhay Kshirsagar. « Low Power Wireless Health Monitoring System ». Dans 2015 International Conference on Advances in Computing, Communications and Informatics (ICACCI). IEEE, 2015. http://dx.doi.org/10.1109/icacci.2015.7275738.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Hsieh, Hsin-Che, Jing-Yuan Lin, Yao-Ching Hsieh et Huang-Jen Chiu. « High-efficiency wireless power transfer system ». Dans 2015 IEEE International Telecommunications Energy Conference (INTELEC). IEEE, 2015. http://dx.doi.org/10.1109/intlec.2015.7572499.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Alphones, A., et J. P. K. Sampath. « Metamaterial assisted wireless power transfer system ». Dans 2015 Asia-Pacific Microwave Conference (APMC). IEEE, 2015. http://dx.doi.org/10.1109/apmc.2015.7413021.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.

Rapports d'organisations sur le sujet "WIRELESS POWER SYSTEM"

1

Smith, Marcus D., Jr Brandhorst et Henry W. Support to a Wireless Power System Design. Fort Belvoir, VA : Defense Technical Information Center, décembre 2011. http://dx.doi.org/10.21236/ada564824.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Akyol, Bora A., Harold Kirkham, Samuel L. Clements et Mark D. Hadley. A Survey of Wireless Communications for the Electric Power System. Office of Scientific and Technical Information (OSTI), janvier 2010. http://dx.doi.org/10.2172/986700.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Nowak, Dieter, et Hnatczuk Wsewolod. Wireless Smart Electric Power Management System Based on MEMS Technology. Fort Belvoir, VA : Defense Technical Information Center, juillet 2003. http://dx.doi.org/10.21236/ada640070.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Pereira da Cunha, Mauricio. Wireless microwave acoustic sensor system for condition monitoring in power plant environments. Office of Scientific and Technical Information (OSTI), mars 2017. http://dx.doi.org/10.2172/1406890.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Tzonev, Nick. PR-396-183905-R01 Autonomous System For Monitoring Pipeline River Crossings. Chantilly, Virginia : Pipeline Research Council International, Inc. (PRCI), juin 2021. http://dx.doi.org/10.55274/r0012110.

Texte intégral
Résumé :
The goal of the GHZ-2-01 Project is to develop and lab-test a system for monitoring underground pipeline facilities at remote river crossings where access to power and wireline communications is not readily available. A next generation real-time river crossing monitoring solution requires an integration of various sensor types, data computation capabilities, and low power wireless connectivity which would: - utilize proven sensors technologies such as accelerometers, inclinometer strings and float-out buoys to detect dangerous conditions, - be able to recognize and minimize false alarms by examining a combination of sensors, - alarm on contact with hydrocarbons, - require minimal maintenance, - be easily scalable, both geographically and as a network, - provide seamless integration into Supervisory Control and Acquisition (SCADA) systems, and - be economical. There is a related webinar.
Styles APA, Harvard, Vancouver, ISO, etc.
6

Muelaner, Jody Emlyn. Electric Road Systems for Dynamic Charging. SAE International, mars 2022. http://dx.doi.org/10.4271/epr2022007.

Texte intégral
Résumé :
Electric road systems (ERS) enable dynamic charging—the most energy efficient and economical way to decarbonize road vehicles. ERS draw electrical power directly from the grid and enable vehicles with small batteries to operate without the need to stop for charging. The three main technologies (i.e., overhead catenary lines, road-bound conductive tracks, and inductive wireless systems in the road surface) are all technically proven; however, no highway system has been commercialized. Electric Road Systems for Dynamic Charging discusses the technical and economic advantages of dynamic charging and questions the current investment in battery-powered and hydrogen-fueled vehicles.
Styles APA, Harvard, Vancouver, ISO, etc.
7

Riter, Karmann, Anthony Clint Clayton, Kelley Rountree et Prakash Doraiswamy. Solar Station for an Off-the-Grid Air Quality Sensor System. RTI Press, juin 2023. http://dx.doi.org/10.3768/rtipress.2023.mr.0051.2306.

Texte intégral
Résumé :
Air quality monitoring is a rapidly growing area of citizen science, or community science (CS), thanks to the availability of low-cost sensors. Contributing to a crowdsourced data platform (e.g., http:// purpleair .com/ map) is usually easy in urban areas, where there is access to uninterrupted electricity and wireless internet (Wi-Fi). However, there are sometimes security restrictions on Wi-Fi or a lack of exterior power outlets. Also, rural regions, particularly in low- and middle-income countries, often lack electricity and Wi-Fi continuity. RTI International has designed and distributed a solar power and Wi-Fi station that can adequately power both a small air quality sensor (e.g., PurpleAir PA-II) and a Wi-Fi hotspot to overcome these challenges. The station housing can accommodate a battery, a controller, and a cell phone or another type of Wi-Fi hotspot device. This paper discusses the need for such a station; a design for the current station, including parts list; suggestions for modifications in various use cases; and design factors to consider, including amount of sunlight per day, intended number of operational days under cloudy conditions, season, and total power requirements. This method is intended to be open source and a starting point for citizen scientists and CS projects.
Styles APA, Harvard, Vancouver, ISO, etc.
8

Liu, Xingbo. Development of Self-Powered Wireless-Ready High Temperature Electrochemical Sensors for In-Situ Corrosion Monitoring for Boiler Tubes in Next Generation Coal-based Power Systems. Office of Scientific and Technical Information (OSTI), juin 2015. http://dx.doi.org/10.2172/1312516.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Nous offrons des réductions sur tous les plans premium pour les auteurs dont les œuvres sont incluses dans des sélections littéraires thématiques. Contactez-nous pour obtenir un code promo unique!

Vers la bibliographie