Littérature scientifique sur le sujet « Wire Arc Additive Manufactoring »
Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres
Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « Wire Arc Additive Manufactoring ».
À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.
Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.
Articles de revues sur le sujet "Wire Arc Additive Manufactoring"
Williams, S. W., F. Martina, A. C. Addison, J. Ding, G. Pardal et P. Colegrove. « Wire + Arc Additive Manufacturing ». Materials Science and Technology 32, no 7 (9 février 2016) : 641–47. http://dx.doi.org/10.1179/1743284715y.0000000073.
Texte intégralCasalino, Giuseppe, Mojtaba Karamimoghadam et Nicola Contuzzi. « Metal Wire Additive Manufacturing : A Comparison between Arc Laser and Laser/Arc Heat Sources ». Inventions 8, no 2 (1 mars 2023) : 52. http://dx.doi.org/10.3390/inventions8020052.
Texte intégralShukla, Pranjal, Balaram Dash, Degala Venkata Kiran et Satish Bukkapatnam. « Arc Behavior in Wire Arc Additive Manufacturing Process ». Procedia Manufacturing 48 (2020) : 725–29. http://dx.doi.org/10.1016/j.promfg.2020.05.105.
Texte intégralLin, Zidong, Pengfei Liu et Xinghua Yu. « A Literature Review on the Wire and Arc Additive Manufacturing—Welding Systems and Software ». Science of Advanced Materials 13, no 8 (1 août 2021) : 1391–400. http://dx.doi.org/10.1166/sam.2021.3971.
Texte intégralDerekar, K. S. « A review of wire arc additive manufacturing and advances in wire arc additive manufacturing of aluminium ». Materials Science and Technology 34, no 8 (8 avril 2018) : 895–916. http://dx.doi.org/10.1080/02670836.2018.1455012.
Texte intégralKou, Fan, et Xiaoqiu Huang. « Current Research Situation and Prospect of Wire and Arc Additive Manufacturing of Titanium Alloy ». Journal of Engineering System 2, no 2 (juin 2024) : 39–46. http://dx.doi.org/10.62517/jes.202402207.
Texte intégralLiu, Dan, Boyoung Lee, Aleksandr Babkin et Yunlong Chang. « Research Progress of Arc Additive Manufacture Technology ». Materials 14, no 6 (15 mars 2021) : 1415. http://dx.doi.org/10.3390/ma14061415.
Texte intégralWang, Xiaolong, Aimin Wang, Kaixiang Wang et Yuebo Li. « Process stability for GTAW-based additive manufacturing ». Rapid Prototyping Journal 25, no 5 (10 juin 2019) : 809–19. http://dx.doi.org/10.1108/rpj-02-2018-0046.
Texte intégralGuo, Chun, Maoxue Liu, Ruizhang Hu, Tuoyu Yang, Baoli Wei, Feng Chen et Liyong Zhang. « High-strength wire + arc additive manufactured steel ». International Journal of Materials Research 111, no 4 (1 mai 2020) : 325–31. http://dx.doi.org/10.1515/ijmr-2020-1110408.
Texte intégralKlobcar, Damjan, Drago Bračun, Mirko Soković, Matija Bušić, S. Baloš et Matej Pleterski. « Important findings in Wire + Arc Additive Manufacturing ». Zavarivanje i zavarene konstrukcije 64, no 3 (2019) : 123–31. http://dx.doi.org/10.5937/zzk1903123k.
Texte intégralThèses sur le sujet "Wire Arc Additive Manufactoring"
Sazerat, Marjolaine. « Fabrication additive arc-fil (WAAM) pour la réparation de composants aéronautiques en Waspaloy : caractérisation microstructurale, mécanique et vieillissement métallurgique ». Electronic Thesis or Diss., Chasseneuil-du-Poitou, Ecole nationale supérieure de mécanique et d'aérotechnique, 2024. http://www.theses.fr/2024ESMA0024.
Texte intégralCold Metal Transfer (CMT), a wire arc welding process, is being contemplated as a means of additive repair for large aeronautical components. This technology offers a high deposition rate with reduced heat input due to short-circuit material transfer. Its use would considerably reduce maintenance, repair and overhaul (MRO) times. Waspaloy, a γ' precipitation-hardened polycrystalline Ni-based superalloy, is commonly used in the hot sections of jet engines. It is, however, considered marginally weldable due to its high aluminum and titanium content. This particularity leads to a lack of data in the scientific literature on this material/process pair. This thesis work, carried out at the Institut P' and in collaboration with the MRO center of Safran Aircraft Engines (Châtellerault), was dedicated to the study of CMT Waspaloy. The first axis of analysis was the characterization, both microstructural and mechanical, of the material in its as-built state. The granular and dendritic structure is presented, as is the heterogeneous γ' precipitation between dendrite cores and interdendritic spaces. The chemical segregation responsible for this is highlighted, and the monotonic mechanical properties up to 850°C, through both tensile and creep testing, are evaluated. Then, with the intention of optimizing the out-of-equilibrium microstructure by a post-weld heat treatment different from that recommended for the wrought material, a second focus emerged around the thermal stability of CMT Waspaloy. γ' precipitation coarsening and aging kinetics are approximated using the Lifshitz-Slyozov-Wagner theory. The formation of secondary phases is observed, with the identification of M23C6 carbides by their chemical and crystalline nature. Experimental time-temperature-transformation diagrams are established. The question of thermodynamic equilibrium is addressed through the application of a long ageing heat treatment, and numerically through Thermo-Calc® simulations. The effect of ageing on tensile and creep behavior is investigated, in comparison with as-built CMT Waspaloy and the reference wrought material. The links between the resulting properties and microstructural evolutions are highlighted. The mechanical strength of the interface between the wrought substrate and the CMT refurbishment is also investigated
Sequeira, Almeida P. M. « Process control and development in wire and arc additive manufacturing ». Thesis, Cranfield University, 2012. http://dspace.lib.cranfield.ac.uk/handle/1826/7845.
Texte intégralDing, J. « Thermo-mechanical analysis of wire and arc additive manufacturing process ». Thesis, Cranfield University, 2012. http://dspace.lib.cranfield.ac.uk/handle/1826/7897.
Texte intégralKarlsson, Mattias, et Axel Magnusson. « Wire and Arc Additive Manufacturing : Pre printing strategy for torque arm ». Thesis, Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-79176.
Texte intégralJonsson, Vannucci Tomas. « Investigating the Part Programming Process for Wire and Arc Additive Manufacturing ». Thesis, Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-74291.
Texte intégralGraf, Marcel, Andre Hälsig, Kevin Höfer, Birgit Awiszus et Peter Mayr. « Thermo-Mechanical Modelling of Wire-Arc Additive Manufacturing (WAAM) of Semi-Finished Products ». MDPI AG, 2018. https://monarch.qucosa.de/id/qucosa%3A33161.
Texte intégralKoskenniemi, Isak. « Preparing parts for Wire and Arc Additive Manufacturing (WAAM) and net-shape machining ». Thesis, Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-74296.
Texte intégralMachado, Duarte Jéssica. « Experimental and numerical studies on Wire-and-Arc Additively Manufactured stainless steel rods ». Master's thesis, Alma Mater Studiorum - Università di Bologna, 2021.
Trouver le texte intégralChu, Jeffrey B. (Jeffrey Bowen). « Investigating the feasibility and impact of integrating wire-arc additive manufacturing in aerospace tooling applications ». Thesis, Massachusetts Institute of Technology, 2020. https://hdl.handle.net/1721.1/126954.
Texte intégralThesis: S.M., Massachusetts Institute of Technology, Department of Mechanical Engineering, in conjunction with the Leaders for Global Operations Program at MIT, May, 2020
Cataloged from the official PDF of thesis.
Includes bibliographical references (pages 65-67).
The use of wire-arc additive manufacturing (WAAM) as fabrication method for Iron-Nickel 36 (Invar36) alloy aerospace tooling is a growing area of interest for many tooling companies and composite aircraft manufacturers. However, the full adoption and utilization of WAAM techniques is hindered due to lack of industry experience and end-part quality precedent. For some tool makers, the feasibility of utilizing additively manufactured Invar components is still under investigation because key material characteristics of end-parts are not well understood. Further, the impact of implementing additive manufacturing on a manufacturer's internal operations is not widely documented. While much academic research has been conducted on WAAM technologies, Invar, and change management for new technology introductions, much of the available literature does not provide the specificity needed to supplant an aerospace toolmakers' need for hands-on experience. This research will investigate both the technical feasibility of using WAAM Invar components (with respect to end-part quality and performance) in aerospace tool fabrication, as well as the organizational feasibility and impact of adopting the technology. This thesis will describe the series of testing completed to evaluate WAAM Invar in the context of an aerospace toolmaker and will outline some of the key organizational impacts that must be acknowledged for adoption of additive manufacturing within an aerospace tool making company. Because of this research, we hope to demonstrate the viability of utilizing WAAM Invar for aerospace tooling applications.
by Jeffrey B. Chu.
M.B.A.
S.M.
M.B.A. Massachusetts Institute of Technology, Sloan School of Management
S.M. Massachusetts Institute of Technology, Department of Mechanical Engineering
Arrè, Lidiana. « Design, fabrication and mechanical characterization studies on Wire and Arc Additively Manufactured (WAAM) diagrid elements ». Master's thesis, Alma Mater Studiorum - Università di Bologna, 2022. http://amslaurea.unibo.it/25666/.
Texte intégralLivres sur le sujet "Wire Arc Additive Manufactoring"
Rathee, Sandeep, et Manu Srivastava. Wire Arc Additive Manufacturing. Boca Raton : CRC Press, 2023. http://dx.doi.org/10.1201/9781003363415.
Texte intégralBorg Costanzi, Christopher. Reinforcing and Detailing of Thin Sheet Metal Using Wire Arc Additive Manufacturing as an Application in Facades. Wiesbaden : Springer Fachmedien Wiesbaden, 2023. http://dx.doi.org/10.1007/978-3-658-41540-2.
Texte intégralWire Arc Additive Manufacturing : Fundamental Sciences and Advances. Taylor & Francis Group, 2024.
Trouver le texte intégralWire Arc Additive Manufacturing : Fundamental Sciences and Advances. Taylor & Francis Group, 2024.
Trouver le texte intégralWire Arc Additive Manufacturing : Fundamental Sciences and Advances. Taylor & Francis Group, 2024.
Trouver le texte intégralWire Arc Additive Manufacturing : Fundamental Science and Advances. CRC Press LLC, 2024.
Trouver le texte intégralCostanzi, Christopher Borg. Reinforcing and Detailing of Thin Sheet Metal Using Wire Arc Additive Manufacturing As an Application in Facades. Springer Fachmedien Wiesbaden GmbH, 2023.
Trouver le texte intégralChapitres de livres sur le sujet "Wire Arc Additive Manufactoring"
Singh, Amritbir, Himanshu Kumar et S. Shiva. « Additive Manufacturing ». Dans Wire Arc Additive Manufacturing, 1–24. Boca Raton : CRC Press, 2023. http://dx.doi.org/10.1201/9781003363415-1.
Texte intégralLe, Van Thao, et Tat Khoa Doan. « Wire Arc Additive Manufacturing ». Dans Wire Arc Additive Manufacturing, 25–39. Boca Raton : CRC Press, 2023. http://dx.doi.org/10.1201/9781003363415-2.
Texte intégralBorg Costanzi, Christopher. « Wire Arc Additive Manufacturing ». Dans Reinforcing and Detailing of Thin Sheet Metal Using Wire Arc Additive Manufacturing as an Application in Facades, 61–84. Wiesbaden : Springer Fachmedien Wiesbaden, 2023. http://dx.doi.org/10.1007/978-3-658-41540-2_4.
Texte intégralSharma, Sumit K., Gyan Sagar, Kashif Hasan Kazmi et Amarish Kumar Shukla. « Wire arc additive manufacturing ». Dans Thermal Claddings for Engineering Applications, 277–97. Boca Raton : CRC Press, 2024. http://dx.doi.org/10.1201/9781032713830-13.
Texte intégralKumar, Basant, Sheikh Nazir Ahmad, Sandeep Rathee et Manu Srivastava. « Wire Arc Additive Manufacturing of Non-ferrous Alloys ». Dans Wire Arc Additive Manufacturing, 139–55. Boca Raton : CRC Press, 2023. http://dx.doi.org/10.1201/9781003363415-7.
Texte intégralYadav, Ashish, Manu Srivastava, Prashant K. Jain et Sandeep Rathee. « Mechanical Properties of Multi-layer Wall Structure Fabricated through Arc-Based DED Process ». Dans Wire Arc Additive Manufacturing, 213–21. Boca Raton : CRC Press, 2023. http://dx.doi.org/10.1201/9781003363415-11.
Texte intégralTomar, Bunty, et S. Shiva. « Process Planning and Parameters Selection in Wire Arc Additive Manufacturing ». Dans Wire Arc Additive Manufacturing, 40–53. Boca Raton : CRC Press, 2023. http://dx.doi.org/10.1201/9781003363415-3.
Texte intégralTomar, Bunty, et S. Shiva. « Cold Metal Transfer-Based Wire and Arc Additive Manufacturing (CMT-WAAM) ». Dans Wire Arc Additive Manufacturing, 71–88. Boca Raton : CRC Press, 2023. http://dx.doi.org/10.1201/9781003363415-5.
Texte intégralOmiyale, Babatunde Olamide. « Influence of Post-Processing Manufacturing Techniques on Wire Arc Additive Manufacturing of Ti-6Al-4V Components ». Dans Wire Arc Additive Manufacturing, 194–212. Boca Raton : CRC Press, 2023. http://dx.doi.org/10.1201/9781003363415-10.
Texte intégralNabi, Shazman, Sandeep Rathee, M. F. Wani et Manu Srivastava. « Wire Arc Additive Manufacturing through GMAW Route ». Dans Wire Arc Additive Manufacturing, 54–70. Boca Raton : CRC Press, 2023. http://dx.doi.org/10.1201/9781003363415-4.
Texte intégralActes de conférences sur le sujet "Wire Arc Additive Manufactoring"
Biswas, Preesat, Akula Rajitha, V. Revathi, H. Pal Thethi, Safaa Halool Mohammed et Dinesh Kumar Yadav. « Revolutionizing Wire Arc Additive Manufacturing : Advances in Geometric Accuracy and Surface Finish Optimization ». Dans 2024 OPJU International Technology Conference (OTCON) on Smart Computing for Innovation and Advancement in Industry 4.0, 1–6. IEEE, 2024. http://dx.doi.org/10.1109/otcon60325.2024.10687444.
Texte intégralKrein, Ronny, et Vadym Sushko. « Wire Arc Additive Manufacturing of Creep Strength Enhanced Ferritic Steels and Nickel Alloys ». Dans AM-EPRI 2024, 495–506. ASM International, 2024. http://dx.doi.org/10.31399/asm.cp.am-epri-2024p0495.
Texte intégralDiao, Z., F. Yang, H. Li, L. Chen, R. Wang et M. Rong. « Numerical simulation of arc characteristics and multi-layer deposition of Cu alloys fabricated by wire arc additive manufacturing ». Dans 2024 IEEE International Conference on Plasma Science (ICOPS), 1. IEEE, 2024. http://dx.doi.org/10.1109/icops58192.2024.10626239.
Texte intégralYan, Hongjun, Kai Qin, Yu Sun, Yangying Jiang, Lijun Ren et Jianliang Tang. « Influence of CaF2 on the microstructure and properties of wire-arc additive manufactured TA15 ». Dans 10th International Conference on Mechanical Engineering, Materials, and Automation Technology (MMEAT 2024), sous la direction de Yunhui Liu et Zili Li, 207. SPIE, 2024. http://dx.doi.org/10.1117/12.3047254.
Texte intégralAl Zaidi, Hussein Oraibi Hawi, S. Vinod Kumar, Vijilius Helena Raj, Sorabh Lakhanpal, Dinesh Kumar Yadav et K. Neelima. « Overcoming Distortion and Residual Stress Challenges in Wire Arc Additive Manufacturing through Advanced Process Control ». Dans 2024 OPJU International Technology Conference (OTCON) on Smart Computing for Innovation and Advancement in Industry 4.0, 1–6. IEEE, 2024. http://dx.doi.org/10.1109/otcon60325.2024.10687570.
Texte intégralRautio, Timo, Mikko Hietala, Matias Jaskari et Antti Järvenpää. « Comparative Study of Microstructural and Mechanical Properties of Wire Arc Additive Manufactured 316L Stainless Steel ». Dans 2024 International Conference on Power, Energy and Innovations (ICPEI), 191–95. IEEE, 2024. http://dx.doi.org/10.1109/icpei61831.2024.10748616.
Texte intégralNagpal, Amandeep, V. Alekhya, B. Swathi, A. Sravani, Ashwani Kumar et Maytham Razaq Shleghm. « Transforming Wire Arc Additive Manufacturing : A Novel Approach to Achieving High Deposition Rates with Reduced Costs ». Dans 2024 OPJU International Technology Conference (OTCON) on Smart Computing for Innovation and Advancement in Industry 4.0, 1–6. IEEE, 2024. http://dx.doi.org/10.1109/otcon60325.2024.10688335.
Texte intégralNijhawan, Ginni, G. Lalitha, V. Asha, V. J. Suresh, Praveen et Zahraa H. Abdulzahraa. « The Future of Wire Arc Additive Manufacturing Comprehensive Strategies for Improved Close Loop Monitoring and Control ». Dans 2024 OPJU International Technology Conference (OTCON) on Smart Computing for Innovation and Advancement in Industry 4.0, 1–6. IEEE, 2024. http://dx.doi.org/10.1109/otcon60325.2024.10687734.
Texte intégralNagpal, Amandeep, Akula Rajitha, Aravinda K, G. Gouthami, Ravi Kalra et Namaat R. Abdulla. « Breaking Barriers in Wire Arc Additive Manufacturing : Innovative Solutions for Enhanced Geometrical Accuracy and Surface Quality ». Dans 2024 OPJU International Technology Conference (OTCON) on Smart Computing for Innovation and Advancement in Industry 4.0, 1–6. IEEE, 2024. http://dx.doi.org/10.1109/otcon60325.2024.10688110.
Texte intégralAbdullah, Falah Hassan, Kilaru Aswini, Manjunatha, H. Pal Thethi, Ashish Parmar et B. Ganga Bhavani. « Redefining the Landscape of Wire Arc Additive Manufacturing : Pioneering Innovations for Residual Stress Mitigation and Process Efficiency ». Dans 2024 OPJU International Technology Conference (OTCON) on Smart Computing for Innovation and Advancement in Industry 4.0, 1–6. IEEE, 2024. http://dx.doi.org/10.1109/otcon60325.2024.10688195.
Texte intégralRapports d'organisations sur le sujet "Wire Arc Additive Manufactoring"
Korinko, P., A. Duncan, A. D'Entremont, P. Lam, E. Kriikku, J. Bobbitt, W. Housley, M. Folsom et (USC), A. WIRE ARC ADDITIVE MANUFACTURING. Office of Scientific and Technical Information (OSTI), septembre 2018. http://dx.doi.org/10.2172/1475286.
Texte intégralElmer, J., et G. Gibbs. Wire Arc Additive Manufacturing Final Report for the Wire-Based AM Focused Exchange. Office of Scientific and Technical Information (OSTI), novembre 2018. http://dx.doi.org/10.2172/1809158.
Texte intégralNycz, Andrzej, Clint Wildash, Yukinori Yamamoto, Luke Meyer, Derek Vaughan, Andres Marquez Rossy et Donovan Leonard. Multi material/functionally graded wire arc additive manufacturing of high strength steel valves clad with nickel alloy 625 used for oil extraction. Office of Scientific and Technical Information (OSTI), septembre 2022. http://dx.doi.org/10.2172/1992746.
Texte intégralMATERIAL PROPERTIES AND LOCAL STABILITY OF WAAM STAINLESS STEEL PLATES WITH DIFFERENT DEPOSITION RATES. The Hong Kong Institute of Steel Construction, août 2022. http://dx.doi.org/10.18057/icass2020.p.244.
Texte intégralA PRELIMINARY STUDY OF DEPOSITION RATE, MATERIAL PROPERTY AND STABILITY OF WAAM STAINLESS STEEL PLATES. The Hong Kong Institute of Steel Construction, mars 2023. http://dx.doi.org/10.18057/ijasc.2023.19.1.4.
Texte intégral